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A Multiplicative Analogue
of Schur’s Tauberian Theorem

Karen Yeats

Abstract. A theorem concerning the asymptotic behaviour of partial sums of the coefficients of prod-

ucts of Dirichlet series is proved using properties of regularly varying functions. This theorem is a

multiplicative analogue of Schur’s Tauberian theorem for power series.

A great workhorse of asymptotic enumeration is a theorem first given by Schur in

[10] in 1918. It states:

Theorem 1 Let S(x) =

∑

n≥0 s(n)xn and T(x) =

∑

n≥0 t(n)xn be two power series

such that for some ρ ≥ 0

1. limn→∞
t(n−1)

t(n)
= ρ,

2. S(x) has radius of convergence greater than ρ.

Let r(n) =

∑

i+ j=n s(i)t( j). Then

lim
n→∞

r(n)

t(n)
= S(ρ).

This theorem appears in [9] as Exercise 178 in Chapter 4 of Part I. With complex

argument and complex coefficients it appears as Theorem 2 of [2] and Theorem 7.1

of [8].

A central thesis of Burris’ book [4] is that there is a remarkably simple proce-

dure to translate theorems in additive number theory into theorems in multiplicative

number theory. However, Burris in [4] does not provide a true multiplicative ana-

logue to Schur’s Theorem under this translation, only an analogue weakened by an

additional hypothesis; nor has a true multiplicative analogue been formulated else-

where. One specialised version will be discussed later. The goal of this paper is to

provide a true analogue of Schur’s theorem under Burris’ translation.

In this context the aforementioned translation procedure entails replacing the ra-

tio test condition, limn→∞ t(n − 1)/t(n) = ρ, with the regular variation condition,

limx→∞ T(xy)/T(x) = yα for y > 0, where T(x) =

∑

n≤x t(n) and T is eventually

positive, and replacing power series with Dirichlet series. For this theorem the even-

tual positivity is not needed. Applying the translation we get the following statement:
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Theorem 2 Given α ∈ R, let S(x) =

∑

n≥1 s(n)n−x, T(x) =

∑

n≥1 t(n)n−x be two

Dirichlet series with t real valued, and let T(x) =

∑

n≤x t(n). Suppose

1. limx→∞
T(xy)
T(x)

= yα for y > 0,

2. S(x) has abscissa of absolute convergence less than α.

Let r(n) =

∑

i· j=n s(i) · t( j)1and R(x) =

∑

n≤x r(n). Then

lim
x→∞

R(x)

T(x)
= S(α).

Burris’s weakened analogue (Theorem 9.53, [4]) has the additional hypothesis

t(n) ≥ 0. We will use the following uniform convergence theorem for functions

of regular variation along with some lemmas to prove a still more general theorem

from which Theorem 2 follows as an immediate corollary.

Theorem 3 (Uniform Convergence) If f : [1,∞) → R is measurable and eventually

positive, and limx→∞ f (xy)/ f (x) = yα for y > 0, then limx→∞ f (xy)/ f (x) = yα

uniformly for y ∈ [a, b] with 0 < a < b < ∞.

This is a standard regular variation result. It appears as Theorem 1.3 of [5] and

follows from Theorem 1.5.2 of [3].

Lemma 4 If limx→∞ f (xy)/ f (x) = yα for y > 0 and f : [1,∞) → R is left or right

continuous at every point, then f is eventually positive or eventually negative.

Proof Let f satisfy the hypotheses; clearly f is eventually nonzero. Pick N large

enough that f (2x)/ f (x) > 0 and f (3x)/ f (x) > 0 for x ≥ N . Take x, y ≥ N ;

since f is left or right continuous at y there is an interval [a, b], a 6= b, containing

y on which f always has the same sign. Choose positive integers k and ` such that

3kx/2` ∈ [a, b]. This is possible since numbers of the form 3k/2` for positive integers

k and ` are dense in [1,∞). Then

f (3kx/2`)

f (x)
=

f (3kx/2`)

f (3kx)

f (3kx)

f (x)
> 0.

So f is eventually positive or eventually negative.

Lemma 5 If f : [1,∞) → R is measurable, eventually positive, and bounded on any

interval [1, x), and limx→∞ f (xy)/ f (x) = yα for y > 0, then for any γ < α there

exist constants M and C such that

| f (x)|

f (y)
≤ C(x/y)γ , for y ≥ M and 1 ≤ x ≤ y.

1That is, R(x) =

∑

n≥1 r(n)n−x
= S(x) ∗ T(x) where ∗ is the Dirichlet product.
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Proof Choose M0 ≥ 1 such that, for x ≥ M0, f (x) > 0 holds as well as

(1)
f (x)

f (2x)
< 2−γ .

Now, for 1
2

< u ≤ 1, f (yu)/ f (y) approaches uα uniformly as y → ∞. So pick

M ≥ M0 such that for y ≥ M and u ∈ ( 1
2
, 1] we have

(2)
f (yu)

f (y)
≤ uα + 1 ≤ uγ + 1.

Note that f (x) is positive on [M,∞).

Take y ≥ M and 1 ≤ x ≤ y. Suppose x ≥ M. Then

| f (x)|

f (y)
=

f (x)

f (y)
=

f (x)

f (2x)
· · ·

f (2m−1x)

f (2mx)

f (2mx)

f (y)
,

where 2mx ≤ y < 2m+1x. Let u = 2mx/y; then u ∈ ( 1
2
, 1]. By (1) and (2)

| f (x)|

f (y)
≤ (2−γ)m(uγ + 1)

= 2−γmuγ + (2−γ)m

= (x/y)γ + (2−γ)m.

Now log2(y/x) − 1 < m ≤ log2(y/x); so if γ ≥ 0

| f (x)|

f (y)
≤ (x/y)γ + (2−γ)log2(y/x)−1

= (1 + 2γ)(x/y)γ ,

and if γ < 0
| f (x)|

f (y)
≤ (x/y)γ + (2−γ)log2(y/x)

= 2(x/y)γ .

Now suppose x < M. Since f (x) is bounded on [1, M) there exists an M1 ≥ 1

such that | f (x)|/ f (M) ≤ M1 for 1 ≤ x < M. We know

| f (x)|

f (y)
=

| f (x)|

f (M)

f (M)

f (y)
;

so if γ ≥ 0

| f (x)|

f (y)
≤ M1(2γ + 1)(M/y)γ ≤ M1(2γ + 1)Mγ(x/y)γ ,

and if γ < 0
| f (x)|

f (y)
≤ 2M1(M/y)γ ≤ 2M1(x/y)γ .
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Hence C = max
(

2M1, M1(1 + 2γ)Mγ
)

works in all cases.

For the following theorem we will use general Dirichlet series of a particular form;

namely series
∑

n≥1 s(n)σ−x
n where {σn} is an increasing positive sequence of real

numbers such that σn → ∞ as n → ∞. General Dirichlet series are discussed in

detail in [6].

Note that the Dirichlet product [6, Chapter VIII] of two such series is also such a

series, since if
∑

n≥1 s(n)σ−x
n and

∑

n≥1 t(n)τ−x
n are two such series then their Dirich-

let product is the series
∑

n≥1

∑

σiτ j=ρn
s(i)t( j)ρ−x

n where {ρn} is the ascending se-

quence formed by all the values of σiτ j ; so ρn → ∞ as n → ∞.

Theorem 6 Given α ∈ R, let S(x) =

∑

n≥1 s(n)σ−x
n , T(x) =

∑

n≥1 t(n)τ−x
n be

two general Dirichlet series of the above form where s and t are complex-valued, and let

T(x) =

∑

τn≤x t(n). Suppose

1. T = bT∗ + U where 0 6= b ∈ C, limx→∞ U (x)/T∗(x) = 0, and T∗ is real valued,

left or right continuous at every point, and bounded on any interval [1, x),

2. limx→∞
T∗(xy)
T∗(x)

= yα for y > 0,

3. S(x) has abscissa of absolute convergence less than α.

Let {ρn} be the ascending sequence formed by all the values of σiτ j and let r(n) =
∑

σiτ j=ρn
s(i) · t( j) and R(x) =

∑

ρn≤x r(n). Then

lim
x→∞

R(x)

T(x)
= S(α).

Proof By replacing b by −b if necessary and by Lemma 4 we can assume T∗ is even-

tually positive.

Notice that T∗ is measurable, since if we take an open set V then for every v ∈
(T∗)−1(V ) there is an interval Iv containing v such that T∗(Iv) ⊆ V . For every

rational v ∈ (T∗)−1(V ) let Bv =

⋃

x:v∈Ix
Ix which is an interval. Then (T∗)−1(V ) =

⋃

v∈Q∩(T∗)−1(V ) Bv; so (T∗)−1(V ) is measurable.

Pick M0 such that |U (y)/T∗(y)| < |b|/2 for y ≥ M0. Let us redefine T∗(x) to be

1 on [1, M0] and U (x) to be T(x)−b on [1, M0]. Then the hypotheses of the theorem

still hold and T∗ remains measurable and eventually positive. Further U (x)/T∗(x) is

bounded on [1,∞), say by M2/|b|, since it is bounded on (M0,∞) by the choice of

M0, U (x)/T∗(x) = T(x) − b on [1, M0], and T is bounded on [1, M0].

Let αs be the abscissa of absolute convergence of S(x), then αs < α by assumption.

Choose γ such that αs < γ < α. By Lemma 5 there exist constants M1 ≥ M0 and C

such that

|T∗(x)|

T∗(y)
≤ C(x/y)γ for y ≥ M1 and 1 ≤ x ≤ y,
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and T∗(y) > 0 for y ≥ M1. For y ≥ M1 and 1 ≤ x ≤ y,

|T(x)|

|T(y)|
=

|T∗(x)|

T∗(y)

|1 + U (x)/bT∗(x)|

|1 + U (y)/bT∗(y)|

≤ C(x/y)γ2(1 + M2)

= C ′(x/y)γ

where C ′
= 2C(1 + M2). Also

lim
x→∞

T(xy)

T(x)
= lim

x→∞

T∗(xy)

T∗(x)

(
1 + U (xy)/bT∗(xy)

)

(
1 + U (x)/bT∗(x)

) = yα.

From the triangle inequality with x ≥ M1,

∣
∣
∣
∣

S(α) −
R(x)

T(x)

∣
∣
∣
∣
≤

∣
∣
∣S(α) −

∑

σn≤x

s(n)σ−α
n

∣
∣
∣

︸ ︷︷ ︸

I

+

∣
∣
∣
∣

∑

σn≤x

s(n)σ−α
n −

R(x)

T(x)

∣
∣
∣
∣

︸ ︷︷ ︸

II

.

Clearly term I goes to 0 as x → ∞. Thus it is sufficient to show that term II vanishes

as x → ∞. Now

R(x) =

∑

ρn≤x

∑

σiτ j=ρn

s(i)t( j) =

∑

σiτ j≤x

s(i)t( j)

=

∑

σi≤x

s(i)
∑

τ j≤x/σi

t( j) =

∑

σn≤x

s(n)T(x/σn).

So for any M ≥ M1 and any x ≥ M,

∣
∣
∣
∣

∑

σn≤x

s(n)σ−α
n −

R(x)

T(x)

∣
∣
∣
∣

=

∣
∣
∣
∣

∑

σn≤x

s(n)σ−α
n −

1

T(x)

∑

σn≤x

s(n)T(x/σn)

∣
∣
∣
∣

=

∣
∣
∣
∣

∑

σn≤x

s(σn)

(

σ−α
n −

T(x/σn)

T(x)

)∣
∣
∣
∣

≤

∣
∣
∣
∣

∑

σn≤M

s(n)

(

σ−α
n −

T(x/σn)

T(x)

)∣
∣
∣
∣

︸ ︷︷ ︸

III

+

∣
∣
∣
∣

∑

M<σn≤x

s(n)

(

σ−α
n −

T(x/σn)

T(x)

)∣
∣
∣
∣

︸ ︷︷ ︸

IV

.

Term III goes to 0 as x → ∞ since there are finitely many σn ≤ M and for any fixed n

lim
x→∞

T(x/σn)

T(x)
= σ−α

n .
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Thus it is sufficient to show that term IV goes to 0 as M → ∞. For term IV,

∣
∣
∣
∣

∑

M<σn≤x

s(n)

(

σ−α
n −

T(x/σn)

T(x)

)∣
∣
∣
∣
≤

∑

σn>M

|s(n)|σ−α
n +

∑

M<σn≤x

|s(n)|
|T(x/σn)|

|T(x)|

≤
∑

σn>M

|s(n)|σ−α
n + C ′

∑

σn>M

|s(n)|σ−γ
n

for M ≥ 1. The sums on the right side go to 0 as M → ∞ since they are tail ends of

convergent series. This finishes the proof.

For the final corollary we need a definition of Knopfmacher.

Definition 7 ([7], pp. 11–12) An arithmetical semigroup G is a commutative semi-

group with identity element 1, with a subset P such that every a ∈ G, a 6= 1 has a

unique factorization up to ordering into elements of P, and with a real valued norm

| · | satisfying

1. |1| = 1, |p| > 1 for p ∈ P,

2. |ab| = |a| |b| for all a, b ∈ G, and

3. the number of elements a ∈ G of norm |a| ≤ x is finite for each real x > 0.

A specialised version of Theorem 6 appeared in Knopfmacher’s book [7] as

Lemma 3.6. Using notation close to Theorem 6 it states:

Corollary 8 (Lemma 3.6, [7]) Let G be an arithmetical semigroup. Let s and t be

functions from G to C. Let S(z) =

∑

a∈G s(a)|a|−z, and let T(x) =

∑

|a|≤x t(a). Sup-

pose

1. T(x) = Bxα(log x)r + O
(

xβ(log x)s
)

where α > 0, 0 ≤ β ≤ α, and r and s are

nonnegative integers with the property that β < α if r = 0, while s < r if β = α;

2. S(z) is absolutely convergent for z with Re z > ν where ν < α.

Let r(a) =

∑

b·c=a s(b) · t(c) and R(x) =

∑

|a|≤x r(a). Then as x → ∞,

R(x) =

(
BS(α) + o(1)

)
xα(log x)r.

Proof Suppose G is finite. Then T(x) and R(x) are eventually constant. If B 6= 0

then T(x) = Bxα(log x)r + O
(

xβ(log x)s
)
→ ∞ as x → ∞ which is a contradiction.

If B = 0 then the result holds, since R(x)/xα(log x)r → 0 as x → ∞.

Now suppose G is infinite. Let {ρn} be the ascending sequence of values of |a| for

a ∈ G; note that ρn ≥ 1 for all n and ρn → ∞ by Definition 7. Let

r ′(n) =

∑

|a|=ρn

r(a), s ′(n) =

∑

|a|=ρn

s(a), and t ′(n) =

∑

|a|=ρn

t(a).

Then r ′(n) =

∑

ρiρ j=ρn
s ′(i) · t ′( j), R(x) =

∑

ρn≤x r ′(n), and T(x) =

∑

ρn≤x t ′(n).

Let S ′(z) =

∑

n≥1 s ′(n)ρ−z
n . S ′(z) can be obtained from S(z) by rearranging and col-

lecting terms; thus they are equal whenever S(z) converges absolutely and the abscissa
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of absolute convergence of S ′(z) is at most ν. Assume B 6= 0. Then by Theorem 6 we

get

S(α) = S ′(α) = lim
x→∞

R(x)

T(x)

= lim
x→∞

R(x)

Bxα(log x)r + O
(

xβ(log x)s
)

= lim
x→∞

R(x)

Bxα(log x)r
.

Therefore R(x) =

(
BS(α) + o(1)

)
xα(log x)r .

Now assume B = 0. This case is an asymptotic bound, not an asymptotic equality,

and so is not a consequence of Theorem 6. Let αs be the abscissa of absolute conver-

gence of S(z). Take γ ≥ β such that αs < γ < α if β < α and γ = α = β otherwise.

For some C and for x ≥ 1 we have |T(x)| ≤ Cxγ
(

1 + (log x)s
)

since T(x) takes a

finite number of values in any finite interval. Thus

|R(x)|

xα(log x)r
=

|
∑

ρk≤x T(x/ρk)s(k)|

xα(log x)r

≤

∑

ρk≤x C(x/ρk)γ
(

1 +
(

log(x/ρk)
) s

)

|s(k)|

xα(log x)r

≤ Cxγ−α
(

(log x)−r + (log x)s−r
) ∑

ρk≤x

|s(k)|ρ−γ
k

→ 0

as x → ∞. Therefore in all cases R(x) =

(
BS(α) + o(1)

)
xα(log x)r .

Notice that the regular variation condition is much more general than Knopf-

macher’s condition. Knopfmacher also assumes G satisfies Axiom A [7, p. 90], namely

that
∣
∣{a ∈ G : |a| ≤ x}

∣
∣

= Axδ + O(xν) as x → ∞ with A > 0, 0 ≤ ν < δ.
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