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Abstract

Statistical models are commonly employed in the estimation of influenza-associated excess
mortality that, due to various reasons, is often underestimated by laboratory-confirmed influ-
enza deaths reported by healthcare facilities. However, methodology for timely and reliable
estimation of that impact remains limited because of the delay in mortality data reporting.
We explored real-time estimation of influenza-associated excess mortality by types/subtypes
in each year between 2012 and 2018 in Hong Kong using linear regression models fitted to
historical mortality and influenza surveillance data. We could predict that during the winter
of 2017/2018, there were ∼634 (95% confidence interval (CI): (190, 1033)) influenza-asso-
ciated excess all-cause deaths in Hong Kong in population ⩾18 years, compared to 259
reported laboratory-confirmed deaths. We estimated that influenza was associated with sub-
stantial excess deaths in older adults, suggesting the implementation of control measures, such
as administration of antivirals and vaccination, in that age group. The approach that we devel-
oped appears to provide robust real-time estimates of the impact of influenza circulation and
complement surveillance data on laboratory-confirmed deaths. These results improve our
understanding of the impact of influenza epidemics and provide a practical approach for a
timely estimation of the mortality burden of influenza circulation during an ongoing
epidemic.

Introduction

Influenza virus infections cause a considerable impact on public health. While most infections
are mild, a small fraction is severe, resulting in hospitalisation or even death. Worldwide, ∼290
000 to 650 000 deaths are attributable to influenza each year [1]. Ecological analyses of mor-
tality rates over time, in combination with surveillance data on influenza activity, are com-
monly used to estimate influenza-associated mortality [2]. There are large studies on the
estimation of influenza-associated excess all-cause mortality, like the EuroMOMO project in
Europe since 2008 [3]. However, data on mortality rates are rarely available in near real-time,
and this typically prohibits timely estimates of the mortality impact of influenza epidemics.

It has previously been shown that the association between the measure of influenza activity
and mortality rates is quite stable across influenza epidemics [4]. Here, we explore the poten-
tial for using a combination of a statistical model fitted to historical data as well as real-time
information on influenza activity to predict the impact of influenza epidemics in real-time
before mortality data become available. We evaluate the model performance using data
from Hong Kong from 2006 through 2016.

Methods

Sources of data

Age-specific weekly all-cause deaths and the corresponding annual mid-year population esti-
mates between 2006 through 2016 were obtained from the Census and Statistics Department of
the Hong Kong Government [5]. Surveillance data on influenza consisted of two data streams:
(i) data on influenza-like illness (ILI) from around 50 sentinel private medical practitioners
represented by the weekly proportion of outpatients reporting a fever >38 °C plus a cough
or sore throat as reported by the Centre for Health Protection (CHP) of the Hong Kong
Department of Health, along with (ii) local laboratory data reported by the Public Health
Laboratory Services Branch of the CHP on the weekly proportion of specimens from sentinel
outpatient clinics and local public hospitals that tested positive for influenza [6]. Surveillance
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data on influenza deaths were available from the CHP’s surveil-
lance systems for paediatric and adult severe cases with
laboratory-confirmed influenza virus infection. ILI and laboratory
surveillance data stratified by age were not available, whereas
severe influenza surveillance data were available by age (<18
years and ⩾18 years).

Statistical analysis

A linear regression model was used to estimate the influenza-
associated excess mortality according to the following regression
equation:
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where t represents the week number, Dt represents the number of
deaths in week t and Nt represents the population size in week t.
β0 represents the intercept. sH1N1t−1, H3N2t−1, pH1N11t−1,
pH1N12at−1, pH1N12bt−1 and Bt−1 represent the proxies (covariates)
for the weekly incidence of seasonal influenza A(H1N1), influenza
A(H3N2), pandemic influenza A(H1N1)pdm09 during the pan-
demic period in 2009, pandemic influenza A(H1N1)pdm09 in the
post-pandemic period and before the 2013–14 influenza season,
pandemic influenza A(H1N1)pdm09 on or after the 2013–14 influ-
enza season, and influenza B. These incidence proxies in week t are
defined as the product of the proportion of respiratory samples that
have the given virus detected and the proportion of consultations
attributable to ILI from sentinel private medical practitioners in
week t− 1 respectively since we assumed a time lag of one week
between the virus activity and the caused deaths. We split the influ-
enza A(H1N1)pdm09 activity before and after 2013–14 because
there was a change in A(H1N1)pdm09 activity before and after
2013–14. Base1t , Base2t , . . . . and Base13t represent the periodic

splines with a period of 52 weeks, with a knot every 4 weeks (base-
line terms for mortality not attributable to influenza). yeart and
represent the linear and non-linear (quadratic) effect of the calendar
year (temporal trend terms in mortality). Errors εt were assumed to
follow a normal distribution with constant variance over time s2

1.
The influenza-associated excess mortality rates were estimated

by subtracting the predicted mortality rate estimated from the fit-
ted regression model setting influenza activity for a type to zero
from the predicted mortality rate from the model based on the
observed weekly influenza activity. Because the pattern of age-
specific proxy measures of influenza activity is generally similar
in the different age groups, we included the all-age proxy measure
of influenza activity as a covariate in the each regression model.
The 95% CIs for excess mortality rates were estimated with a
bootstrap approach.

Data on all-cause deaths are not available in real-time in many
places, including Hong Kong and Europe [3, 7]. Specifically, we fit
a linear model using mortality data and influenza surveillance
data from year 1 to year n. Then we can use the model, namely
the estimates of the regression coefficients for the different covari-
ates corresponding to the different influenza (sub)types for years
1 through n to estimate (predict) the number of
influenza-associated excess mortality in year n + 1 using the avail-
able influenza surveillance data for year n + 1. We then compared
the influenza-associated excess mortality rates estimated in this
fashion with the laboratory-confirmed deaths from severe influ-
enza surveillance systems. Additionally, we performed retrospect-
ive estimation of excess mortality based on 8 years of data, namely
the 2009–2016 period. For the real-time estimation of excess mor-
tality, predictions for each of the 2012 through the 2017 seasons
were based on data for n = 6 preceding years, while prediction
in 2018 was based on 5 preceding years since we only have mor-
tality data until 2016. We assessed the performance of our real-
time prediction approach by comparing the real-time mortality
estimates for each year (2012 through 2016) with the retrospective
estimates for the 2009–2016 period. We also considered models
with variations of the main model, including those without the
term(s) for the calendar year, without splitting the proxy of pan-
demic influenza A(H1N1), or splitting the proxy of influenza
A(H3N2), and then selected the model with the lowest Akaike
information criterion score for real-time estimation. We included
seasonal influenza A(H1N1) in the model but would not report
the influenza-associated excess mortality estimates of the virus

Table 1. Type and subtype-specific influenza-associated excess all-cause mortality rates in each year in Hong Kong based on retrospective data analysis, 2009 to
2016

Excess mortality rate (per 100 000)

Year A(H3N2) (95% CI) A(H1N1)pdm09 (95% CI) B (95% CI) All influenza (95% CI)

2009 6.97 (4.74, 9.14) 4.64 (−1.86, 10.90) 1.12 (0.24, 1.94) 7.02 (−3.49, 18.12)

2010 10.80 (7.34, 14.16) 6.00 (2.03, 10.05) 6.23 (1.35, 10.77) 23.03 (15.46, 30.21)

2011 3.05 (2.07, 4.00) 8.11 (2.74, 13.59) 3.62 (0.79, 6.25) 14.78 (8.36, 21.15)

2012 15.09 (10.25, 19.78) 0.39 (0.13, 0.66) 9.00 (1.96, 15.55) 24.48 (16.03, 32.07)

2013 4.47 (3.04, 5.86) 4.23 (1.97, 6.44) 1.02 (0.22, 1.76) 9.72 (6.68, 12.59)

2014 5.20 (3.53, 6.81) 9.50 (4.42, 13.92) 6.64 (1.44, 11.47) 21.33 (14.93, 27.27)

2015 17.26 (11.73, 22.62) 0.83 (0.39, 1.22) 2.98 (0.65, 5.15) 21.07 (15.15, 27.19)

2016 6.32 (4.30, 8.29) 14.04 (6.53, 20.56) 7.42 (1.61, 12.81) 27.78 (19.58, 35.57)

2 Jessica Y. Wong et al.

https://doi.org/10.1017/S0950268819001067 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268819001067


in the main results because it only circulated for one year during
the study period. All statistical analyses were conducted in R ver-
sion 3.3.0 (R Foundation for Statistical Computing, Vienna,
Austria).

Results

Using the product of ILI and laboratory data as the proxy of influ-
enza activity, we estimated the excess all-cause mortality asso-
ciated with each influenza type and subtype in each year
between 2009–2016 in Hong Kong under the linear regression
model (retrospective estimation, Table 1). Influenza A(H1N1)
pdm09 replaced seasonal influenza A(H1N1) when the first
wave of H1N1pdm09 began in summer 2009. In 2009, we esti-
mated that the overall excess death rate associated with
H1N1pdm09 was 4.6 (95% CI: −1.9, 10.9) per 100 000 popula-
tion. Annual estimates of excess deaths associated with influenza
A(H3N2), with point estimates of the excess mortality ranging
from 3.1 to 17.3 per 100 000 population in 2009 through 2016,
tended to be greater than those annual estimates associated with
other influenza subtypes.

The average annual excess all-cause mortality estimates asso-
ciated with influenza in all ages between 2009–2016 was 18.7
(95% CI: 13.3, 24.1) per 100 000 population (Table 2). The
older adults had the highest excess mortality among all the age
groups. Influenza A(H3N2) was associated with the greatest
excess mortality rate among all influenza type/subtypes. The aver-
age annual excess mortality estimates associated with influenza
A(H3N2) increased with age from approximately zero (point esti-
mate −1.2; 95% CI: −3.2, 0.7) per 100 000 population per year in
aged 0–4 years to 55.5 (95% CI: 37.2, 73.6) per 100 000 population
per year in aged ⩾65 years.

Under this new methodology and using 2017 as an example,
we estimated influenza-associated mortality in 2017 in real-time
based on two components: (i) historical mortality data from
2011 through 2016 and (ii) influenza surveillance data from
2011 through 2017 (Fig. 1). We compared the annual estimates
of the excess all-cause influenza-associated mortality rates for
the 2009–2016 period (the retrospective estimates), the real-time
excess all-cause influenza-associated mortality rates estimated
each year and the laboratory-confirmed mortality rates from the
severe influenza surveillance system during each year in Hong
Kong by virus type and subtype in persons ⩾18 years (Fig. 2;
Table 3). Using the real-time approach, we estimated that the
overall excess all-cause mortality associated with all influenza
was the highest in 2016 for the 2012–2018 period, with the major-
ity of the excess mortality associated with influenza A(H3N2).
Although the annual estimates from 2012 through 2018 involve
large variations, point estimates of the real-time estimates of
excess mortality in each subtype were generally similar to those
estimates based on the retrospective approach. CIs of the annual
and type/subtype-specific estimates were also similar in both
approaches. In comparison, the laboratory-confirmed mortality
rates have a similar pattern as the influenza-associated excess
mortality rates, with zero to two-fold lower. Among adolescents
and young adults, the real-time estimates of excess mortality
were comparable with the retrospective estimates of excess mor-
tality, though neither of them generally reached statistical signifi-
cance (Fig. 3; Table 3). In sensitivity analysis, this approach is also
applicable to cause-specific mortality data including respiratory
deaths (Fig. S1).Ta
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Discussion

The influenza-associated all-cause excess mortality rates estimated
from this study suggested an annual average of 1340 (95% CI: 954,
1723) excess deaths associated with influenza in Hong Kong from
2009 through 2016, slightly higher than earlier estimates for
1998–2009 [8] and 2004–2006 [9]. The majority of
influenza-associated excess deaths occurred in persons aged 65
years or older, comparable to the findings from other countries
[2, 10, 11]. Here, we developed methodology for estimating
influenza-associated mortality in real-time based on two

ingredients: (i) past mortality data and (ii) influenza surveillance
data, including real-time surveillance data. The real-time esti-
mates of excess mortality were similar to the retrospective excess
mortality estimates, demonstrating the potential of our approach
to provide timely information on the impact of influenza circula-
tion on mortality during the course of influenza seasons. In add-
ition, our approach can provide important information to health
authorities to improve situation awareness and calibration of pub-
lic health interventions like vaccination and prescription of anti-
viral for high-risk individuals, particularly during severe influenza

Fig. 1. Schematic illustration for real-time prediction of excess mortality in 2017. Step 1: Apply regression model to mortality data (from 2011 to 2016), using influ-
enza virus activity from past years (from 2011 to 2016) as a covariate. Step 2: Predict influenza-associated excess mortality in current year (2017) by applying the
fitted model to all year’s influenza virus activity data (from 2011 to 2017).

Fig. 2. Retrospective and real-time excess all-cause mortality rates vs. laboratory-confirmed mortality rates in each year in Hong Kong in population ⩾18 years by
virus type and subtype, 2012 to 2018.
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seasons [12, 13]. Because there is usually a delay in obtaining
population mortality data, real-time estimation of excess mortality
based on historical death data is important for predicting the
impact of the influenza viruses circulating in the current season
on the population and for planning for public health responses,
especially when there is a relatively more intense virus activity
and/or an observed substantial impact on the healthcare system
[14].

The relation between influenza surveillance data and
influenza-associated mortality is measured by the regression coef-
ficients for the different influenza (sub)types in the linear infer-
ence model. In a previous study, we showed that the regression
coefficients for each influenza type/subtype generally did
not change much over time during the study period [4]. In our
present study, the implicit assumption when estimating the
influenza-associated excess mortality in real time was that the
regression coefficients for the major influenza (sub)types are
stable. If there is a change in the regression coefficients, possibly
due to the change in the strain of the circulating influenza virus,

or due to an emerging influenza epidemic, or for other reasons,
the application of regression coefficients estimated from past
data to the current influenza surveillance data could be question-
able, hence the real-time influenza-associated excess mortality
could be overestimated or underestimated in our approach. We
note that the real-time estimate of influenza A(H3N2)-associated
mortality in 2012 is notably lower than the retrospective estimate.

During an evolving influenza epidemic it can be challenging to
quantify its impact on mortality and other severe outcomes [15,
16]. Our approach to relate surveillance data to excess mortality
provides a way to quantify the mortality burden of the ongoing
influenza epidemic. Future work could extend our approach to
forecast the mortality burden of the whole epidemic in real-time
via forecasting future incidence [17–19]. Providing real-time esti-
mates of the mortality impact of evolving influenza epidemics
could help inform public health responses to those epidemics
[15, 20].

Our study has a few limitations. First, our proxy measure of
influenza activity, obtained by combining ILI data with laboratory

Table 3. Retrospective and real-time estimates of influenza-associated excess all-cause mortality rates in Hong Kong in population ⩾18 and <18 years by virus type
and subtype, 2012 to 2016

Excess mortality rate (per 100 000)

Year
A

(H3N2) (95% CI)
A(H1N1)
pdm09 (95% CI) B (95% CI) All flu (95% CI)

Retrospective, ⩾18
years

2012 17.04 (11.44, 22.43) 0.42 (0.14, 0.69) 10.45 (2.40, 17.87) 27.91 (18.34, 36.54)

2013 5.00 (3.36, 6.58) 4.73 (2.13, 7.17) 1.10 (0.25, 1.87) 10.83 (7.44, 14.09)

2014 5.76 (3.87, 7.58) 10.40 (4.56, 15.48) 7.64 (1.75, 13.07) 23.80 (16.55, 30.62)

2015 19.65 (13.19, 25.86) 0.83 (0.36, 1.24) 3.36 (0.77, 5.75) 23.84 (17.12, 30.83)

2016 7.15 (4.80, 9.40) 15.35 (6.73, 22.85) 8.52 (1.95, 14.56) 31.01 (21.65, 39.84)

Real-time, ⩾18 years

2012 4.56 (−6.09, 15.03) 0.57 (0.22, 0.99) 10.33 (−4.56, 23.69) 15.47 (−2.75, 31.50)

2013 2.84 (0.27, 5.50) 3.45 (−0.19, 7.67) 1.45 (0.32, 2.75) 7.74 (2.88, 13.33)

2014 5.06 (1.67, 8.63) 4.83 (0.26, 9.98) 9.78 (2.38, 17.39) 19.67 (9.58, 29.57)

2015 17.36 (9.37, 26.00) 0.63 (0.34, 0.92) 4.79 (2.03, 7.50) 22.78 (14.32, 32.08)

2016 8.65 (5.98, 11.28) 11.72 (6.78, 16.40) 11.59 (5.24, 17.43) 31.96 (22.58, 40.86)

Retrospective, <18
years

2012 −0.62 (−1.69, 0.55) −0.02 (−0.08, 0.05) 0.28 (−1.34, 1.91) −0.36 (−2.42, 1.76)

2013 −0.18 (−0.49, 0.16) −0.05 (−0.60, 0.53) 0.03 (−0.14, 0.20) −0.20 (−0.89, 0.59)

2014 −0.21 (−0.57, 0.19) 0.85 (−0.38, 1.91) 0.20 (−0.97, 1.38) 0.85 (−0.63, 2.44)

2015 −0.71 (−1.94, 0.63) 0.07 (−0.03, 0.15) 0.09 (−0.43, 0.61) −0.55 (−1.94, 0.94)

2016 −0.26 (−0.71, 0.23) 1.26 (−0.57, 2.83) 0.22 (−1.09, 1.54) 1.23 (−0.73, 3.23)

Real-time, <18 years

2012 −1.54 (−3.08, −0.05) −0.01 (−0.07, 0.05) 1.05 (−1.32, 3.28) −0.50 (−3.28, 2.10)

2013 −0.30 (−0.70, 0.09) −0.20 (−0.85, 0.52) 0.06 (−0.13, 0.25) −0.44 (−1.28, 0.46)

2014 −0.11 (−0.68, 0.47) −0.41 (−1.33, 0.56) 0.05 (−1.32, 1.45) −0.48 (−2.47, 1.43)

2015 −0.64 (−2.33, 1.13) −0.04 (−0.10, 0.04) −0.13 (−0.71, 0.55) −0.80 (−2.71, 1.06)

2016 0.06 (−0.62, 0.73) −0.36 (−1.57, 0.87) −0.18 (−1.65, 1.32) −0.49 (−3.00, 1.93)
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surveillance data, constructed as the product of the weekly pro-
portion of outpatient consultations for ILI and the weekly propor-
tion of respiratory specimens testing positive for each influenza by
type/subtype, may not accurately measure influenza incidence in
the community due to reasons such as changes in healthcare seek-
ing behaviour, or changes in laboratory testing practices over
time. In 2009 we found that this proxy measure was closely cor-
related to hospitalisations for influenza A(H1N1)pdm09 infection
[7]. We did not have age-specific surveillance data on ILI or
laboratory surveillance data, and the use of all-age surveillance
data as the proxy measure of influenza activity as a covariate in
each of the regression model might be less optimal for the estima-
tion of the influenza-associated mortality in some age groups.
Secondly, the current model only explained 83% of the variation
in the all-cause mortality rates, and there is room to further
improve the models used in this study. Finally, we did not have
information on patterns in influenza vaccination coverage over
time, which had increased from low levels to around 10% in
2015 in Hong Kong. Our model may be improved by incorporat-
ing the information on vaccination coverage which is likely to
vary by age due to various reasons including access to free vaccin-
ation, and therefore can be used to investigate the potential
impact of vaccination on influenza-associated excess all-cause
mortality.

In conclusion, we have described an approach to provide real-
time estimates of the mortality impact of influenza epidemics,
based on historical mortality data along with historical and real-
time information on influenza activity. The performance of this
approach could be explored in other locations, and in future
this work could be combined with methods for forecasting of
influenza incidence to provide forecasts of influenza-associated

mortality rates for evolving influenza epidemics and help inform
control and mitigation efforts.

Author ORCIDs. Benjamin J. Cowling, 0000-0002-6297-7154

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268819001067.
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