JFP 32, e3, 13 pages, 2022. (© The Author(s), 2021. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.

doi:10.1017/S0956796821000289

Editorial
On being a PhD student of Robert Harper

Abstract

The Robert Harper Festschrift includes articles by three of Bob’s students and colleagues—Karl
Crary, Andrzej Filinski, and Jonathan Sterling. Each of these articles touches on themes that are
central to Bob’s research: module system design, proof-directed program development, and (to use
Bob’s term) “computational trinitarianism”.

In this foreword to the Festschrift, we have additionally compiled reminiscences of Bob Harper
from his PhD students. We invited them to reflect on their experiences working with and learning
from Bob. We believe these reminiscences, presented in chronological order of dissertation date,
deliver a most fitting tribute to Bob in honor of his 64th birthday.

1. Benjamin C. Pierce, University of Pennsylvania
(Thesis: Programming with Intersection Types and Bounded Polymorphism,
December 1991, co-advised by John Reynolds)

Bob showed up at CMU white hot from a PhD with Bob Constable at Cornell and a long
postdoc at Edinburgh with Robin Milner, spewing ideas in every direction like a one-man
ticker-tape parade. I was his first student.

The quality I remember best about Bob in that period—well, I guess it hasn’t changed
much since—was his intensity about pretty much everything. There was the time that he
and Peter Lee discovered the first version of SimCity and basically disappeared for a week.
And the time he decided he needed to understand—in 100% complete detail—the path
taken by a keypress on his office computer’s keyboard to transform it into an arrangement
of pixels on his screen; he spent the better part of another week tracking it down by reading
through the source code of the operating system.

Besides Bob, I was co-advised by another towering figure in the programming languages
world, John Reynolds. Looking back, I am astonished both at my incredible good fortune
and at the way two such different people managed to convey so many of the same lessons.
John was very much a loner, intellectually: he had his own notations, his own terminology,
and his own ways of thinking about things; other people had to enter his world not just to
benefit from his insights but even to make him understand what they were talking about.
Bob was and is very much a collaborator, working intensely (natch) with students and
colleagues to establish and deepen common understanding and figure out how best to
communicate it to others. In their different ways, though, both taught me innumerable
lessons about clear thinking, clear speaking, clear writing, and the drive for excellence.

P

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press @ CrossMark

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796821000289
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796821000289&domain=pdf
https://doi.org/10.1017/S0956796821000289

2 D. Dreyer and B.C. Pierce

I used to say to my friends, “The great thing about having two advisors was that we can
all play ‘good cop / bad cop’ together. .. only I can never figure out who is bad cop and
who is good cop.” :-)

Seriously, though: Both were good cop!

2. Greg Morrisett, Cornell Tech
(Thesis: Compiling with Types, December 1995, co-advised by Jeannette Wing)

Bob Harper took me under his wing after I gave a disastrous talk as a graduate student in
the Principles of Programming (PoP) group seminar. I am eternally grateful.

I had been working on the Fox project, which was an ambitious undertaking to imple-
ment an operating system on top of a high-level language—Standard ML, of course. At this
point, we were just implementing the TCP stack and what I hated about the code was that
it was lower level than the C code it was meant to replace. This was because to represent a
packet, all we had were byte arrays, when in C, you could use a record (struct) to directly
represent the packet and access the fields. You couldn’t directly use SML records to do the
same thing because SML implementations, such as SML/NJ, represented the fields uni-
formly (as a machine word), when we needed fields that had different sizes, from bits to
bytes to words and even nested structures.

In my talk, I proposed adding new kinds of types to SML called “flat types”. The idea
was that a flat record would look like a C-struct: fields would take up only the space
needed to represent them and nested records would not be represented by a pointer, but
rather flattened into the rest of the record. The problem with flat types is that they didn’t
play well with polymorphism or abstract types. How much space should we allocate for
an abstract type? What alignment constraints should it take on? I proposed some crazy
scheme for solving this (the details of which have been conveniently forgotten) and I tried
to give a talk on this. John Reynolds was present at the talk and did nothing but scowl and
eventually exploded, basically telling me that [was an idiot, that he didn’t understand what
I was trying to do, and that what I proposed would never work.

Apparently, after my horrible talk, John went up to Bob Harper and told him that he
needed to “fix” me. To his credit, Bob invited me up to his office (which was incredibly
hard to find, hidden somewhere in Doherty Hall) and listened patiently while I tried to
explain my ideas. Bob came up with a wonderfully elegant solution to the problem I was
facing based on what we later termed “intensional polymorphism”. The basic idea was to
re-think language implementations that supported type abstraction and polymorphism, and
instead of erasing the types at run-time, you would instead pass around representations and
use them to support type-specific representations and optimizations. The trick was doing
this in a principled way, one that retained the ability to type-check the intermediate code
where you were manipulating the types as values.

I can’t take much if any credit for these ideas. They were all Bob’s. My modest contri-
bution was that I immediately saw a bunch of applications, from flat records and arrays, to
unboxed arguments and results for functions, to tag-free garbage collection. I fondly recall
going up to Bob’s office over and over again, working out the details for all of these appli-
cations. I would write things on the white board, Bob would critique, erase, and then show
me the right way to formulate things. Those one-on-one sessions were some of the most

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

Editorial 3

enlightening (and frustrating) times in my life. I could tell that I was often interrupting Bob
from doing something else, but he always let me come in and would spend hours working,
ever so patiently, with me.

Towards the end of my graduate career, I had figured something out and was excited to
show Bob. I went up to his office but couldn’t find him. In fact, he disappeared for a whole
week. (I later found out he was trying to solve all of the puzzles in the “Myst” CD-ROM
game that was all the rage back then.) When I finally tracked him down, I started writing on
the white board and got about half-way through explaining whatever it was that so excited
me. Bob kept interrupting me with questions. I got so frustrated that I finally just threw the
white board marker at him and yelled at him to “Shut up!” At that point, he leaned back in
his chair, smiled, and said, “Now you’re ready to graduate.”

3. Christopher A. Stone, Harvey Mudd College
(Thesis: Singleton Kinds and Singleton Types, August 2000)

I enrolled in graduate school at CMU planning to study Programming Languages with
Peter Lee and to focus on the implementation side. Shortly before the first semester started,
Peter suggested [might be interested in an elective (15-814: Type Theory for Programming
Languages) being offered by his Fox Project collaborator, Bob Harper. I knew noth-
ing about type theory—or Bob—but the class sounded interesting so I signed up. That
turned out to be one of my favorite courses ever; I was blown away by the clarity and
elegance of Bob’s presentation of small-step semantics, preservation and progress theo-
rems, logical relations, and more, and the way small extensions could handle recursion,
exceptions, polymorphism, continuations, and other language features. Bob’s course notes
evolved significantly thereafter, eventually resulting in the book Practical Foundations
for Programming Languages, but occasionally I still find myself consulting the original
handout from that first course.

Although Peter remained my advisor for several years, it became increasingly clear that
I had been seduced by type theory; Bob eventually took over the advisor role. Bob is a
man of very strong opinions, so he and I had a fair number of heated (technical) arguments
during the years I was working on my dissertation. To my great irritation, it almost always
turned out that Bob was right. But even at his most skeptical, he still took the time to listen
and give fair consideration to my ideas, and to agree with the parts that actually did make
sense. While some memories of my time at CMU have begun to fade over the decades, my
appreciation for Bob’s support and for everything I learned from him remains strong.

4. Perry Cheng, Nimbella Inc.
(Thesis: Scalable Real-Time Parallel Garbage Collection for Symmetric
Multiprocessors, September 2001, co-advised by Guy Blelloch)

I cannot recall how I first met Bob, but my lasting impression of him is that of an amiable
and supportive mentor who is as enthusiastic about doing his own research as imparting the
why of that work. When the elaborate and indirect reasoning in PL proofs would start to
overwhelm, he would motivate me by revisiting the goalposts. This vital lesson crystallized

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

4 D. Dreyer and B.C. Pierce

for me the point of dissertation work and future serious endeavors. Although my thesis,
co-advised by Guy Blelloch, is in a somewhat different area from his work, the goals and
methods are consonant with his approach of balancing soundness with real-world concerns.
If I had to come up with just a few nouns I associate with Bob, they would be types,
progressive politics, and cycling. The latter did not interest me but the former two remain
memorable and I can still hear the debates on the pragmatics of strongly-typed vs. ...in
daily programming. He was funny, merciless, and often right on the nose by remaining on
point. He taught me intellectual self-confidence by example, an enduringly useful skill in
both research and commerce. Sadly, I never did pick up his knack and love for writing.
Bob, thanks for getting me through!

5. Umut A. Acar, Carnegie Mellon University
(Thesis: Self-Adjusting Computation, May 2005, co-advised by Guy Blelloch)

I started my PhD with Guy Blelloch. I was familiar with Guy’s work and came to Carnegie
Mellon to work with him. After we started working together, Guy mentioned a few poten-
tial projects. Among them was the idea of using persistence and functional programming
to derive dynamic algorithms automatically. It was a high-risk project, with uncertain out-
comes. Perfect fit, I thought, and got to work. After about a year, the basic ideas started
to take shape but it was all quite complicated. So, Guy suggested that we collaborate with
Bob, who could help us reduce the matter to its essence.

So we did. It is hard for me to hide the grin on my face when I think of those days. I
would wake up early, work for a few hours at home, go to campus, socialize with other
graduate students, stop to talk with Bob and Guy, do some more work, and head off to rock
climbing later in the afternoon. The three of us would meet regularly to review progress.
During our meetings, Bob and Guy would often express opposing opinions of whatever I
proposed. This would typically lead to a lively, forthright debate. I relished these debates.
Sometimes, things would heat up, and we would all find ourselves yelling at each other,
presumably to make our points heard, or perhaps just for fun. I have learned in these
debates that Bob likes to be right. This can be a challenge, especially when he is not right.
I once invited him to settle an hours-long disagreement by arm wrestling. I digress. After
some more work, I was able to reduce the big beast of a system that we started with to a
relatively simple one revolving around the notion of a “modifiable”. I recall the meeting
when I first presented this idea. There was a sense of disbelief that this could all be so
“simple”. It was probably the shortest, most eventless meeting that we have had—how
exciting.

Those days are long gone, but they have produced knowledge that will long be remem-
bered. They have also seeded a fruitful collaboration between Bob, Guy, and me, and our
students, that have sprung off new research directions, many revolving around the idea
of unifying Church and Turing’s models of computation (a.k.a., “Theory A” and “Theory
B”). I hope that this idea will endure into the distant future and even perhaps reach other
galaxies (“thank you Amazon shoppers”).

There are a scant few that have the courage to seek the truth. I view Bob Harper as one
such rare individual. One may agree or disagree with him on any one specific topic, but
how could one not agree with the intent?

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

Editorial 5

6. Derek Dreyer, Max Planck Institute for Software Systems
(Thesis: Understanding and Evolving the ML Module System, May 2005, co-advised
by Karl Crary)

I don’t remember what the context was exactly, but one day in grad school I revealed to
Bob that I didn’t know anything about logical relations. In typical Bob fashion, he was
very surprised and gave me a hard time for not having already educated myself about this
fundamental thing that he thought every student should know. To rectify this lapse in my
education, he spent the afternoon giving me a private lesson in his office about logical
relations, starting with Tait’s method for proving strong normalization of the simply-typed
A-calculus, and then Girard’s method for proving the same of System F. If I recall correctly,
he described these as “book proofs”, a reference to Paul Erdds’s idea of proofs so beautiful
that they belonged in God’s book of perfect mathematical proofs.

Apparently, Bob’s impromptu lecture made a big impression on me, because over 20
years later, I’'m still grinding out a living trying to come up with my own book proofs
based on logical relations.

More generally, Bob instilled in me a deeply ingrained sense of the importance of mod-
ularity. My thesis work, for starters, was on the ML module system, a topic near and dear
to Bob’s heart. But even when I moved on to other problems, including some that were
perhaps less directly up Bob’s alley (e.g. weak memory models, verification of low-level
concurrent programs), modularity has remained for me the central concern. How can we
reason about concurrency and higher-order state modularly? How can we verify compil-
ers modularly? How can we factor the soundness proof of a concurrent separation logic
modularly? How can we establish safety of a language like Rust modularly? 1 am indebted
to Bob for planting the seed of modularity in my mind and giving me the confidence that
these were the right questions to ask, even if (or maybe precisely because) they often seem
so devilishly hard to answer.

This brings me to my last, and perhaps weirdest, thought. In the past decade, particularly
since his focus turned to computational higher type theory, Bob has embraced the motto,
“Dare to be irrelevant.” I think that, while catchy and provocative, this slogan is but one
instance of a broader lesson that I took away from Bob’s research and mentorship, namely:
“Dare to think for yourself. Question the conventional wisdom. If everyone else is going
one direction, go the other way. It’s OK to be weird.” Bob is the living embodiment of
these principles: his research interests span wildly disparate topics (type-directed compi-
lation, low-level memory management, avant-garde type theory, module system design,
parallel algorithms, mechanized proof, and more), he pursues his vision regardless of pre-
vailing trends in the field, and he approaches everything he does from an original and often
idiosyncratic perspective. Bob’s work is weird, and gloriously so!

Arguably the apotheosis of this weirdness was the 2006 ICFP Programming Contest,
which was organized by a team of Bob, Karl, and their students (not including me—I had
graduated the year before). The contest, titled Cult of the Bound Variable, was completely
unlike any other programming contest I’ve seen before or since. It comprised a number
of problems that were all elaborate jokes about terribly impoverished or cumbersome pro-
gramming languages, such as the Qvickbasic language (where line numbers were written
in Roman numerals) or the 2D language (where circuits had to be written out laboriously

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

6 D. Dreyer and B.C. Pierce

in ASCII graphics). These were all tied together by a ridiculous framing story about “com-
putational archaeolinguistics”: a thinly veiled reference to Bob’s perennial complaint that
so much PL research focuses on remedying the flaws of poorly designed mainstream lan-
guages, treating them as archaeological artifacts, rather than building better languages on
solid formal foundations.

I’m sure that to a large extent the 2006 ICFP Programming Contest was the brainchild
of Bob’s amazing students, especially Tom Murphy VII, whose one-of-a-kind Dadaist
sensibility was on full display. (See Tom’s reminiscence below for his own perspective on
the contest.) Nevertheless, it is a testament to the offbeat culture of Bob’s research group
that something this weird and wonderful could emerge from it: a thing of surreal beauty
whose irreverence—and irrelevance!—I find inspirational.

I like to think that with my borderline obsessive focus on modularity and logical rela-
tions, inherited as it clearly was from Bob, I am carrying on the CMU tradition of weird
and independent thinking. I will try to keep it weird, Bob, and I know you will, too!

7. Leaf Petersen, Google
(Thesis: Certifying Compilation for Standard ML in a Type Analysis Framework,
May 2005, co-advised by Karl Crary)

Some oddly vivid and specific memories of Bob. Walking with him to the Oakland O
concession in the student center for a hot dog after a long session in his office. Eating
out at a Chinese restaurant to celebrate a Fox project milestone. His enthusiasm for a
homework assignment I proposed as his TA based on Strassen’s algorithm. Visiting him
during renovation work at his house.

I arrived at CMU in 1996 with a fairly ad hoc understanding of programming languages
picked up “on the job” as it were, and graduated in 2005 with a broader and deeper
understanding, somewhat less ad hoc perhaps, but also largely picked up “on the job”.
Much of what I learned there was still just shared knowledge by a small community, only
starting to be more broadly written down and disseminated. The early lecture notes that
I believe eventually evolved into “Practical Foundations for Programming Languages”
were a startling revelation to me in their clarity and concision. Deep concepts made sim-
ple, and almost obvious (almost!). I still have my copy of the notes: “Type Systems for
Programming Languages (DRAFT)”, copyright 1996. The text and notation is re-assuring
and familiar after many years.

It is certainly the case that I learned a great deal about programming languages during
my time as one of Bob’s Sorcerer’s Apprentices—much that was interesting, true, and use-
ful. Far more valuable though, I think, was a rigorous education in the value of a kind of
clarity of thought, and co-equally of communication. Bob was never satisfied with some-
thing that just worked. It had to obviously work, and it had to explain by its very expression
how it worked. The occasional marathon sessions in Bob’s office working through a prob-
lem were as much about arriving at an explanation for a solution as at the solution itself.
This appreciation for thinking and communicating clearly was almost certainly by far the
most valuable thing I took away from my time with Bob, and something that I find myself
valuing, respecting, and aspiring to more and more every year.

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

Editorial 7

I’'m very grateful to Bob for all that I learned from him, and I’m very pleased to con-
gratulate him on all that he has accomplished and the tremendous influence he has had on
those of us represented here, as well as on the broader Computer Science community.

8. Ashish Agarwal, Solvuu Inc.
(Thesis: Logical Modeling Frameworks for the Optimization of Discrete-Continuous
Systems, May 2006, co-advised by Ignacio Grossmann)

I was a PhD student in the Department of Chemical Engineering at Carnegie Mellon, which
I had chosen for its well known computational focus. However, my interest in Computer
Science was too deep to be satiated there. By the second year of my PhD, I was emailing
faculty in the CS department. One of them was Bob. I asked him several questions, which
all clearly communicated that I knew nothing about his whole field. Nonetheless, he replied
immediately saying “you could just stop by my office”. So that’s the first thing I’d like to
say about Bob. He is exceedingly generous.

Bob referred me to reading material like Frank Pfenning’s course notes and Milner’s
Pi Calculus. I would ask him questions about my research, which regarded automating
algebraic transformations in the field of linear programming. Bob had no experience in
this area, but he answered every question I asked so thoroughly that each meeting kept me
busy for a couple of months. This went on for a year, at which time Bob suggested we
meet weekly. And that was how I became his PhD student.

Until I met Bob, I thought I just needed help with my C++ code. Now Bob had intro-
duced me to a new world, and I knew there was a theory behind my efforts. For the next
two years, I had intense meetings with Bob. He personally taught me more mathematics
than I had ever learned before. He would solve every problem I posed on the spot and not
stop until the solution was complete (one particularly difficult problem led to a 10 hour
session). He filled up the many whiteboards in his office multiple times, and I would fran-
tically take notes. Somehow I absorbed most of what he was explaining, which I credit to
his exceptional communication skills.

Bob was also demanding. I sent him a version of my dissertation that I thought was
quite polished. He called me in the evening, rather unhappy. I headed directly to his office
and he spent several hours tearing it apart. In the end, I asked “so it appears that you are
happy with all of my technical work™. He replied that yes he was. The problem was all
in the introduction. It took me several months to rewrite the introduction because I had to
first familiarize myself with a century of mathematics. Only then could I truly understand
where my dissertation stood in the universe of all knowledge. I feel privileged. His high
standards elevated me.

Thinking about my next step, I realized I miss science. I had learned how to build com-
plex software systems, and I wanted to use that knowledge to help scientists. I decided to
pursue a postdoc in the field of Bioinformatics, which is the field I’ve been working in ever
since. Bob’s advice was that it takes 10 years to gain expertise in a new field, and that I
should be ready for that. I think it depends. If you’re lucky enough to have an advisor like
Bob, that time frame can be drastically reduced. Bob continues to support me, e.g. writing
reference letters and serving as an advisor to my startup. To Bob, thank you for accepting
me as your student. Your influence is present in the work I do every day.

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

8 D. Dreyer and B.C. Pierce

9. Tom Murphy VII, Google
(Thesis: Modal Types for Mobile Code, May 2008, co-advised by Karl Crary)

I first encountered Bob Harper as an undergraduate in about 1998. I was a cowboy C pro-
grammer and probably pretty annoying. The CS fundamentals course 15-212 was taught
in ML (Bob’s doing, I later understood) and it was the first computer-related thing I ever
found difficult, which was puzzling to me. I didn’t like it. I wanted to get back to whatever
I thought programming was.

Bob didn’t teach this course, but he gave a guest lecture at the very end, which daz-
zled me. This brilliant fellow was animated with passion for what had seemed to me a
dry, uptight subject. He had the most comprehensive vision for the discipline of computer
programming I had ever seen. It was almost holy for him. And he made sense. This was
not just a boring version of programming where rules prevented you from having fun and
being creative. This was a better version of programming that I didn’t know about yet.

Bob inspired me with that lecture to try his programming languages course. He is of
course a fantastic teacher as well, and this (with help from the rest of the incredible POP
Group) led to me staying at CMU for graduate school, which had not been the plan at all.

I believe Bob is the smartest person I’ve met, although to be polite I should exclude
anyone currently reading this (can’t exclude Bob, though, or the statement is ill-formed).
As an advisor his high standards can be hard to meet. He does not pull punches, but for
the same reason his approval or praise is truly meaningful. I definitely benefited from him
giving me a hard time, and count some of the successes among my proudest moments.

Despite the intellectual toughness, Bob was not a taskmaster, and he gave us plenty of
latitude to explore. I was privileged to spend a full semester working on the design of the
2006 ICFP Programming Contest, which was dangerously ambitious and probably hard to
characterize as “part of the PhD program.” But it was also very formative for me and others
who worked on it, and a treasured accomplishment. I’m sure part of this was a calculated
risk for our benefit, but it was also because Bob believes in doing good work and having
a good time doing it. I vividly remember the late night “launch” of the contest, which the
organizing students celebrated in the CS grad lounge with some illicit beers. When we
found out Bob was going to join us for the celebration we hastily put our “responsible
student” faces on and hid the beer—Bob showed up, beaming, with a six-pack of his own!

Bob taught me that beauty matters, that an idea can always be improved, and that the
Fest can be as important as the Schrift. I will be forever grateful for his investment in me
and our fulfilling collaborations. Cheers!

10. Daniel Spoonhower, LightStep
(Thesis: Scheduling Deterministic Parallel Programs, May 2009, co-advised by Guy
Blelloch)

I learned many things from Bob during my time working with him, including, of course,
many things about programming language semantics as well as how to approach program-
ming language research in general. But there are many important aspects of this work
that are not just about doing the research itself—at least, according to Bob, and I found
that I came to agree. Communicating about research, both in written and spoken form, is

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

Editorial 9

a critical part of being a researcher. As a student, Bob was always direct with feedback
about my writing, and I am proud to say that, over the years, my drafts came back with
fewer and fewer redlines. And not just proud, as these skills have played an important role
in my career, both in academia and industry.

Bob also felt it was important to be able to communicate about our work in more casual
settings, say, during a coffee break at a conference, and to engage with others in our
research community. In fact, as a first year graduate student, I remember being admon-
ished by Bob for gathering with other students from our group during one such coffee
break. We could see each other any day: conferences were for meeting new people! And
despite how stressful I found it, I’'m glad Bob pushed us to do so. Later in my tenure as
one of Bob’s students, and as students from our group graduated and moved on to new
positions, I really looked forward to seeing those former students at conferences: now that
they were no longer part of our institution, I was free to socialize with them!

I am very thankful to Bob for the kinds of students and collaborators he attracted and
the community he helped to build. Of course these were also often my collaborators, but
in many cases they also became good friends.

11. Dan Licata, Wesleyan University
(Thesis: Dependently Typed Programming with Domain-Specific Logics, February
2011)

The first time I met Bob, I was—Tlike so many other students before and after me—a student
in the audience for a lecture. My undergraduate research group had driven up to see him
give a talk on type theory for module systems. I didn’t understand much of the details at
the time, but I was instantly captivated by the material. The way that Bob can give a talk
that is chock full of technical details, where you don’t understand all of the details, but you
nonetheless feel the shape of the ideas, is a rare magic trick. Despite seeing it performed
many times, and getting advice on innumerable talks of my own from the magician, I still
don’t quite understand how he does it.

During my first three or so years, Bob was very helpful and patient and supportive
as I learned the ropes. In retrospect, what Bob taught me then—about dependent types,
metatheory, representations of variable binding, and hacking in proof assistants, but also
about really digging into every detail of a very technical subject, and about expository
writing—has been the foundation for everything I’ve done since.

In the second half of grad school, when I started to have some new technical ideas
of my own, Bob was invaluable for refining and presenting them. I remember many an
advisor meeting where I would come in excited about something, it wouldn’t quite resonate
with him, and I’d leave feeling a little deflated—until the next round of revision made
the work so much better. As we approached paper deadlines, these meetings would spill
into evenings and weekends too, often at a coffee shop. Bob would come in, often after
a bike ride, and we’d spend the evening talking about the details of the work or about
how to present it. One time, Bob and I were working on a paper with Noam Zeilberger,
relating representations of variable binding to the idea of polarity that Noam was studying.
The main idea of the paper was that variable binding was a “positive” connective, but
we realized, quite soon before the deadline, that it could also be represented by a related

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

10 D. Dreyer and B.C. Pierce

“negative” connective. While this didn’t change any of the technical details of what we
had done so far, it threw a wrench in the story we were telling about the work (there’s
always a crisis just before the deadline, I remember Bob telling me). We stayed at 61C
until it closed and then went back to Bob’s living room until after midnight to iron out the
story. Until this phase of grad school, I didn’t appreciate how much work it was to fit some
technical work and the story presenting it together into a compelling paper.

Just after I graduated, Bob entrusted me with giving the lectures in CMU’s new introduc-
tory functional programming class 15-150, a revamp of his longstanding sophomore-level
15-212. In addition to all of the research mentorship, these three semesters of teaching
mentorship and experience are a big part of why I got hired for the job I have today. Bob
and I designed the syllabus and mapped out what should be in each lecture together, but I
got to put my own spin on the presentation. This mostly went well, except for one lecture
just after spring break when I was a little underprepared, and didn’t quite nail the expla-
nation of the correspondence between parallel functional programs and cost graphs. Bob
sat quietly in the front row, frowning and shaking his head (I’'m guessing you all know the
look). I’ve taught this course most years since, and every time I give that lecture (or any
lecture, really), I’'m reminded to make sure I understand every detail of what I’'m about to
say and to take the time to get the story just right.

12. Kuen-Bang Hou (Favonia), University of Minnesota
(Thesis: Higher-Dimensional Types in the Mechanization of Homotopy Theory,
February 2017)

Perhaps surprisingly to many people, my research area before coming to CMU was in algo-
rithms, and I had never been exposed to programming language theory until I took Bob’s
course on Types and Programming Languages (CMU 15-814). Bob’s vivid explanation
demonstrated the depth of his knowledge and how one should approach the field. I was
blown away by his charisma and had since been preparing myself for PL research.

Throughout my Ph.D., Bob offered me great freedom and resources to pursue what I
wished to accomplish; I was able to participate in various seminars and related activities
even before becoming his student. After becoming his student, I was able to work with
anyone in the field on any topic that interested me. Moreover, Bob has been selflessly
providing guidance and help even when undergoing events as significant as kidney
transplantation. Only after becoming a Ph.D. advisor on my own did I realize how much
effort Bob must have put in.

I have learned many things from Bob: the formal analysis of programming languages,
the pursuit of fundamental principles, and the respect for mathematical truth over personal
preference. If I have become a successful researcher in any sense, it is all thanks to these
lessons.

13. Joseph Tassarotti, Boston College
(Thesis: Verifying Concurrent Randomized Algorithms, January 2019)

My earliest memory of Bob is from the CMU visit days for admitted students, where he
gave a talk on the propositions-as-types principle. Bob’s fervor was inspirational, and when

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

Editorial 11

I arrived at CMU in the fall, I had sworn off low-level systems verification work and was
committed to studying type theory with Bob. As it turned out, a little less than a year later
I was verifying concurrent code on weak-memory architectures, a complete reversal of my
plans.

Fortunately, Bob was very patient as I found my way, and I will always be grateful for
his support and guidance as I explored my research interests. When I would tell people
what I was working on and who my advisor was, they would sometimes express confusion
because they did not see the connection to Bob’s own interests. But I could always trace a
thread between what I was working on and some remark or question posed by Bob in one
of our meetings. In particular, many of the research topics I have pursued were motivated
by two guiding principles that Bob imparted to me.

The first is the idea that research can and should be motivated by teaching. If something
important is too difficult or confusing to explain to students, that’s a sign that the under-
lying ideas can be improved. When Bob was teaching the analysis of randomized parallel
quicksort’s running time, he asked me to see if there was a way to make the analysis sim-
pler or more uniform. Answering that question directly led to our ITP 2018 paper together,
which introduced a technique to make it easier to produce machine-checked proofs for
such algorithms.

The second idea was the use of logical relations to reason about the encapsulation of
benign effects. Studying Bob’s book and discussing the topic with him many times gave
me a deep appreciation for the centrality and beauty of these ideas. Just from looking at the
work of Bob’s students, one can get a sense of how versatile logical relations can be, with
applications ranging from cubical type theory to (for my own part) transactional storage
systems.

I’m thankful to Bob for teaching me these and many other lessons during my time as a
student. It’s a pleasure to be able to celebrate his career and his broad impact on the field.

14. Carlo Angiuli, Carnegie Mellon University
(Thesis: Computational Higher-Dimensional Type Theory, September 2019)

In 2011 I arrived at Carnegie Mellon University knowing only that I wanted to study the
theory of programming languages. When I met with Bob, he told me about “homotopy
type theory,” an up-and-coming area that Vladimir Voevodsky had spoken about at CMU
just one year earlier. Neither of us (well, nobody) knew much about it yet, but the topic
seemed like a natural fit for me.

The early days of HoTT consisted mostly of mathematicians, computer scientists, and
philosophers trying to understand one other. It felt to me like a real age of discovery, and
I remember many meetings where Bob would explain some subtlety of dependent type
theory to me, and I would explain to him what little algebraic topology I knew at the time.
My second year was the Special Year on HoTT at the Institute for Advanced Study, and
on weeks when only one of us was in Princeton, we would report back to each other over
Skype.

HoTT has matured somewhat in the intervening decade, but I still remember its (and
my) salad days fondly. I am eternally grateful to Bob for his constant support and advice

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

12 D. Dreyer and B.C. Pierce

over the years, and for his patience when it became clear that my projects were consider-
ably more complex and prolonged than we originally hoped. Beyond the fact that lambda
conquers all, what will always stick with me is Bob’s advice to develop a point of view:
I always try to start a project by articulating exactly why it’s worthwhile, and keep this
perspective close at hand even when I’'m deep in the technical details.

15. Evan Cavallo, Stockholm University
(Thesis: Higher Inductive Types and Internal Parametricity for Cubical Type
Theory, February 2021)

I met Bob Harper via email in the early years of my undergraduate degree at Carnegie
Mellon. I was ostensibly a student of physics, but I had become enamored first with Lisp
and then Haskell and wanted to know how I could learn more. I imagine it was hard for
him to know what to do with me, but he introduced me to his student Carlo Angiuli, tried to
involve me in projects, and checked in on me from time to time. I remember one meeting
where he pointedly asked me when I was going to figure out what I wanted to do, what I
wanted from him—questions I had a hard time answering. When I made the decision to
work under him for my PhD, I think neither of us was confident we’d be able to get on
the same wavelength. I was enthusiastic, but also willful and scatterbrained. It took time
to carve something recognizable as a researcher out of me.

With Bob, the story is paramount. In my undergraduate days, he was well-known among
the students for his bombastic and mind-expanding lectures. As his teaching assistant and
then doctoral student, I saw he was forever looking for ways to improve them, to drill down
to the essence. Each year he’d reconstruct and reinvent his lesson plans, and in our weekly
meetings he’d often take me on a tour through his latest perspective. When we sat down
to plan out a paper, the first questions were the story-theoretical: what would be the hook?
What was the climax? We didn’t always agree at first what the story ought to be, but Bob
impressed upon me the importance of working through it together, of putting in the effort
to hammer out something that satisfied us both.

I am grateful to Bob for many things: for introducing me to the wild worlds of program-
ming languages and type theory, for always knowing which researcher of yesteryear had
the solution to our problem, for being my guide to the research community, for taking a
sincere interest in my personal well-being. Most of all I am thankful to him for insisting
that I get my story straight.

16. Jonathan Sterling, Aarhus University
(Thesis: First Steps in Synthetic Tait Computability: The Objective Metatheory of
Cubical Type Theory, October 2021)

It is hard to describe my first encounters with Bob in 2014—who blazed with enthusiasm
for the unity of constructive mathematics and computer programming. This is a man who
inspires strong reactions, and my own reaction was to fill myself up with his ideas and his
ethos through his online lectures, blog posts, papers, and our correspondence. Bob asked

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000289

Editorial 13

me to be his student in July of 2015, opening up an opportunity to me that would unfold
into the most fulfilling five years of my life.

My fondest memories are of Bob doing what he does best—telling a story. Let me
paint the tableau. We are in Bob’s office, or talking through a pipe during the pandemic.
I have brought some incomprehensible mathematics to Bob and he is thinking about it.
Then he starts to unfurl a narrative that explains why this work matters, what it does,
how it connects to our research program, and how it fulfills a dream from the classical
literature—and all the while I am furiously taking notes. “That’s the paper,” he says.
That’s how I remember my time with Bob.

Derek Dreyer

Max Planck Institute for Software Systems
Saarland Informatics Campus E1.5

66123 Saarbriicken, Germany

(e-mail: dreyer@mpi-sws.org)

Benjamin C. Pierce

University of Pennsylvania

Dept. of Computer & Information Science
3330 Walnut Street

Philadelphia, PA, 19104-6389, USA

(e-mail: bcpierce@cis. upenn.edu)

https://doi.org/10.1017/50956796821000289 Published online by Cambridge University Press

mailto:dreyer@mpi-sws.org
mailto:bcpierce@cis.upenn.edu
https://doi.org/10.1017/S0956796821000289

	Editorial[5pt] On being a PhD student of Robert Harper

