A Multiplicative Analogue of Schur's Tauberian Theorem

Karen Yeats

Abstract

A theorem concerning the asymptotic behaviour of partial sums of the coefficients of products of Dirichlet series is proved using properties of regularly varying functions. This theorem is a multiplicative analogue of Schur's Tauberian theorem for power series.

A great workhorse of asymptotic enumeration is a theorem first given by Schur in [10] in 1918. It states:

Theorem 1 Let $\mathbf{S}(x)=\sum_{n \geq 0} s(n) x^{n}$ and $\mathbf{T}(x)=\sum_{n \geq 0} t(n) x^{n}$ be two power series such that for some $\rho \geq 0$

1. $\lim _{n \rightarrow \infty} \frac{t(n-1)}{t(n)}=\rho$,
2. $\mathbf{S}(x)$ has radius of convergence greater than ρ.

Let $r(n)=\sum_{i+j=n} s(i) t(j)$. Then

$$
\lim _{n \rightarrow \infty} \frac{r(n)}{t(n)}=\mathbf{S}(\rho)
$$

This theorem appears in [9] as Exercise 178 in Chapter 4 of Part I. With complex argument and complex coefficients it appears as Theorem 2 of [2] and Theorem 7.1 of [8].

A central thesis of Burris' book [4] is that there is a remarkably simple procedure to translate theorems in additive number theory into theorems in multiplicative number theory. However, Burris in [4] does not provide a true multiplicative analogue to Schur's Theorem under this translation, only an analogue weakened by an additional hypothesis; nor has a true multiplicative analogue been formulated elsewhere. One specialised version will be discussed later. The goal of this paper is to provide a true analogue of Schur's theorem under Burris' translation.

In this context the aforementioned translation procedure entails replacing the ratio test condition, $\lim _{n \rightarrow \infty} t(n-1) / t(n)=\rho$, with the regular variation condition, $\lim _{x \rightarrow \infty} T(x y) / T(x)=y^{\alpha}$ for $y>0$, where $T(x)=\sum_{n \leq x} t(n)$ and T is eventually positive, and replacing power series with Dirichlet series. For this theorem the eventual positivity is not needed. Applying the translation we get the following statement:

[^0]Theorem 2 Given $\alpha \in \mathbb{R}$, let $\mathbf{S}(x)=\sum_{n \geq 1} s(n) n^{-x}, \mathbf{T}(x)=\sum_{n \geq 1} t(n) n^{-x}$ be two Dirichlet series with t real valued, and let $T(\bar{x})=\sum_{n \leq x} t(n)$. Suppose

1. $\lim _{x \rightarrow \infty} \frac{T(x y)}{T(x)}=y^{\alpha}$ for $y>0$,
2. $\mathbf{S}(x)$ has abscissa of absolute convergence less than α.

Let $r(n)=\sum_{i \cdot j=n} s(i) \cdot t(j)^{1}$ and $R(x)=\sum_{n \leq x} r(n)$. Then

$$
\lim _{x \rightarrow \infty} \frac{R(x)}{T(x)}=\mathbf{S}(\alpha)
$$

Burris's weakened analogue (Theorem 9.53, [4]) has the additional hypothesis $t(n) \geq 0$. We will use the following uniform convergence theorem for functions of regular variation along with some lemmas to prove a still more general theorem from which Theorem 2 follows as an immediate corollary.

Theorem 3 (Uniform Convergence) If $f:[1, \infty) \rightarrow \mathbb{R}$ is measurable and eventually positive, and $\lim _{x \rightarrow \infty} f(x y) / f(x)=y^{\alpha}$ for $y>0$, then $\lim _{x \rightarrow \infty} f(x y) / f(x)=y^{\alpha}$ uniformly for $y \in[a, b]$ with $0<a<b<\infty$.

This is a standard regular variation result. It appears as Theorem 1.3 of [5] and follows from Theorem 1.5.2 of [3].

Lemma 4 If $\lim _{x \rightarrow \infty} f(x y) / f(x)=y^{\alpha}$ for $y>0$ and $f:[1, \infty) \rightarrow \mathbb{R}$ is left or right continuous at every point, then f is eventually positive or eventually negative.

Proof Let f satisfy the hypotheses; clearly f is eventually nonzero. Pick N large enough that $f(2 x) / f(x)>0$ and $f(3 x) / f(x)>0$ for $x \geq N$. Take $x, y \geq N$; since f is left or right continuous at y there is an interval $[a, b], a \neq b$, containing y on which f always has the same sign. Choose positive integers k and ℓ such that $3^{k} x / 2^{\ell} \in[a, b]$. This is possible since numbers of the form $3^{k} / 2^{\ell}$ for positive integers k and ℓ are dense in $[1, \infty)$. Then

$$
\frac{f\left(3^{k} x / 2^{\ell}\right)}{f(x)}=\frac{f\left(3^{k} x / 2^{\ell}\right)}{f\left(3^{k} x\right)} \frac{f\left(3^{k} x\right)}{f(x)}>0
$$

So f is eventually positive or eventually negative.

Lemma 5 If $f:[1, \infty) \rightarrow \mathbb{R}$ is measurable, eventually positive, and bounded on any interval $[1, x)$, and $\lim _{x \rightarrow \infty} f(x y) / f(x)=y^{\alpha}$ for $y>0$, then for any $\gamma<\alpha$ there exist constants M and C such that

$$
\frac{|f(x)|}{f(y)} \leq C(x / y)^{\gamma}, \quad \text { for } y \geq M \text { and } 1 \leq x \leq y
$$

[^1]Proof Choose $M_{0} \geq 1$ such that, for $x \geq M_{0}, f(x)>0$ holds as well as

$$
\begin{equation*}
\frac{f(x)}{f(2 x)}<2^{-\gamma} \tag{1}
\end{equation*}
$$

Now, for $\frac{1}{2}<u \leq 1, f(y u) / f(y)$ approaches u^{α} uniformly as $y \rightarrow \infty$. So pick $M \geq M_{0}$ such that for $y \geq M$ and $u \in\left(\frac{1}{2}, 1\right]$ we have

$$
\begin{equation*}
\frac{f(y u)}{f(y)} \leq u^{\alpha}+1 \leq u^{\gamma}+1 . \tag{2}
\end{equation*}
$$

Note that $f(x)$ is positive on $[M, \infty)$.
Take $y \geq M$ and $1 \leq x \leq y$. Suppose $x \geq M$. Then

$$
\frac{|f(x)|}{f(y)}=\frac{f(x)}{f(y)}=\frac{f(x)}{f(2 x)} \cdots \frac{f\left(2^{m-1} x\right)}{f\left(2^{m} x\right)} \frac{f\left(2^{m} x\right)}{f(y)}
$$

where $2^{m} x \leq y<2^{m+1} x$. Let $u=2^{m} x / y$; then $u \in\left(\frac{1}{2}, 1\right]$. By (1) and (2)

$$
\begin{aligned}
\frac{|f(x)|}{f(y)} & \leq\left(2^{-\gamma}\right)^{m}\left(u^{\gamma}+1\right) \\
& =2^{-\gamma m} u^{\gamma}+\left(2^{-\gamma}\right)^{m} \\
& =(x / y)^{\gamma}+\left(2^{-\gamma}\right)^{m}
\end{aligned}
$$

Now $\log _{2}(y / x)-1<m \leq \log _{2}(y / x)$; so if $\gamma \geq 0$

$$
\frac{|f(x)|}{f(y)} \leq(x / y)^{\gamma}+\left(2^{-\gamma}\right)^{\log _{2}(y / x)-1}=\left(1+2^{\gamma}\right)(x / y)^{\gamma}
$$

and if $\gamma<0$

$$
\frac{|f(x)|}{f(y)} \leq(x / y)^{\gamma}+\left(2^{-\gamma}\right)^{\log _{2}(y / x)}=2(x / y)^{\gamma}
$$

Now suppose $x<M$. Since $f(x)$ is bounded on $[1, M)$ there exists an $M_{1} \geq 1$ such that $|f(x)| / f(M) \leq M_{1}$ for $1 \leq x<M$. We know

$$
\frac{|f(x)|}{f(y)}=\frac{|f(x)|}{f(M)} \frac{f(M)}{f(y)}
$$

so if $\gamma \geq 0$

$$
\frac{|f(x)|}{f(y)} \leq M_{1}\left(2^{\gamma}+1\right)(M / y)^{\gamma} \leq M_{1}\left(2^{\gamma}+1\right) M^{\gamma}(x / y)^{\gamma}
$$

and if $\gamma<0$

$$
\frac{|f(x)|}{f(y)} \leq 2 M_{1}(M / y)^{\gamma} \leq 2 M_{1}(x / y)^{\gamma}
$$

Hence $C=\max \left(2 M_{1}, M_{1}\left(1+2^{\gamma}\right) M^{\gamma}\right)$ works in all cases.

For the following theorem we will use general Dirichlet series of a particular form; namely series $\sum_{n \geq 1} s(n) \sigma_{n}^{-x}$ where $\left\{\sigma_{n}\right\}$ is an increasing positive sequence of real numbers such that $\sigma_{n} \rightarrow \infty$ as $n \rightarrow \infty$. General Dirichlet series are discussed in detail in [6].

Note that the Dirichlet product [6, Chapter VIII] of two such series is also such a series, since if $\sum_{n \geq 1} s(n) \sigma_{n}^{-x}$ and $\sum_{n \geq 1} t(n) \tau_{n}^{-x}$ are two such series then their Dirichlet product is the series $\sum_{n \geq 1} \sum_{\sigma_{i} \tau_{j}=\rho_{n}} s(i) t(j) \rho_{n}^{-x}$ where $\left\{\rho_{n}\right\}$ is the ascending sequence formed by all the values of $\sigma_{i} \tau_{j}$; so $\rho_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Theorem 6 Given $\alpha \in \mathbb{R}$, let $\mathbf{S}(x)=\sum_{n \geq 1} s(n) \sigma_{n}^{-x}, \mathbf{T}(x)=\sum_{n \geq 1} t(n) \tau_{n}^{-x}$ be two general Dirichlet series of the above form where s and t are complex-valued, and let $T(x)=\sum_{\tau_{n} \leq x} t(n)$. Suppose

1. $T=b T^{*}+U$ where $0 \neq b \in \mathbb{C}, \lim _{x \rightarrow \infty} U(x) / T^{*}(x)=0$, and T^{*} is real valued, left or right continuous at every point, and bounded on any interval $[1, x)$,
2. $\lim _{x \rightarrow \infty} \frac{T^{*}(x y)}{T^{*}(x)}=y^{\alpha}$ for $y>0$,
3. $\mathbf{S}(x)$ has abscissa of absolute convergence less than α.

Let $\left\{\rho_{n}\right\}$ be the ascending sequence formed by all the values of $\sigma_{i} \tau_{j}$ and let $r(n)=$ $\sum_{\sigma_{i} \tau_{j}=\rho_{n}} s(i) \cdot t(j)$ and $R(x)=\sum_{\rho_{n} \leq x} r(n)$. Then

$$
\lim _{x \rightarrow \infty} \frac{R(x)}{T(x)}=\mathbf{S}(\alpha)
$$

Proof By replacing b by $-b$ if necessary and by Lemma 4 we can assume T^{*} is eventually positive.

Notice that T^{*} is measurable, since if we take an open set V then for every $v \in$ $\left(T^{*}\right)^{-1}(V)$ there is an interval I_{v} containing v such that $T^{*}\left(I_{v}\right) \subseteq V$. For every rational $v \in\left(T^{*}\right)^{-1}(V)$ let $B_{v}=\bigcup_{x: v \in I_{x}} I_{x}$ which is an interval. Then $\left(T^{*}\right)^{-1}(V)=$ $\bigcup_{v \in \mathbb{Q} \cap\left(T^{*}\right)^{-1}(V)} B_{v}$; so $\left(T^{*}\right)^{-1}(V)$ is measurable.

Pick M_{0} such that $\left|U(y) / T^{*}(y)\right|<|b| / 2$ for $y \geq M_{0}$. Let us redefine $T^{*}(x)$ to be 1 on $\left[1, M_{0}\right]$ and $U(x)$ to be $T(x)-b$ on $\left[1, M_{0}\right]$. Then the hypotheses of the theorem still hold and T^{*} remains measurable and eventually positive. Further $U(x) / T^{*}(x)$ is bounded on $[1, \infty)$, say by $M_{2} /|b|$, since it is bounded on $\left(M_{0}, \infty\right)$ by the choice of $M_{0}, U(x) / T^{*}(x)=T(x)-b$ on $\left[1, M_{0}\right]$, and T is bounded on $\left[1, M_{0}\right]$.

Let α_{s} be the abscissa of absolute convergence of $\mathbf{S}(x)$, then $\alpha_{s}<\alpha$ by assumption. Choose γ such that $\alpha_{s}<\gamma<\alpha$. By Lemma 5 there exist constants $M_{1} \geq M_{0}$ and C such that

$$
\frac{\left|T^{*}(x)\right|}{T^{*}(y)} \leq C(x / y)^{\gamma} \quad \text { for } y \geq M_{1} \text { and } 1 \leq x \leq y
$$

and $T^{*}(y)>0$ for $y \geq M_{1}$. For $y \geq M_{1}$ and $1 \leq x \leq y$,

$$
\begin{aligned}
\frac{|T(x)|}{|T(y)|} & =\frac{\left|T^{*}(x)\right|}{T^{*}(y)} \frac{\left|1+U(x) / b T^{*}(x)\right|}{\left|1+U(y) / b T^{*}(y)\right|} \\
& \leq C(x / y)^{\gamma} 2\left(1+M_{2}\right) \\
& =C^{\prime}(x / y)^{\gamma}
\end{aligned}
$$

where $C^{\prime}=2 C\left(1+M_{2}\right)$. Also

$$
\lim _{x \rightarrow \infty} \frac{T(x y)}{T(x)}=\lim _{x \rightarrow \infty} \frac{T^{*}(x y)}{T^{*}(x)} \frac{\left(1+U(x y) / b T^{*}(x y)\right)}{\left(1+U(x) / b T^{*}(x)\right)}=y^{\alpha}
$$

From the triangle inequality with $x \geq M_{1}$,

$$
\left|\mathbf{S}(\alpha)-\frac{R(x)}{T(x)}\right| \leq \underbrace{\left|\mathbf{S}(\alpha)-\sum_{\sigma_{n} \leq x} s(n) \sigma_{n}^{-\alpha}\right|}_{\mathrm{I}}+\underbrace{\left|\sum_{\sigma_{n} \leq x} s(n) \sigma_{n}^{-\alpha}-\frac{R(x)}{T(x)}\right|}_{\mathrm{II}}
$$

Clearly term I goes to 0 as $x \rightarrow \infty$. Thus it is sufficient to show that term II vanishes as $x \rightarrow \infty$. Now

$$
\begin{aligned}
R(x) & =\sum_{\rho_{n} \leq x} \sum_{\sigma_{i} \tau_{j}=\rho_{n}} s(i) t(j)=\sum_{\sigma_{i} \tau_{j} \leq x} s(i) t(j) \\
& =\sum_{\sigma_{i} \leq x} s(i) \sum_{\tau_{j} \leq x / \sigma_{i}} t(j)=\sum_{\sigma_{n} \leq x} s(n) T\left(x / \sigma_{n}\right) .
\end{aligned}
$$

So for any $M \geq M_{1}$ and any $x \geq M$,

$$
\begin{aligned}
&\left|\sum_{\sigma_{n} \leq x} s(n) \sigma_{n}^{-\alpha}-\frac{R(x)}{T(x)}\right| \\
&=\left|\sum_{\sigma_{n} \leq x} s(n) \sigma_{n}^{-\alpha}-\frac{1}{T(x)} \sum_{\sigma_{n} \leq x} s(n) T\left(x / \sigma_{n}\right)\right| \\
&=\left|\sum_{\sigma_{n} \leq x} s\left(\sigma_{n}\right)\left(\sigma_{n}^{-\alpha}-\frac{T\left(x / \sigma_{n}\right)}{T(x)}\right)\right| \\
& \leq \underbrace{\left|\sum_{\sigma_{n} \leq M} s(n)\left(\sigma_{n}^{-\alpha}-\frac{T\left(x / \sigma_{n}\right)}{T(x)}\right)\right|}_{\mathrm{III}}+\underbrace{\left|\sum_{M<\sigma_{n} \leq x} s(n)\left(\sigma_{n}^{-\alpha}-\frac{T\left(x / \sigma_{n}\right)}{T(x)}\right)\right|}_{\mathrm{IV}} .
\end{aligned}
$$

Term III goes to 0 as $x \rightarrow \infty$ since there are finitely many $\sigma_{n} \leq M$ and for any fixed n

$$
\lim _{x \rightarrow \infty} \frac{T\left(x / \sigma_{n}\right)}{T(x)}=\sigma_{n}^{-\alpha}
$$

Thus it is sufficient to show that term IV goes to 0 as $M \rightarrow \infty$. For term IV,

$$
\begin{aligned}
\left|\sum_{M<\sigma_{n} \leq x} s(n)\left(\sigma_{n}^{-\alpha}-\frac{T\left(x / \sigma_{n}\right)}{T(x)}\right)\right| & \leq \sum_{\sigma_{n}>M}|s(n)| \sigma_{n}^{-\alpha}+\sum_{M<\sigma_{n} \leq x}|s(n)| \frac{\left|T\left(x / \sigma_{n}\right)\right|}{|T(x)|} \\
& \leq \sum_{\sigma_{n}>M}|s(n)| \sigma_{n}^{-\alpha}+C^{\prime} \sum_{\sigma_{n}>M}|s(n)| \sigma_{n}^{-\gamma}
\end{aligned}
$$

for $M \geq 1$. The sums on the right side go to 0 as $M \rightarrow \infty$ since they are tail ends of convergent series. This finishes the proof.

For the final corollary we need a definition of Knopfmacher.
Definition 7 ([7], pp. 11-12) An arithmetical semigroup G is a commutative semigroup with identity element 1 , with a subset P such that every $a \in G, a \neq 1$ has a unique factorization up to ordering into elements of P, and with a real valued norm $|\cdot|$ satisfying

1. $|1|=1,|p|>1$ for $p \in P$,
2. $|a b|=|a||b|$ for all $a, b \in G$, and
3. the number of elements $a \in G$ of norm $|a| \leq x$ is finite for each real $x>0$.

A specialised version of Theorem 6 appeared in Knopfmacher's book [7] as Lemma 3.6. Using notation close to Theorem 6 it states:

Corollary 8 (Lemma 3.6, [7]) Let G be an arithmetical semigroup. Let sand be functions from G to \mathbb{C}. Let $\mathbf{S}(z)=\sum_{a \in G} s(a)|a|^{-z}$, and let $T(x)=\sum_{|a| \leq x} t(a)$. Suppose

1. $T(x)=B x^{\alpha}(\log x)^{r}+O\left(x^{\beta}(\log x)^{s}\right)$ where $\alpha>0,0 \leq \beta \leq \alpha$, and r and s are nonnegative integers with the property that $\beta<\alpha$ if $r=0$, while $s<r$ if $\beta=\alpha$;
2. $\mathbf{S}(z)$ is absolutely convergent for z with $\operatorname{Re} z>\nu$ where $\nu<\alpha$.

Let $r(a)=\sum_{b \cdot c=a} s(b) \cdot t(c)$ and $R(x)=\sum_{|a| \leq x} r(a)$. Then as $x \rightarrow \infty$,

$$
R(x)=(B \mathbf{S}(\alpha)+o(1)) x^{\alpha}(\log x)^{r}
$$

Proof Suppose G is finite. Then $T(x)$ and $R(x)$ are eventually constant. If $B \neq 0$ then $T(x)=B x^{\alpha}(\log x)^{r}+O\left(x^{\beta}(\log x)^{s}\right) \rightarrow \infty$ as $x \rightarrow \infty$ which is a contradiction. If $B=0$ then the result holds, since $R(x) / x^{\alpha}(\log x)^{r} \rightarrow 0$ as $x \rightarrow \infty$.

Now suppose G is infinite. Let $\left\{\rho_{n}\right\}$ be the ascending sequence of values of $|a|$ for $a \in G$; note that $\rho_{n} \geq 1$ for all n and $\rho_{n} \rightarrow \infty$ by Definition 7. Let

$$
r^{\prime}(n)=\sum_{|a|=\rho_{n}} r(a), \quad s^{\prime}(n)=\sum_{|a|=\rho_{n}} s(a), \quad \text { and } \quad t^{\prime}(n)=\sum_{|a|=\rho_{n}} t(a)
$$

Then $r^{\prime}(n)=\sum_{\rho_{i} \rho_{j}=\rho_{n}} s^{\prime}(i) \cdot t^{\prime}(j), R(x)=\sum_{\rho_{n} \leq x} r^{\prime}(n)$, and $T(x)=\sum_{\rho_{n} \leq x} t^{\prime}(n)$. Let $\mathbf{S}^{\prime}(z)=\sum_{n>1} s^{\prime}(n) \rho_{n}^{-z} \cdot \mathbf{S}^{\prime}(z)$ can be obtained from $\mathbf{S}(z)$ by rearranging and collecting terms; thus they are equal whenever $\mathbf{S}(z)$ converges absolutely and the abscissa
of absolute convergence of $\mathbf{S}^{\prime}(z)$ is at most ν. Assume $B \neq 0$. Then by Theorem 6 we get

$$
\begin{aligned}
\mathbf{S}(\alpha)=\mathbf{S}^{\prime}(\alpha) & =\lim _{x \rightarrow \infty} \frac{R(x)}{T(x)} \\
& =\lim _{x \rightarrow \infty} \frac{R(x)}{B x^{\alpha}(\log x)^{r}+O\left(x^{\beta}(\log x)^{s}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{R(x)}{B x^{\alpha}(\log x)^{r}} .
\end{aligned}
$$

Therefore $R(x)=(B \mathbf{S}(\alpha)+o(1)) x^{\alpha}(\log x)^{r}$.
Now assume $B=0$. This case is an asymptotic bound, not an asymptotic equality, and so is not a consequence of Theorem 6. Let α_{s} be the abscissa of absolute convergence of $\mathbf{S}(z)$. Take $\gamma \geq \beta$ such that $\alpha_{s}<\gamma<\alpha$ if $\beta<\alpha$ and $\gamma=\alpha=\beta$ otherwise. For some C and for $x \geq 1$ we have $|T(x)| \leq C x^{\gamma}\left(1+(\log x)^{s}\right)$ since $T(x)$ takes a finite number of values in any finite interval. Thus

$$
\begin{aligned}
\frac{|R(x)|}{x^{\alpha}(\log x)^{r}} & =\frac{\left|\sum_{\rho_{k} \leq x} T\left(x / \rho_{k}\right) s(k)\right|}{x^{\alpha}(\log x)^{r}} \\
& \leq \frac{\sum_{\rho_{k} \leq x} C\left(x / \rho_{k}\right)^{\gamma}\left(1+\left(\log \left(x / \rho_{k}\right)\right)^{s}\right)|s(k)|}{x^{\alpha}(\log x)^{r}} \\
& \leq C x^{\gamma-\alpha}\left((\log x)^{-r}+(\log x)^{s-r}\right) \sum_{\rho_{k} \leq x}|s(k)| \rho_{k}^{-\gamma} \\
& \rightarrow 0
\end{aligned}
$$

as $x \rightarrow \infty$. Therefore in all cases $R(x)=(B \mathbf{S}(\alpha)+o(1)) x^{\alpha}(\log x)^{r}$.
Notice that the regular variation condition is much more general than Knopfmacher's condition. Knopfmacher also assumes G satisfies Axiom A [7, p. 90], namely that $|\{a \in G:|a| \leq x\}|=A x^{\delta}+O\left(x^{\nu}\right)$ as $x \rightarrow \infty$ with $A>0,0 \leq \nu<\delta$.

References

[1] Tom M. Apostol, Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.
[2] Edward A. Bender, Asymptotic methods in enumeration. SIAM Rev. 16(1974), 485-515.
[3] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation. Cambridge University Press, Cambridge, 1987.
[4] Stanley N. Burris, Number Theoretic Density and Logical Limit Laws. Math. Surveys Monogr. 86, Amer. Math. Soc., Providence, RI, 2001.
[5] J. L. Geluk and L. de Haan, Regular variation, extensions and Tauberian theorems. Centrum voor Wiskunde en Informatica, Amsterdam, 1987.
[6] G. H. Hardy and Marcel Riesz. The General Theory of Dirichlet's Series. Cambridge University Press, Cambridge, 1952.
[7] John Knopfmacher, Abstract Analytic Number Theory. North-Holland Mathematical Library 12, North-Holland, Amsterdam, 1975; Available as a Dover Reprint.
[8] A. M. Odlyzko, Asymptotic enumeration methods. Handbook of Combinatorics 1-2, 1063-1229, Elsevier, Amsterdam, 1995.
[9] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. I. Springer-Verlag, Berlin, 1970.
[10] I. Schur, Problem:. Arch. Math. Phys. Ser. 3 27(1918), 162.

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario
N2L 3G1
e-mail: kayeats@uwaterloo.ca

[^0]: Received by the editors November 20, 2001; revised May 13, 2002.
 Thanks to NSERC, for their Undergraduate Student Research Award which supported this research, and to Stan Burris.

 AMS subject classification: 11N45.
 (C)Canadian Mathematical Society 2003.

[^1]: ${ }^{1}$ That is, $\mathbf{R}(x)=\sum_{n \geq 1} r(n) n^{-x}=\mathbf{S}(x) * \mathbf{T}(x)$ where $*$ is the Dirichlet product.

