Canad. Math. Bull. Vol. 46 (3), 2003 pp. 473-480

A Multiplicative Analogue of Schur's Tauberian Theorem

Karen Yeats

Abstract. A theorem concerning the asymptotic behaviour of partial sums of the coefficients of products of Dirichlet series is proved using properties of regularly varying functions. This theorem is a multiplicative analogue of Schur's Tauberian theorem for power series.

A great workhorse of asymptotic enumeration is a theorem first given by Schur in [10] in 1918. It states:

Theorem 1 Let $S(x) = \sum_{n>0} s(n)x^n$ and $T(x) = \sum_{n>0} t(n)x^n$ be two power series such that for some $\rho \geq 0$

- 1. $\lim_{n\to\infty} \frac{t(n-1)}{t(n)} = \rho$, 2. **S**(*x*) has radius of convergence greater than ρ .

Let $r(n) = \sum_{i+i=n} s(i)t(j)$. Then

$$\lim_{n\to\infty}\frac{r(n)}{t(n)}=\mathbf{S}(\rho).$$

This theorem appears in [9] as Exercise 178 in Chapter 4 of Part I. With complex argument and complex coefficients it appears as Theorem 2 of [2] and Theorem 7.1 of [8].

A central thesis of Burris' book [4] is that there is a remarkably simple procedure to translate theorems in additive number theory into theorems in multiplicative number theory. However, Burris in [4] does not provide a true multiplicative analogue to Schur's Theorem under this translation, only an analogue weakened by an additional hypothesis; nor has a true multiplicative analogue been formulated elsewhere. One specialised version will be discussed later. The goal of this paper is to provide a true analogue of Schur's theorem under Burris' translation.

In this context the aforementioned translation procedure entails replacing the ratio test condition, $\lim_{n\to\infty} t(n-1)/t(n) = \rho$, with the regular variation condition, $\lim_{x\to\infty} T(xy)/T(x) = y^{\alpha}$ for y > 0, where $T(x) = \sum_{n \le x} t(n)$ and T is eventually positive, and replacing power series with Dirichlet series. For this theorem the eventual positivity is not needed. Applying the translation we get the following statement:

Received by the editors November 20, 2001; revised May 13, 2002.

Thanks to NSERC, for their Undergraduate Student Research Award which supported this research, and to Stan Burris.

AMS subject classification: 11N45.

[©]Canadian Mathematical Society 2003.

Theorem 2 Given $\alpha \in \mathbb{R}$, let $\mathbf{S}(x) = \sum_{n \ge 1} s(n)n^{-x}$, $\mathbf{T}(x) = \sum_{n \ge 1} t(n)n^{-x}$ be two Dirichlet series with t real valued, and let $T(x) = \sum_{n \le x} t(n)$. Suppose

- 1. $\lim_{x\to\infty} \frac{T(xy)}{T(x)} = y^{\alpha}$ for y > 0, 2. **S**(*x*) has abscissa of absolute convergence less than α .

Let
$$r(n) = \sum_{i \cdot j=n} s(i) \cdot t(j)^1$$
 and $R(x) = \sum_{n \le x} r(n)$. Then

$$\lim_{x \to \infty} \frac{R(x)}{T(x)} = \mathbf{S}(\alpha)$$

Burris's weakened analogue (Theorem 9.53, [4]) has the additional hypothesis $t(n) \ge 0$. We will use the following uniform convergence theorem for functions of regular variation along with some lemmas to prove a still more general theorem from which Theorem 2 follows as an immediate corollary.

Theorem 3 (Uniform Convergence) If $f: [1, \infty) \to \mathbb{R}$ is measurable and eventually positive, and $\lim_{x\to\infty} f(xy)/f(x) = y^{\alpha}$ for y > 0, then $\lim_{x\to\infty} f(xy)/f(x) = y^{\alpha}$ uniformly for $y \in [a, b]$ with $0 < a < b < \infty$.

This is a standard regular variation result. It appears as Theorem 1.3 of [5] and follows from Theorem 1.5.2 of [3].

Lemma 4 If $\lim_{x\to\infty} f(xy)/f(x) = y^{\alpha}$ for y > 0 and $f: [1, \infty) \to \mathbb{R}$ is left or right continuous at every point, then f is eventually positive or eventually negative.

Proof Let f satisfy the hypotheses; clearly f is eventually nonzero. Pick N large enough that f(2x)/f(x) > 0 and f(3x)/f(x) > 0 for $x \ge N$. Take $x, y \ge N$; since f is left or right continuous at y there is an interval [a, b], $a \neq b$, containing y on which f always has the same sign. Choose positive integers k and ℓ such that $3^k x/2^\ell \in [a, b]$. This is possible since numbers of the form $3^k/2^\ell$ for positive integers *k* and ℓ are dense in $[1, \infty)$. Then

$$\frac{f(3^k x/2^\ell)}{f(x)} = \frac{f(3^k x/2^\ell)}{f(3^k x)} \frac{f(3^k x)}{f(x)} > 0.$$

So *f* is eventually positive or eventually negative.

Lemma 5 If $f: [1, \infty) \to \mathbb{R}$ is measurable, eventually positive, and bounded on any interval [1, x), and $\lim_{x\to\infty} f(xy)/f(x) = y^{\alpha}$ for y > 0, then for any $\gamma < \alpha$ there exist constants M and C such that

$$\frac{|f(x)|}{f(y)} \le C(x/y)^{\gamma}, \quad \text{for } y \ge M \text{ and } 1 \le x \le y.$$

¹That is, $\mathbf{R}(x) = \sum_{n>1} r(n)n^{-x} = \mathbf{S}(x) * \mathbf{T}(x)$ where * is the Dirichlet product.

474

A Multiplicative Analogue of Schur's Tauberian Theorem

Proof Choose $M_0 \ge 1$ such that, for $x \ge M_0$, f(x) > 0 holds as well as

(1)
$$\frac{f(x)}{f(2x)} < 2^{-\gamma}.$$

Now, for $\frac{1}{2} < u \le 1$, f(yu)/f(y) approaches u^{α} uniformly as $y \to \infty$. So pick $M \ge M_0$ such that for $y \ge M$ and $u \in (\frac{1}{2}, 1]$ we have

(2)
$$\frac{f(yu)}{f(y)} \le u^{\alpha} + 1 \le u^{\gamma} + 1.$$

Note that f(x) is positive on $[M, \infty)$. Take $y \ge M$ and $1 \le x \le y$. Suppose $x \ge M$. Then

$$\frac{|f(x)|}{f(y)} = \frac{f(x)}{f(y)} = \frac{f(x)}{f(2x)} \cdots \frac{f(2^{m-1}x)}{f(2^m x)} \frac{f(2^m x)}{f(y)},$$

where $2^{m}x \le y < 2^{m+1}x$. Let $u = 2^{m}x/y$; then $u \in (\frac{1}{2}, 1]$. By (1) and (2)

$$\frac{|f(x)|}{f(y)} \le (2^{-\gamma})^m (u^{\gamma} + 1) = 2^{-\gamma m} u^{\gamma} + (2^{-\gamma})^m = (x/y)^{\gamma} + (2^{-\gamma})^m.$$

Now $\log_2(y/x) - 1 < m \le \log_2(y/x)$; so if $\gamma \ge 0$

$$\frac{|f(x)|}{f(y)} \le (x/y)^{\gamma} + (2^{-\gamma})^{\log_2(y/x) - 1} = (1 + 2^{\gamma})(x/y)^{\gamma},$$

and if $\gamma < 0$

$$\frac{|f(x)|}{f(y)} \le (x/y)^{\gamma} + (2^{-\gamma})^{\log_2(y/x)} = 2(x/y)^{\gamma}.$$

Now suppose x < M. Since f(x) is bounded on [1, M) there exists an $M_1 \ge 1$ such that $|f(x)|/f(M) \le M_1$ for $1 \le x < M$. We know

$$\frac{|f(x)|}{f(y)} = \frac{|f(x)|}{f(M)} \frac{f(M)}{f(y)};$$

so if $\gamma \geq 0$

$$\frac{|f(x)|}{f(y)} \le M_1 (2^{\gamma} + 1) (M/y)^{\gamma} \le M_1 (2^{\gamma} + 1) M^{\gamma} (x/y)^{\gamma},$$

and if $\gamma < 0$

$$\frac{|f(x)|}{f(y)} \leq 2M_1(M/y)^{\gamma} \leq 2M_1(x/y)^{\gamma}.$$

Hence
$$C = \max(2M_1, M_1(1+2^{\gamma})M^{\gamma})$$
 works in all cases

For the following theorem we will use general Dirichlet series of a particular form; namely series $\sum_{n\geq 1} s(n)\sigma_n^{-x}$ where $\{\sigma_n\}$ is an increasing positive sequence of real numbers such that $\sigma_n \to \infty$ as $n \to \infty$. General Dirichlet series are discussed in detail in [6].

Note that the Dirichlet product [6, Chapter VIII] of two such series is also such a series, since if $\sum_{n\geq 1} s(n)\sigma_n^{-x}$ and $\sum_{n\geq 1} t(n)\tau_n^{-x}$ are two such series then their Dirichlet product is the series $\sum_{n\geq 1}\sum_{\sigma_i\tau_j=\rho_n} s(i)t(j)\rho_n^{-x}$ where $\{\rho_n\}$ is the ascending sequence formed by all the values of $\sigma_i\tau_j$; so $\rho_n \to \infty$ as $n \to \infty$.

Theorem 6 Given $\alpha \in \mathbb{R}$, let $\mathbf{S}(x) = \sum_{n \ge 1} s(n)\sigma_n^{-x}$, $\mathbf{T}(x) = \sum_{n \ge 1} t(n)\tau_n^{-x}$ be two general Dirichlet series of the above form where s and t are complex-valued, and let $T(x) = \sum_{\tau_n < x} t(n)$. Suppose

- 1. $T = bT^* + U$ where $0 \neq b \in \mathbb{C}$, $\lim_{x\to\infty} U(x)/T^*(x) = 0$, and T^* is real valued, left or right continuous at every point, and bounded on any interval [1, x),
- 2. $\lim_{x\to\infty} \frac{T^*(xy)}{T^*(x)} = y^{\alpha}$ for y > 0,
- 3. **S**(*x*) has abscissa of absolute convergence less than α .

Let $\{\rho_n\}$ be the ascending sequence formed by all the values of $\sigma_i \tau_j$ and let $r(n) = \sum_{\sigma_i \tau_i = \rho_n} s(i) \cdot t(j)$ and $R(x) = \sum_{\rho_n < x} r(n)$. Then

$$\lim_{x\to\infty}\frac{R(x)}{T(x)}=\mathbf{S}(\alpha).$$

Proof By replacing b by -b if necessary and by Lemma 4 we can assume T^* is eventually positive.

Notice that T^* is measurable, since if we take an open set V then for every $v \in (T^*)^{-1}(V)$ there is an interval I_v containing v such that $T^*(I_v) \subseteq V$. For every rational $v \in (T^*)^{-1}(V)$ let $B_v = \bigcup_{x:v \in I_x} I_x$ which is an interval. Then $(T^*)^{-1}(V) = \bigcup_{v \in \mathbb{Q} \cap (T^*)^{-1}(V)} B_v$; so $(T^*)^{-1}(V)$ is measurable.

Pick M_0 such that $|U(y)/T^*(y)| < |b|/2$ for $y \ge M_0$. Let us redefine $T^*(x)$ to be 1 on $[1, M_0]$ and U(x) to be T(x) - b on $[1, M_0]$. Then the hypotheses of the theorem still hold and T^* remains measurable and eventually positive. Further $U(x)/T^*(x)$ is bounded on $[1, \infty)$, say by $M_2/|b|$, since it is bounded on (M_0, ∞) by the choice of $M_0, U(x)/T^*(x) = T(x) - b$ on $[1, M_0]$, and T is bounded on $[1, M_0]$.

Let α_s be the abscissa of absolute convergence of $\mathbf{S}(x)$, then $\alpha_s < \alpha$ by assumption. Choose γ such that $\alpha_s < \gamma < \alpha$. By Lemma 5 there exist constants $M_1 \ge M_0$ and C such that

$$\frac{|T^*(x)|}{T^*(y)} \le C(x/y)^{\gamma} \quad \text{for } y \ge M_1 \text{ and } 1 \le x \le y,$$

A Multiplicative Analogue of Schur's Tauberian Theorem

and $T^*(y) > 0$ for $y \ge M_1$. For $y \ge M_1$ and $1 \le x \le y$,

$$\frac{|T(x)|}{|T(y)|} = \frac{|T^*(x)|}{|T^*(y)|} \frac{|1 + U(x)/bT^*(x)|}{|1 + U(y)/bT^*(y)|}$$
$$\leq C(x/y)^{\gamma} 2(1 + M_2)$$
$$= C'(x/y)^{\gamma}$$

where $C' = 2C(1 + M_2)$. Also

$$\lim_{x \to \infty} \frac{T(xy)}{T(x)} = \lim_{x \to \infty} \frac{T^*(xy)}{T^*(x)} \frac{\left(1 + U(xy)/bT^*(xy)\right)}{\left(1 + U(x)/bT^*(x)\right)} = y^{\alpha}.$$

From the triangle inequality with $x \ge M_1$,

$$\left| \mathbf{S}(\alpha) - \frac{R(x)}{T(x)} \right| \leq \left| \underbrace{\mathbf{S}(\alpha) - \sum_{\sigma_n \leq x} s(n)\sigma_n^{-\alpha}}_{\mathrm{I}} \right| + \underbrace{\left| \sum_{\sigma_n \leq x} s(n)\sigma_n^{-\alpha} - \frac{R(x)}{T(x)} \right|}_{\mathrm{II}}.$$

Clearly term I goes to 0 as $x \to \infty$. Thus it is sufficient to show that term II vanishes as $x \to \infty$. Now

$$R(x) = \sum_{\rho_n \le x} \sum_{\sigma_i \tau_j = \rho_n} s(i)t(j) = \sum_{\sigma_i \tau_j \le x} s(i)t(j)$$
$$= \sum_{\sigma_i \le x} s(i) \sum_{\tau_j \le x/\sigma_i} t(j) = \sum_{\sigma_n \le x} s(n)T(x/\sigma_n).$$

So for any $M \ge M_1$ and any $x \ge M$,

$$\begin{split} \sum_{\sigma_n \leq x} s(n)\sigma_n^{-\alpha} &- \frac{R(x)}{T(x)} \\ &= \left| \sum_{\sigma_n \leq x} s(n)\sigma_n^{-\alpha} - \frac{1}{T(x)} \sum_{\sigma_n \leq x} s(n)T(x/\sigma_n) \right| \\ &= \left| \sum_{\sigma_n \leq x} s(\sigma_n) \left(\sigma_n^{-\alpha} - \frac{T(x/\sigma_n)}{T(x)} \right) \right| \\ &\leq \underbrace{\left| \sum_{\sigma_n \leq M} s(n) \left(\sigma_n^{-\alpha} - \frac{T(x/\sigma_n)}{T(x)} \right) \right|}_{\text{III}} + \underbrace{\left| \sum_{M < \sigma_n \leq x} s(n) \left(\sigma_n^{-\alpha} - \frac{T(x/\sigma_n)}{T(x)} \right) \right|}_{\text{IV}}. \end{split}$$

Term III goes to 0 as $x \to \infty$ since there are finitely many $\sigma_n \leq M$ and for any fixed n

$$\lim_{x\to\infty}\frac{T(x/\sigma_n)}{T(x)}=\sigma_n^{-\alpha}.$$

Thus it is sufficient to show that term IV goes to 0 as $M \to \infty$. For term IV,

$$\left|\sum_{M<\sigma_n\leq x} s(n) \left(\sigma_n^{-\alpha} - \frac{T(x/\sigma_n)}{T(x)}\right)\right| \leq \sum_{\sigma_n>M} |s(n)|\sigma_n^{-\alpha} + \sum_{M<\sigma_n\leq x} |s(n)|\frac{|T(x/\sigma_n)|}{|T(x)|}$$
$$\leq \sum_{\sigma_n>M} |s(n)|\sigma_n^{-\alpha} + C' \sum_{\sigma_n>M} |s(n)|\sigma_n^{-\gamma}$$

for $M \ge 1$. The sums on the right side go to 0 as $M \to \infty$ since they are tail ends of convergent series. This finishes the proof.

For the final corollary we need a definition of Knopfmacher.

Definition 7 ([7], **pp. 11–12**) An *arithmetical semigroup G* is a commutative semigroup with identity element 1, with a subset *P* such that every $a \in G$, $a \neq 1$ has a unique factorization up to ordering into elements of *P*, and with a real valued norm $|\cdot|$ satisfying

- 1. |1| = 1, |p| > 1 for $p \in P$,
- 2. |ab| = |a| |b| for all $a, b \in G$, and
- 3. the number of elements $a \in G$ of norm $|a| \le x$ is finite for each real x > 0.

A specialised version of Theorem 6 appeared in Knopfmacher's book [7] as Lemma 3.6. Using notation close to Theorem 6 it states:

Corollary 8 (Lemma 3.6, [7]) Let G be an arithmetical semigroup. Let s and t be functions from G to C. Let $\mathbf{S}(z) = \sum_{a \in G} s(a)|a|^{-z}$, and let $T(x) = \sum_{|a| \le x} t(a)$. Suppose

- 1. $T(x) = Bx^{\alpha}(\log x)^r + O(x^{\beta}(\log x)^s)$ where $\alpha > 0, 0 \le \beta \le \alpha$, and r and s are nonnegative integers with the property that $\beta < \alpha$ if r = 0, while s < r if $\beta = \alpha$;
- 2. **S**(*z*) is absolutely convergent for *z* with $\operatorname{Re} z > \nu$ where $\nu < \alpha$.

Let $r(a) = \sum_{b \cdot c=a} s(b) \cdot t(c)$ and $R(x) = \sum_{|a| \le x} r(a)$. Then as $x \to \infty$,

 $R(x) = \left(B\mathbf{S}(\alpha) + o(1)\right) x^{\alpha} (\log x)^{r}.$

Proof Suppose *G* is finite. Then T(x) and R(x) are eventually constant. If $B \neq 0$ then $T(x) = Bx^{\alpha}(\log x)^r + O(x^{\beta}(\log x)^s) \to \infty$ as $x \to \infty$ which is a contradiction. If B = 0 then the result holds, since $R(x)/x^{\alpha}(\log x)^r \to 0$ as $x \to \infty$.

Now suppose *G* is infinite. Let $\{\rho_n\}$ be the ascending sequence of values of |a| for $a \in G$; note that $\rho_n \ge 1$ for all *n* and $\rho_n \to \infty$ by Definition 7. Let

$$r'(n) = \sum_{|a|=\rho_n} r(a), \quad s'(n) = \sum_{|a|=\rho_n} s(a), \text{ and } t'(n) = \sum_{|a|=\rho_n} t(a).$$

Then $r'(n) = \sum_{\rho_i \rho_j = \rho_n} s'(i) \cdot t'(j)$, $R(x) = \sum_{\rho_n \leq x} r'(n)$, and $T(x) = \sum_{\rho_n \leq x} t'(n)$. Let $\mathbf{S}'(z) = \sum_{n \geq 1} s'(n)\rho_n^{-z}$. $\mathbf{S}'(z)$ can be obtained from $\mathbf{S}(z)$ by rearranging and collecting terms; thus they are equal whenever $\mathbf{S}(z)$ converges absolutely and the abscissa

478

of absolute convergence of $\mathbf{S}'(z)$ is at most ν . Assume $B \neq 0$. Then by Theorem 6 we get

$$\mathbf{S}(\alpha) = \mathbf{S}'(\alpha) = \lim_{x \to \infty} \frac{R(x)}{T(x)}$$
$$= \lim_{x \to \infty} \frac{R(x)}{Bx^{\alpha}(\log x)^r + O\left(x^{\beta}(\log x)^s\right)}$$
$$= \lim_{x \to \infty} \frac{R(x)}{Bx^{\alpha}(\log x)^r}.$$

Therefore $R(x) = (BS(\alpha) + o(1)) x^{\alpha} (\log x)^r$.

Now assume B = 0. This case is an asymptotic bound, not an asymptotic equality, and so is not a consequence of Theorem 6. Let α_s be the abscissa of absolute convergence of $\mathbf{S}(z)$. Take $\gamma \ge \beta$ such that $\alpha_s < \gamma < \alpha$ if $\beta < \alpha$ and $\gamma = \alpha = \beta$ otherwise. For some *C* and for $x \ge 1$ we have $|T(x)| \le Cx^{\gamma} (1 + (\log x)^s)$ since T(x) takes a finite number of values in any finite interval. Thus

$$\begin{aligned} \frac{|R(x)|}{x^{\alpha}(\log x)^{r}} &= \frac{|\sum_{\rho_{k} \leq x} T(x/\rho_{k})s(k)|}{x^{\alpha}(\log x)^{r}} \\ &\leq \frac{\sum_{\rho_{k} \leq x} C(x/\rho_{k})^{\gamma} \left(1 + \left(\log(x/\rho_{k})\right)^{s}\right)|s(k)|}{x^{\alpha}(\log x)^{r}} \\ &\leq Cx^{\gamma-\alpha} \left((\log x)^{-r} + (\log x)^{s-r}\right) \sum_{\rho_{k} \leq x} |s(k)|\rho_{k}^{-\gamma} \\ &\to 0 \end{aligned}$$

as $x \to \infty$. Therefore in all cases $R(x) = (BS(\alpha) + o(1)) x^{\alpha} (\log x)^r$.

Notice that the regular variation condition is much more general than Knopfmacher's condition. Knopfmacher also assumes *G* satisfies Axiom A [7, p. 90], namely that $|\{a \in G : |a| \le x\}| = Ax^{\delta} + O(x^{\nu})$ as $x \to \infty$ with $A > 0, 0 \le \nu < \delta$.

References

- [1] Tom M. Apostol, Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.
- [2] Edward A. Bender, Asymptotic methods in enumeration. SIAM Rev. 16(1974), 485–515.
- [3] N. H. Bingham, C. M. Goldie and J. L. Teugels, *Regular Variation*. Cambridge University Press, Cambridge, 1987.
- [4] Stanley N. Burris, Number Theoretic Density and Logical Limit Laws. Math. Surveys Monogr. 86, Amer. Math. Soc., Providence, RI, 2001.
- [5] J. L. Geluk and L. de Haan, *Regular variation, extensions and Tauberian theorems*. Centrum voor Wiskunde en Informatica, Amsterdam, 1987.
- [6] G. H. Hardy and Marcel Riesz. *The General Theory of Dirichlet's Series*. Cambridge University Press, Cambridge, 1952.
- John Knopfmacher, Abstract Analytic Number Theory. North-Holland Mathematical Library 12, North-Holland, Amsterdam, 1975; Available as a Dover Reprint.

Karen Yeats

- [8] A. M. Odlyzko, *Asymptotic enumeration methods*. Handbook of Combinatorics 1–2, 1063–1229, Elsevier, Amsterdam, 1995.
 [9] G. Pólya and G. Szegö, *Aufgaben und Lehrsätze aus der Analysis*. *I.* Springer-Verlag, Berlin, 1970.
 [10] I. Schur, *Problem:*. Arch. Math. Phys. Ser. 3 27(1918), 162.

Department of Pure Mathematics University of Waterloo Waterloo, Ontario N2L 3G1 e-mail: kayeats@uwaterloo.ca

480