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A Multiplicative Analogue
of Schur’s Tauberian Theorem

Karen Yeats

Abstract. A theorem concerning the asymptotic behaviour of partial sums of the coefficients of prod-
ucts of Dirichlet series is proved using properties of regularly varying functions. This theorem is a
multiplicative analogue of Schur’s Tauberian theorem for power series.

A great workhorse of asymptotic enumeration is a theorem first given by Schur in
[10] in 1918. It states:

Theorem 1 Let S(x) = )~ 5(m)x" and T(x) = Y -, t(n)x" be two power series
such that for some p > 0 B B

L lim, o = o =P
2. S(x) has radius of convergence greater than p.

Letr(n) = Zi+j:n s(i)t(j). Then

. or(n)
Jm S = S

This theorem appears in [9] as Exercise 178 in Chapter 4 of Part I. With complex
argument and complex coefficients it appears as Theorem 2 of [2] and Theorem 7.1
of [8].

A central thesis of Burris’ book [4] is that there is a remarkably simple proce-
dure to translate theorems in additive number theory into theorems in multiplicative
number theory. However, Burris in [4] does not provide a true multiplicative ana-
logue to Schur’s Theorem under this translation, only an analogue weakened by an
additional hypothesis; nor has a true multiplicative analogue been formulated else-
where. One specialised version will be discussed later. The goal of this paper is to
provide a true analogue of Schur’s theorem under Burris’ translation.

In this context the aforementioned translation procedure entails replacing the ra-
tio test condition, lim,,_, o #(n — 1)/t(n) = p, with the regular variation condition,
lim, oo T(xy)/T(x) = y* for y > 0, where T(x) = >, t(n) and T is eventually
positive, and replacing power series with Dirichlet series. For this theorem the even-
tual positivity is not needed. Applying the translation we get the following statement:
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Theorem 2 Given o € R, let S(x) = >, o s(m)n™* T(x) = > -, t(n)n"* be two
Dirichlet series with t real valued, and let T(x) = anx t(n). Suppose

L. limy oo TT(ZZ')) = y* fory >0,

2. S(x) has abscissa of absolute convergence less than c.

Letr(n) = Zi,j:n s(i) - t(j)'and R(x) = > n<x T(1). Then

. R(x)
Am T = 3@

Burris’s weakened analogue (Theorem 9.53, [4]) has the additional hypothesis
t(n) > 0. We will use the following uniform convergence theorem for functions
of regular variation along with some lemmas to prove a still more general theorem
from which Theorem 2 follows as an immediate corollary.

Theorem 3 (Uniform Convergence) If f: [1,00) — R is measurable and eventually

positive, and limy_,o f(xy)/f(x) = y® for y > 0, then lim,_,oo f(xy)/f(x) = y*
uniformly for y € [a,b] with0 < a < b < oc.

This is a standard regular variation result. It appears as Theorem 1.3 of [5] and
follows from Theorem 1.5.2 of [3].

Lemma4 If lim, .o f(xy)/f(x) = y* fory > 0and f: [1,00) — Risleft or right
continuous at every point, then f is eventually positive or eventually negative.

Proof Let f satisty the hypotheses; clearly f is eventually nonzero. Pick N large
enough that f(2x)/f(x) > 0and f(3x)/f(x) > 0 forx > N. Takex,y > N;
since f is left or right continuous at y there is an interval [a, b], a # b, containing
y on which f always has the same sign. Choose positive integers k and ¢ such that
3kx/2" € [a, b]. This is possible since numbers of the form 3 /2" for positive integers
k and £ are dense in [1, 00). Then

f(3%x/2")  f(3*x/2°) f(3*x)

o 6w fm

So f is eventually positive or eventually negative. ]

Lemma5 If f: [1,00) — R is measurable, eventually positive, and bounded on any
interval [1,x), and lim,_, oo f(xy)/f(x) = y® for y > 0O, then for any v < « there
exist constants M and C such that

|f(x)]
fy)

IThat is, R(x) = ZnZl r(n)n~* = S(x) * T(x) where * is the Dirichlet product.

< C(x/y)", fory>Mandl <x<y.
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Proof Choose M, > 1 such that, for x > M, f(x) > 0 holds as well as

)y,

) f(2x)

Now, for 3 < u < 1, f(yu)/f(y) approaches u® uniformly as y — co. So pick
M > Mg such thatfor y > M and u € (%, 1] we have

f(yu)
@) () =

Note that f(x) is positive on [M, 00).
Take y > M and 1 < x < y. Suppose x > M. Then

u“+1<u’ +1.

f@] _f@ &) fQ" ) f2m)
) f» - f@0 T fem o)

where 2™x < y < 2™*1x, Let u = 2™x/y; then u € (%, 1]. By (1) and (2)

ol <@+

— 27 (27"
= (x/y) + @)

Now log, (y/x) — 1 < m <log,(y/x);soify >0

/)] gl —7)log, (y/x)—1 _ 7 v
) < (x/y)T+(277) = (1+2")(x/y)",
andify <0
'ﬁﬁ' < (e/y) + (27RO = 2y,

Now suppose x < M. Since f(x) is bounded on [1, M) there exists an M; > 1
such that | f(x)|/ f(M) < M for 1 < x < M. We know

Sl _ [f®)] f(M),
foy M) ()’

soify >0
;((;C)) < Mi(27+ D(M/y)? < My(27 + DM (x/y),
andify <0
% < 2M(M/y)? < 2My(x/y)".
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Hence C = max(2M1,M1(1 + 27)M7) works in all cases. |

For the following theorem we will use general Dirichlet series of a particular form;
namely series y - s(n)o, * where {o,} is an increasing positive sequence of real
numbers such that o, — 0o as n — 0o. General Dirichlet series are discussed in
detail in [6].

Note that the Dirichlet product [6, Chapter VIII] of two such series is also such a
series, sinceif ) 5 -, s(n)o, *and )" -, t(n)7, * are two such series then their Dirich-
let product is the series Y1 Z(mj;p” s())t(j)p, * where {p,} is the ascending se-
quence formed by all the values of o;7}; so p, — oo as n — oo.

Theorem 6  Given o € R, let S(x) = > o, s(n)o, ™, T(x) = > <, t(n)71,* be
two general Dirichlet series of the above form where s and t are complex-valued, and let

T(x) =>_, <, t(n). Suppose

1. T=0bT*+U where0 # b € C limy_,o, U(x)/T*(x) = 0, and T* is real valued,
left or right continuous at every point, and bounded on any interval [1, x),
. T (x a

2. limy o0 % =y*fory >0,

3. S(x) has abscissa of absolute convergence less than .

Let {p,} be the ascending sequence formed by all the values of o;7j and let r(n) =
Zam:pn s(i) - t(j) and R(x) = angx r(n). Then

. R(x)
dim T~ S@-

Proof By replacing b by —b if necessary and by Lemma 4 we can assume T is even-
tually positive.

Notice that T* is measurable, since if we take an open set V' then for every v €
(T*)7Y(V) there is an interval I, containing v such that T*(I,) C V. For every
rational v € (T*)"(V) let B, = waelx I, which is an interval. Then (T*)~Y(V) =
Useancr=)—1v) Brs 50 (T*)~1(V) is measurable.

Pick My such that |[U(y)/T*(y)| < |b|/2 for y > My. Let us redefine T*(x) to be
lon [1,Mp] and U(x) tobe T(x) —b on [1, My]. Then the hypotheses of the theorem
still hold and T* remains measurable and eventually positive. Further U (x)/T*(x) is
bounded on [1, 00), say by M, /|b|, since it is bounded on (M, c0) by the choice of
My, U(x)/T*(x) = T(x) — bon [1,M,], and T is bounded on [1, Mj].

Let a; be the abscissa of absolute convergence of S(x), then oy < «a by assumption.
Choose 7 such that a; < 7 < a. By Lemma 5 there exist constants M; > M, and C
such that

|T* (x)]
T*(y)

<C(x/y)? fory>Mjand1 <x<y,
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and T*(y) > 0fory > M;. Fory > Mjand 1 < x < y,

|T(x)] _ |T*(x)| 1+ U(x)/bT*(x)|
IT(y)|  T*(y) 1 +U(y)/bT*(y)|
< Clx/y)72(1 + My)

=C'(x/y)"

where C' = 2C(1 + M,;). Also

o Tay) L Ty (L UG/ @)
s=o0 T(x)  x—o0 T*(x) (1+U(x)/bT*(x)) '

From the triangle inequality with x > M,

—a R
Z S(I’I)O'n — m

on<x

+

‘S(a)—%

< ‘S(a) - Z s(n)o, @

on<x

1 1I

Clearly term I goes to 0 as x — oco. Thus it is sufficient to show that term II vanishes
as x — oo. Now

Rx) =Y > si(j) =Y s

Pn <X OiTj=py 0iTi<x
= s() D> () =D s(m)T(x/o).
0;<x Ti<x/0;i on<x

So forany M > M, and any x > M,

—o RK)
(;st(n)an — m
1
= s(n)o, “ — — s(m)T(x/o,)
_ o T(x/on)
— ;Cs(an)(an — () )‘
o T(x/on) _o Tx/oy,)
< Z s(n)(an — ) )‘4—‘ Z s(n)<an - () >‘
o, <M M<o,<x
1 v

Term III goes to 0 as x — oo since there are finitely many o, < M and for any fixed n

- T(x/o,) J—
x—oo  T(x) "
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Thus it is sufficient to show that term IV goes to 0 as M — oc. For term IV,

—a T(x/an) « |T(x/0ﬂ)|
’ 2 5(”)( T TR )’ 2 Wl 3 WIS

M<o,<x o, >M M<o,<x
< Z Is(n)]o, *+C’ Z Is(n)]o,
on>M o,>M

for M > 1. The sums on the right side go to 0 as M — oo since they are tail ends of
convergent series. This finishes the proof. ]

For the final corollary we need a definition of Knopfmacher.

Definition 7 ([7], pp. 11-12)  An arithmetical semigroup G is a commutative semi-
group with identity element 1, with a subset P such that everya € G,a # 1 hasa
unique factorization up to ordering into elements of P, and with a real valued norm
| - | satisfying

1. |1 =1,|p| > lforp € P,

2. |ab| = |a| |b| foralla,b € G, and

3. the number of elements a € G of norm |a| < x is finite for each real x > 0.

A specialised version of Theorem 6 appeared in Knopfmacher’s book [7] as
Lemma 3.6. Using notation close to Theorem 6 it states:

Corollary 8 (Lemma 3.6, [7]) Let G be an arithmetical semigroup Let s and t be
functions from G to C. Let S(z) = }_,css(a)la| ™% and let T(x) = 3, < t(a). Sup-
pose

1. T(x) = Bx“(logx)" + O(xﬂ(logx)s) where o > 0,0 < 3 < «, and r and s are
nonnegative integers with the property that 3 < cvif r = 0, whiles < rif 8 = «;
2. S(z) is absolutely convergent for z with Re z > v where v < a.

Letr(a) =), ., s(b) - t(c) and R(x) Z|a\§x r(a). Then as x — oo,
R(x) = (BS(a) + 0(1)) x%(logx)".

Proof Suppose G is finite. Then T(x) and R(x) are eventually constant. If B # 0
then T(x) = Bx*(logx)" + O(x‘a(log x)s) — 00 as x — oo which is a contradiction.
If B = 0 then the result holds, since R(x)/x*(logx)" — 0 as x — oc.

Now suppose G is infinite. Let {p, } be the ascending sequence of values of |a| for
a € G; note that p, > 1 for all n and p,, — oo by Definition 7. Let

rn) =Y ra), s'm)= > s, and t'(n)= Y ta).
‘“lzpn |“‘:pn ‘“lzﬂn

Then r'(n) = Zpim:pn s'(@) - £'(j), R(x) = angx r'(n), and T(x) = angxt’(n).
LetS'(z) = >, s'(n)p, *. 8'(z) can be obtained from S(z) by rearranging and col-
lecting terms; thus they are equal whenever S(z) converges absolutely and the abscissa
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of absolute convergence of S’(z) is at most . Assume B # 0. Then by Theorem 6 we

get
S(a) =S'(a) = xlingo %
. R(x)
= lim
x—oo Bx“(logx)" + O(xﬁ(logx)s)
R(x)

sl Bx®(logx)"

Therefore R(x) = (BS(a) + 0(1)) x*(logx)".

Now assume B = 0. This case is an asymptotic bound, not an asymptotic equality,
and so is not a consequence of Theorem 6. Let o be the abscissa of absolute conver-
gence of S(z). Take v > B such that a; < v < aif § < aand v = o = [ otherwise.
For some C and for x > 1 we have |T(x)| < Cx”’(l + (logx)s) since T'(x) takes a
finite number of values in any finite interval. Thus

Rx)| 122 ,< T/ pr)s(R)]
xo(logx)” x*(logx)"

EﬂkaC(x/pk)"Y(l + (log(x/px) ) (k)|
x*(logx)"

< Cx ((logx) ™" + (logx)*™") > |s(k)[p "

pr<x

— 0

as x — 0o. Therefore in all cases R(x) = (BS(a) + o(l)) x*(logx)’. |

Notice that the regular variation condition is much more general than Knopf-
macher’s condition. Knopfmacher also assumes G satisfies Axiom A [7, p. 90], namely
that|{a€ G:lal < x}| = Ax® + O(x") as x — cowithA > 0,0 < v < 4.
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