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Abstract
In this paper, we obtain a precise formula for the one-level density of L-functions attached to non-Galois cubic
Dedekind zeta functions. We find a secondary term which is unique to this context, in the sense that no lower-order
term of this shape has appeared in previously studied families. The presence of this new term allows us to deduce
an omega result for cubic field counting functions, under the assumption of the Generalised Riemann Hypothesis.
We also investigate the associated L-functions Ratios Conjecture and find that it does not predict this new lower-
order term. Taking into account the secondary term in Roberts’s conjecture, we refine the Ratios Conjecture to
one which captures this new term. Finally, we show that any improvement in the exponent of the error term of the
recent Bhargava–Taniguchi–Thorne cubic field counting estimate would imply that the best possible error term in
the refined Ratios Conjecture is 𝑂𝜀 (𝑋− 1

3+𝜀). This is in opposition with all previously studied families in which
the expected error in the Ratios Conjecture prediction for the one-level density is 𝑂𝜀 (𝑋− 1

2+𝜀).
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1. Introduction

In [KS1, KS2], Katz and Sarnak made a series of fundamental conjectures about statistics of low-
lying zeros in families of L-functions. Recently, these conjectures have been refined by Sarnak, Shin
and Templier [SaST] for families of parametric L-functions. There is a huge body of work on the
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2 P. J. Cho et al.

confirmation of these conjectures for particular test functions in various families, many of which are
harmonic (see, e.g. [ILS, Ru, FI, HR, ST]). There are significantly fewer geometric families that have
been studied. In this context, we mention the work of Miller [M1] and Young [Yo] on families of
elliptic curve L-functions and that of Yang [Ya], Cho and Kim [CK1, CK2] and Shankar, Södergren and
Templier [ShST] on families of Artin L-functions.

In families of Artin L-functions, these results are strongly linked with counts of number fields. More
precisely, the set of admissible test functions is determined by the quality of the error terms in such
counting functions. In this paper we consider the sets

F±(𝑋) := {𝐾/Q non-Galois : [𝐾 : Q] = 3, 0 < ±𝐷𝐾 < 𝑋},

where for each cubic field 𝐾/Q of discriminant 𝐷𝐾 , we include only one of its three isomorphic
copies. The first power-saving estimate for the cardinality 𝑁±(𝑋) := |F±(𝑋) | was obtained by Belabas,
Bhargava and Pomerance [BBP] and was later refined by Bhargava, Shankar and Tsimerman [BST],
Taniguchi and Thorne [TT] and Bhargava, Taniguchi and Thorne [BTT]. The last three of these estimates
take the shape

𝑁±(𝑋) = 𝐶±
1 𝑋 + 𝐶±

2 𝑋
5
6 +𝑂 𝜀 (𝑋 𝜃+𝜀) (1.1)

for certain explicit values of 𝜃 < 5
6 , implying, in particular, Roberts’s conjecture [Ro]. Here,

𝐶+
1 :=

1
12𝜁 (3) ; 𝐶+

2 :=
4𝜁 ( 1

3 )
5Γ( 2

3 )3𝜁 ( 5
3 )

; 𝐶−
1 :=

1
4𝜁 (3) ; 𝐶−

2 :=
4
√

3𝜁 ( 1
3 )

5Γ( 2
3 )3𝜁 ( 5

3 )
.

The presence of this secondary term is a striking feature of this family, and we are interested in studying
its consequences for the distribution of low-lying zeros. More precisely, the estimate (1.1) suggests that
one should be able to extract a corresponding lower-order term in various statistics on those zeros.

In addition to (1.1), we will consider precise estimates involving local conditions, which are of the
form

𝑁±
𝑝 (𝑋,𝑇) : = #{𝐾 ∈ F±(𝑋) : 𝑝 has splitting type 𝑇 in 𝐾}

= 𝐴±
𝑝 (𝑇)𝑋 + 𝐵±

𝑝 (𝑇)𝑋
5
6 +𝑂 𝜀 (𝑝𝜔𝑋 𝜃+𝜀), (1.2)

where p is a given prime, T is a splitting type and the constants 𝐴±
𝑝 (𝑇) and 𝐵±

𝑝 (𝑇) are defined in Section
2. Here, 𝜃 is the same constant as that in (1.1) and 𝜔 ≥ 0. Note, in particular, that (1.2) implies (1.1)
(take 𝑝 = 2 in (1.2) and sum over all splitting types T).

Perhaps surprisingly, it turns out that the study of low-lying zeros has an application to cubic field
counts. More precisely, we were able to obtain the following conditional omega result for 𝑁±

𝑝 (𝑋,𝑇).

Theorem 1.1. Assume the Generalised Riemann Hypothesis for 𝜁𝐾 (𝑠) for each 𝐾 ∈ F±(𝑋). If 𝜃, 𝜔 ≥ 0
are admissible values in (1.2), then 𝜃 + 𝜔 ≥ 1

2 .

As part of this project, we have produced numerical data which suggest that 𝜃 = 1
2 and any 𝜔 > 0

are admissible values in (1.2) (indicating, in particular, that the bound 𝜔 + 𝜃 ≥ 1
2 in Theorem 1.1 could

be the best possible). We have made several graphs to support this conjecture in Appendix A. As a first
example of these results, in Figure 1, we display a graph of 𝑋− 1

2 (𝑁+
5 (𝑋,𝑇) − 𝐴+

5 (𝑇)𝑋 − 𝐵+
5 (𝑇)𝑋

5
6 ) for

the various splitting types T, which suggests that 𝜃 = 1
2 is admissible and the best possible.
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Figure 1. The normalised error terms 𝑋− 1
2 (𝑁+

5 (𝑋,𝑇) − 𝐴+
5 (𝑇)𝑋 − 𝐵+

5 (𝑇)𝑋
5
6 ) for the splitting types

𝑇 = 𝑇1, . . . , 𝑇5 as described in Section 2.

Let us now describe our unconditional result on low-lying zeros. For a cubic field K, we will focus
on the Dedekind zeta function 𝜁𝐾 (𝑠), whose one-level density is defined by

𝔇𝜙 (𝐾) :=
∑
𝛾𝐾

𝜙

(
log(𝑋/(2𝜋𝑒)2)

2𝜋
𝛾𝐾

)
.

Here, 𝜙 is an even, smooth and rapidly decaying real function for which the Fourier transform

𝜙(𝜉) :=
∫
R

𝜙(𝑡)𝑒−2𝜋𝑖 𝜉 𝑡𝑑𝑡

is compactly supported. Note that 𝜙 can be extended to an entire function through the inverse Fourier
transform. Moreover, X is a parameter (approximately equal to |𝐷𝐾 |) and 𝜌𝐾 = 1

2 + 𝑖𝛾𝐾 runs through
the nontrivial zeros1 of 𝜁𝐾 (𝑠)/𝜁 (𝑠). In order to understand the distribution of the 𝛾𝐾 , we will average
𝔇𝜙 (𝐾) over the family F±(𝑋). Our main technical result is a precise estimation of this average.

Theorem 1.2. Assume that the cubic field count (1.2) holds for some fixed parameters 1
2 ≤ 𝜃 < 5

6 and
𝜔 ≥ 0. Then, for any real even Schwartz function 𝜙 for which 𝜎 := sup(supp(𝜙)) < 1−𝜃

𝜔+ 1
2

, we have the
estimate

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝔇𝜙 (𝐾) = 𝜙(0)
(
1 + log(4𝜋2𝑒)

𝐿
−

𝐶±
2

5𝐶±
1

𝑋− 1
6

𝐿
+

(𝐶±
2 )

2

5(𝐶±
1 )2

𝑋− 1
3

𝐿

)
+ 1
𝜋

∫ ∞

−∞
𝜙
( 𝐿𝑟

2𝜋

)
Re

(Γ′
±

Γ±
( 1

2 + 𝑖𝑟)
)
𝑑𝑟 − 2

𝐿

∑
𝑝,𝑒

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 )

−
2𝐶±

2 𝑋
− 1

6

𝐶±
1 𝐿

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒

log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
𝛽𝑒 (𝑝) +𝑂 𝜀 (𝑋 𝜃−1+𝜎 (𝜔+ 1

2 )+𝜀), (1.3)

1The Riemann Hypothesis for 𝜁𝐾 (𝑠) implies that 𝛾𝐾 ∈ R.
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where Γ+(𝑠) := 𝜋−𝑠Γ( 𝑠
2 )

2, Γ−(𝑠) := 𝜋−𝑠Γ( 𝑠
2 )Γ(

𝑠+1
2 ), 𝑥𝑝 := (1 + 1

𝑝 + 1
𝑝2 )−1, 𝜃𝑒 and 𝛽𝑒 (𝑝) are defined

in (3.4) and (3.6), respectively, and 𝐿 := log
(

𝑋
(2𝜋𝑒)2

)
.

Remark 1.3. In the language of the Katz–Sarnak heuristics, the first and third terms on the right-hand
side of (1.3) are a manifestation of the symplectic symmetry type of the family F±(𝑋). More precisely,
one can turn (1.3) into an expansion in descending powers of L using Lemma 3.4 as well as [MV, Lemma
12.14]. The first result in this direction is due to Yang [Ya], who showed that under the condition 𝜎 < 1

50 ,
we have that

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝔇𝜙 (𝐾) = 𝜙(0) − 𝜙(0)
2

+ 𝑜𝑋→∞(1). (1.4)

This last condition was relaxed to 𝜎 < 4
41 by Cho–Kim [CK1, CK2]2 and Shankar–Södergren–Templier

[ShST], independently, and corresponds to the admissible values 𝜃 = 7
9 and 𝜔 = 16

9 in (1.1) and (1.2)
(see [TT]). In the recent paper [BTT], Bhargava, Taniguchi and Thorne show that 𝜃 = 2

3 and 𝜔 = 2
3

are admissible and deduce that (1.4) holds as soon as 𝜎 < 2
7 . Theorem 1.2 refines these results by

obtaining a power saving estimate containing lower-order terms for the left-hand side of (1.4). Note,
in particular, that the fourth term on the right-hand side of (1.3) is of order 𝑋 𝜎−1

6 +𝑜 (1) (see once more,
Lemma 3.4).

The Katz–Sarnak heuristics are strongly linked with statistics of eigenvalues of random matrices
and have been successful in predicting the main term in many families. However, this connection does
not encompass lower-order terms. The major tool for making predictions in this direction is the L-
functions Ratios Conjecture of Conrey, Farmer and Zirnbauer [CFZ]. In particular, these predictions
are believed to hold down to an error term of size roughly the inverse of the square root of the size
of the family. As an example, consider the unitary family of Dirichlet L-functions modulo q, in which
the Ratios Conjecture’s prediction is particularly simple. It is shown in [G+] that if 𝜂 is a real even
Schwartz function for which 𝜂 has compact (but arbitrarily large) support, then this conjecture implies the
estimate

1
𝜙(𝑞)

∑
𝜒 mod 𝑞

∑
𝛾𝜒

𝜂
( log 𝑞

2𝜋
𝛾𝜒

)
= 𝜂(0)

(
1 − log(8𝜋𝑒𝛾)

log 𝑞
−

∑
𝑝 |𝑞

log 𝑝
𝑝−1

log 𝑞

)
+
∫ ∞

0

𝜂(0) − 𝜂(𝑡)
𝑞
𝑡
2 − 𝑞−

𝑡
2
𝑑𝑡 + 𝐸 (𝑞),

(1.5)

where 𝜌𝜒 = 1
2 + 𝑖𝛾𝜒 is running through the nontrivial zeros of 𝐿(𝑠, 𝜒) and 𝐸 (𝑞) 	𝜀 𝑞−

1
2+𝜀 . In [FM],

it was shown that this bound on 𝐸 (𝑞) is essentially the best possible, in general, but can be improved
when the support of 𝜂 is small. This last condition also results in improved error terms in various other
families (see, e.g. [M2, M3, FPS1, FPS2, DFS]).

Following the Ratios Conjecture recipe, we can obtain a prediction for the average of 𝔇𝜙 (𝐾) over the
familyF±(𝑋). The resulting conjecture, however, differs from Theorem 1.2 by a term of order 𝑋 𝜎−1

6 +𝑜 (1) ,
which is considerably larger than the expected error term 𝑂 𝜀 (𝑋− 1

2+𝜀). We were able to isolate a specific
step in the argument which could be improved in order to include this additional contribution. More
precisely, modifying Step 4 in [CFZ, Section 5.1], we recover a refined Ratios Conjecture which predicts
a term of order 𝑋 𝜎−1

6 +𝑜 (1) , in agreement with Theorem 1.2.

Theorem 1.4. Let 1
2 ≤ 𝜃 < 5

6 and 𝜔 ≥ 0 be, such that (1.2) holds. Assume Conjecture 4.3 on the average
of shifts of the logarithmic derivative of 𝜁𝐾 (𝑠)/𝜁 (𝑠), as well as the Riemann Hypothesis for 𝜁𝐾 (𝑠), for

2In [CK1], the condition 𝜎 < 4
25 should be corrected to 𝜎 < 4

41 .
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all 𝐾 ∈ F±(𝑋). Let 𝜙 be a real even Schwartz function, such that 𝜙 is compactly supported. Then we
have the estimate

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

∑
𝛾𝐾

𝜙
( 𝐿𝛾𝐾

2𝜋

)
= 𝜙(0)

(
1 + log(4𝜋2𝑒)

𝐿
−

𝐶±
2

5𝐶±
1

𝑋− 1
6

𝐿
+

(𝐶±
2 )

2

5(𝐶±
1 )2

𝑋− 1
3

𝐿

)
+ 1
𝜋

∫ ∞

−∞
𝜙
( 𝐿𝑟

2𝜋

)
Re

(Γ′
±

Γ±
( 1

2 + 𝑖𝑟)
)
𝑑𝑟 − 2

𝐿

∑
𝑝,𝑒

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 )

−
2𝐶±

2 𝑋
− 1

6

𝐶±
1 𝐿

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒

log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
𝛽𝑒 (𝑝) + 𝐽±(𝑋) +𝑂 𝜀 (𝑋 𝜃−1+𝜀),

where 𝐽±(𝑋) is defined in (5.1). If 𝜎 = sup(supp(𝜙)) < 1, then we have the estimate

𝐽±(𝑋) = 𝐶±𝑋− 1
3

∫
R

( 𝑋

(2𝜋𝑒)2

) 𝜉
6
𝜙(𝜉)𝑑𝜉 +𝑂 𝜀 (𝑋

𝜎−1
2 +𝜀), (1.6)

where 𝐶± is a nonzero absolute constant which is defined in (5.7). Otherwise, we have the identity

𝐽±(𝑋) = − 1
𝜋𝑖

∫
( 1

5 )
𝜙
( 𝐿𝑠
2𝜋𝑖

) (
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

)
𝑋−𝑠

Γ±( 1
2 − 𝑠)

Γ±( 1
2 + 𝑠)

𝜁 (1 − 2𝑠) 𝐴3(−𝑠, 𝑠)
1 − 𝑠

𝑑𝑠

− 1
𝜋𝑖

∫
( 1

20 )
𝜙
( 𝐿𝑠
2𝜋𝑖

)𝐶±
2

𝐶±
1
𝑋−𝑠− 1

6
Γ±( 1

2 − 𝑠)
Γ±( 1

2 + 𝑠)
𝜁 (1 − 2𝑠)

{(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) 𝜁 ( 5
6 − 𝑠)

𝜁 ( 5
6 + 𝑠)

𝐴4 (−𝑠, 𝑠)
1 − 6𝑠

5

+
𝐶±

2
𝐶±

1
𝑋− 1

6
𝐴3(−𝑠, 𝑠)

1 − 𝑠

}
𝑑𝑠, (1.7)

where 𝐴3 (−𝑠, 𝑠) and 𝐴4 (−𝑠, 𝑠) are defined in (5.2) and (4.9), respectively.

Remark 1.5. It is interesting to compare Theorem 1.4 with Theorem 1.2, especially when 𝜎 is small.
Indeed, for 𝜎 < 1, the difference between those two evaluations of the one-level density is given by

𝐶±𝑋− 1
3

∫
R

( 𝑋

(2𝜋𝑒)2

) 𝜉
6
𝜙(𝜉)𝑑𝜉 +𝑂 𝜀

(
𝑋
𝜎−1

2 +𝜀 + 𝑋 𝜃−1+𝜎 (𝜔+ 1
2 )+𝜀 ) .

Selecting test functions 𝜙 for which 𝜙 ≥ 0 and𝜎 is positive but arbitrarily small, this shows that no matter
how large 𝜔 is, any admissible 𝜃 < 2

3 in (1.1) and (1.2) would imply that this difference is asymptotic
to 𝐶±𝑋− 1

3
∫
R
( 𝑋
(2𝜋𝑒)2 )

𝜉
6 𝜙(𝜉)𝑑𝜉 
 𝑋− 1

3 . In fact, Roberts’s numerics [Ro] (see also [B]), as well as our
numerical investigations described in Appendix A, indicate that 𝜃 = 1

2 could be admissible in (1.1) and
(1.2). In other words, in this family, the Ratios Conjecture, as well as our refinement (combined with
the assumption of (1.1) and (1.2) for some 𝜃 < 2

3 and 𝜔 ≥ 0), are not sufficient to obtain a prediction
with precision 𝑜(𝑋− 1

3 ). This is surprising, since Conrey, Farmer and Zirnbauer have conjectured this
error term to be of size 𝑂 𝜀 (𝑋− 1

2+𝜀), and this has been confirmed in several important families [M2,
M3, FPS1, FPS2, DFS] (for a restricted set of test functions).

2. Background

Let 𝐾/Q be a non-Galois cubic field, and let 𝐾 be the Galois closure of K over Q. Then, the Dedekind
zeta function of the field K has the decomposition

𝜁𝐾 (𝑠) = 𝜁 (𝑠)𝐿(𝑠, 𝜌, 𝐾/Q),
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where 𝐿(𝑠, 𝜌, 𝐾/Q) is the Artin L-function associated to the two-dimensional representation 𝜌 of
Gal(𝐾/Q) � 𝑆3. The strong Artin conjecture is known for such representations; in this particular case,
we have an explicit underlying cuspidal representation 𝜏 of 𝐺𝐿2/Q, such that 𝐿(𝑠, 𝜌, 𝐾/Q) = 𝐿(𝑠, 𝜏).
For the sake of completeness, let us describe 𝜏 in more detail. Let 𝐹 = Q[

√
𝐷𝐾 ], and let 𝜒 be a

nontrivial character of Gal(𝐾/𝐹) � 𝐶3, considered as a Hecke character of F. Then 𝜏 = IndQ𝐹 𝜒 is a
dihedral representation of central character 𝜒𝐷𝐾 =

(𝐷𝐾
·
)
. When 𝐷𝐾 < 0, 𝜏 corresponds to a weight one

newform of level |𝐷𝐾 | and nebentypus 𝜒𝐷𝐾 , and when 𝐷𝐾 > 0, it corresponds to a weight zero Maass
form (see [DFI, Introduction]). In both cases, we will denote the corresponding automorphic form by
𝑓𝐾 , and, in particular, we have the equality

𝐿(𝑠, 𝜌, 𝐾/Q) = 𝐿(𝑠, 𝑓𝐾 ).

We are interested in the analytic properties of 𝜁𝐾 (𝑠)/𝜁 (𝑠) = 𝐿(𝑠, 𝑓𝐾 ). We have the functional
equation

Λ(𝑠, 𝑓𝐾 ) = Λ(1 − 𝑠, 𝑓𝐾 ). (2.1)

Here, Λ(𝑠, 𝑓𝐾 ) := |𝐷𝐾 | 𝑠2 Γ 𝑓𝐾 (𝑠)𝐿(𝑠, 𝑓𝐾 ) is the completed L-function, with the gamma factor

Γ 𝑓𝐾 (𝑠) =
{
Γ+(𝑠) if 𝐷𝐾 > 0 (that is 𝐾 has signature (3, 0));
Γ−(𝑠) if 𝐷𝐾 < 0 (that is 𝐾 has signature (1, 1)),

where Γ+(𝑠) := 𝜋−𝑠Γ( 𝑠
2 )

2 and Γ−(𝑠) := 𝜋−𝑠Γ( 𝑠
2 )Γ(

𝑠+1
2 ).

The coefficients of 𝐿(𝑠, 𝑓𝐾 ) have an explicit description in terms of the splitting type of the prime
ideal (𝑝)O𝐾 . Writing

𝐿(𝑠, 𝑓𝐾 ) =
∞∑

𝑛=1

𝜆𝐾 (𝑛)
𝑛𝑠

,

we have that

Splitting type (𝑝)O𝐾 𝜆𝐾 (𝑝𝑒)

𝑇1 𝔭1𝔭2𝔭3 𝑒 + 1
𝑇2 𝔭1𝔭2 (1 + (−1)𝑒)/2
𝑇3 𝔭1 𝜏𝑒
𝑇4 𝔭2

1𝔭2 1
𝑇5 𝔭3

1 0

where

𝜏𝑒 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑒 ≡ 0 mod 3;
−1 if 𝑒 ≡ 1 mod 3;
0 if 𝑒 ≡ 2 mod 3.

Furthermore, we find that the coefficients of the reciprocal

1
𝐿(𝑠, 𝑓𝐾 ) =

∞∑
𝑛=1

𝜇𝐾 (𝑛)
𝑛𝑠

(2.2)
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are given by

𝜇𝐾 (𝑝𝑘 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜆𝐾 (𝑝) if 𝑘 = 1;(

𝐷𝐾
𝑝

)
if 𝑘 = 2;

0 if 𝑘 > 2.

The remaining values of 𝜆𝐾 (𝑛) and 𝜇𝐾 (𝑛) are determined by multiplicativity. Finally, the coefficients
of the logarithmic derivative

−𝐿 ′

𝐿
(𝑠, 𝑓𝐾 ) =

∑
𝑛≥1

Λ(𝑛)𝑎𝐾 (𝑛)
𝑛𝑠

are given by

Splitting type (𝑝) 𝑎𝐾 (𝑝𝑒)

𝑇1 𝔭1𝔭2𝔭3 2
𝑇2 𝔭1𝔭2 1 + (−1)𝑒
𝑇3 𝔭1 𝜂𝑒
𝑇4 𝔭2

1𝔭2 1
𝑇5 𝔭3

1 0

where

𝜂𝑒 :=

{
2 if 𝑒 ≡ 0 mod 3;
−1 if 𝑒 ≡ ±1 mod 3.

We now describe explicitly the constants 𝐴±
𝑝 (𝑇) and 𝐵±

𝑝 (𝑇) that appear in (1.2). More generally, let
p = (𝑝1, . . . , 𝑝𝐽 ) be a vector of primes and let k = (𝑘1, . . . , 𝑘𝐽 ) ∈ {1, 2, 3, 4, 5}𝐽 (when 𝐽 = 1, p = (𝑝)
is a scalar, and we will abbreviate by writing p = 𝑝 and similarly for k). We expect that

𝑁±
p (𝑋,𝑇k) : = #{𝐾 ∈ F±(𝑋) : 𝑝 𝑗 has splitting type 𝑇𝑘 𝑗 in 𝐾 (1 ≤ 𝑗 ≤ 𝐽)}

= 𝐴±
p (𝑇k)𝑋 + 𝐵±

p (𝑇k)𝑋
5
6 +𝑂 𝜀 ((𝑝1 · · · 𝑝𝐽 )𝜔𝑋 𝜃+𝜀), (2.3)

for some 𝜔 ≥ 0 and with the same 𝜃 as in (1.1). Here,

𝐴±
p (𝑇k) = 𝐶±

1

𝐽∏
𝑗=1

(𝑥𝑝 𝑗 𝑐𝑘 𝑗 (𝑝 𝑗 )), 𝐵±
p (𝑇k) = 𝐶±

2

𝐽∏
𝑗=1

(𝑦𝑝 𝑗 𝑑𝑘 𝑗 (𝑝 𝑗 )),

𝑥𝑝 :=
(
1 + 1

𝑝
+ 1
𝑝2

)−1
, 𝑦𝑝 :=

1 − 𝑝−
1
3

(1 − 𝑝−
5
3 ) (1 + 𝑝−1)

,

and 𝑐𝑘 (𝑝) and 𝑑𝑘 (𝑝) are defined in the following table:
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k 𝑐𝑘 (𝑝) 𝑑𝑘 (𝑝)

1 1
6

(1+𝑝− 1
3 )3

6

2 1
2

(1+𝑝− 1
3 ) (1+𝑝− 2

3 )
2

3 1
3

(1+𝑝−1 )
3

4 1
𝑝

(1+𝑝− 1
3 )2

𝑝

5 1
𝑝2

(1+𝑝− 1
3 )

𝑝2

Recently, Bhargava, Taniguchi and Thorne [BTT] have shown that the values 𝜃 = 𝜔 = 2
3 are

admissible in (2.3).

3. New lower-order terms in the one-level density

In this section, we shall estimate the one-level density

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝔇𝜙 (𝐾)

assuming the cubic field count (1.2) for some fixed parameters 1
2 ≤ 𝜃 < 5

6 and 𝜔 ≥ 0. Throughout the
paper, we will use the shorthand

𝐿 = log
( 𝑋

(2𝜋𝑒)2

)
.

The starting point of this section is the explicit formula.

Lemma 3.1. Let 𝜙 be a real even Schwartz function whose Fourier transform is compactly supported,
and let 𝐾 ∈ F±(𝑋). We have the formula

𝔇𝜙 (𝐾) =
∑
𝛾𝐾

𝜙
( 𝐿𝛾𝐾

2𝜋

)
=
𝜙(0)
𝐿

log |𝐷𝐾 | + 1
𝜋

∫ ∞

−∞
𝜙
( 𝐿𝑟

2𝜋

)
Re

(Γ′
±

Γ±
( 1

2 + 𝑖𝑟)
)
𝑑𝑟

− 2
𝐿

∞∑
𝑛=1

Λ(𝑛)
√
𝑛

𝜙
( log 𝑛

𝐿

)
𝑎𝐾 (𝑛), (3.1)

where 𝜌𝐾 = 1
2 + 𝑖𝛾𝐾 runs over the nontrivial zeros of 𝐿(𝑠, 𝑓𝐾 ).

Proof. This follows from, for example, [RS, Proposition 2.1], but for the sake of completeness, we
reproduce the proof here. By Cauchy’s integral formula, we have the identity

∑
𝛾𝐾

𝜙
( 𝐿𝛾𝐾

2𝜋

)
=

1
2𝜋𝑖

∫
( 3

2 )
𝜙

(
𝐿

2𝜋𝑖

(
𝑠 − 1

2

))
Λ′

Λ
(𝑠, 𝑓𝐾 )𝑑𝑠

− 1
2𝜋𝑖

∫
(− 1

2 )
𝜙

(
𝐿

2𝜋𝑖

(
𝑠 − 1

2

))
Λ′

Λ
(𝑠, 𝑓𝐾 )𝑑𝑠.
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These integrals converge since 𝜙
(

𝐿
2𝜋𝑖

(
𝑠 − 1

2

))
is rapidly decreasing in vertical strips. For the second

integral, we apply the change of variables 𝑠 → 1 − 𝑠. Then, by the functional equation in the form
Λ′

Λ (1 − 𝑠, 𝑓𝐾 ) = −Λ′

Λ (𝑠, 𝑓𝐾 ) and since 𝜙(−𝑠) = 𝜙(𝑠), we deduce that

∑
𝛾𝐾

𝜙
( 𝐿𝛾𝐾

2𝜋

)
=

1
𝜋𝑖

∫
( 3

2 )
𝜙

(
𝐿

2𝜋𝑖

(
𝑠 − 1

2

))
Λ′

Λ
(𝑠, 𝑓𝐾 )𝑑𝑠.

Next, we insert the identity

Λ′

Λ
(𝑠, 𝑓𝐾 ) = 1

2
log |𝐷𝐾 | +

Γ′
𝑓𝐾

Γ 𝑓𝐾

(𝑠) −
∑
𝑛≥1

Λ(𝑛)𝑎𝐾 (𝑛)
𝑛𝑠

and separate into three integrals. By shifting the contour of integration to Re(𝑠) = 1
2 in the first two

integrals, we obtain the first two terms on the right-hand side of (3.1). The third integral is equal to

−2
∑
𝑛≥1

Λ(𝑛)𝑎𝐾 (𝑛)
√
𝑛

1
2𝜋𝑖

∫
( 3

2 )
𝜙

(
𝐿

2𝜋𝑖

(
𝑠 − 1

2

))
𝑛−(𝑠−

1
2 )𝑑𝑠.

By moving the contour to Re(𝑠) = 1
2 and applying Fourier inversion, we find the third term on the

right-hand side of (3.1) and the claim follows. �

Our goal is to average (3.1) over 𝐾 ∈ F±(𝑋). We begin with the first term.

Lemma 3.2. Assume that (1.1) holds for some 0 ≤ 𝜃 < 5
6 . Then, we have the estimate

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

log |𝐷𝐾 | = log 𝑋 − 1 −
𝐶±

2
5𝐶±

1
𝑋− 1

6 +
(𝐶±

2 )
2

5(𝐶±
1 )2 𝑋

− 1
3 +𝑂 𝜀 (𝑋 𝜃−1+𝜀 + 𝑋− 1

2 ).

Proof. Applying partial summation, we find that

∑
𝐾 ∈F± (𝑋 )

log |𝐷𝐾 | =
∫ 𝑋

1
(log 𝑡)𝑑𝑁±(𝑡) = 𝑁±(𝑋) log 𝑋 − 𝑁±(𝑋) − 1

5
𝐶±

2 𝑋
5
6 +𝑂 𝜀 (𝑋 𝜃+𝜀).

The claimed estimate follows from applying (1.1). �

For the second term of (3.1), we note that it is constant on F±(𝑋). We can now concentrate our
efforts on the average of the third (and most crucial) term

𝐼±(𝑋; 𝜙) := − 2
𝐿𝑁±(𝑋)

∑
𝑝

∞∑
𝑒=1

log 𝑝

𝑝𝑒/2 𝜙
( 𝑒 log 𝑝

𝐿

) ∑
𝐾 ∈F± (𝑋 )

𝑎𝐾 (𝑝𝑒). (3.2)
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It follows from (1.2) that

∑
𝐾 ∈F± (𝑋 )

𝑎𝐾 (𝑝𝑒) = 2𝑁±
𝑝 (𝑋,𝑇1) + (1 + (−1)𝑒)𝑁±

𝑝 (𝑋,𝑇2) + 𝜂𝑒𝑁
±
𝑝 (𝑋,𝑇3) + 𝑁±

𝑝 (𝑋,𝑇4)

= 𝐶±
1 𝑋 (𝜃𝑒 + 1

𝑝 )𝑥𝑝 + 𝐶±
2 𝑋

5
6 (1 + 𝑝−

1
3 ) (𝜅𝑒 (𝑝) + 𝑝−1 + 𝑝−

4
3 )𝑦𝑝 +𝑂 𝜀 (𝑝𝜔𝑋 𝜃+𝜀),

(3.3)

where

𝜃𝑒 := 𝛿2 |𝑒 + 𝛿3 |𝑒 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if 𝑒 ≡ 0 mod 6
0 if 𝑒 ≡ 1 mod 6
1 if 𝑒 ≡ 2 mod 6
1 if 𝑒 ≡ 3 mod 6
1 if 𝑒 ≡ 4 mod 6
0 if 𝑒 ≡ 5 mod 6,

(3.4)

and

𝜅𝑒 (𝑝) := (𝛿2 |𝑒 + 𝛿3 |𝑒) (1 + 𝑝−
2
3 ) + (1 − 𝛿3 |𝑒)𝑝−

1
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 + 2𝑝− 2
3 if 𝑒 ≡ 0 mod 6

𝑝−
1
3 if 𝑒 ≡ 1 mod 6

1 + 𝑝−
1
3 + 𝑝−

2
3 if 𝑒 ≡ 2 mod 6

1 + 𝑝−
2
3 if 𝑒 ≡ 3 mod 6

1 + 𝑝−
1
3 + 𝑝−

2
3 if 𝑒 ≡ 4 mod 6

𝑝−
1
3 if 𝑒 ≡ 5 mod 6.

(3.5)

Here, 𝛿P is equal to 1 if P is true and is equal to 0 otherwise. Note that we have the symmetries 𝜃−𝑒 = 𝜃𝑒

and 𝜅−𝑒 (𝑝) = 𝜅𝑒 (𝑝). With this notation, we prove the following proposition.

Proposition 3.3. Let 𝜙 be a real even Schwartz function for which 𝜙 has compact support, and let
𝜎 := sup(supp(𝜙)). Assume that (1.2) holds for some fixed parameters 0 ≤ 𝜃 < 5

6 and 𝜔 ≥ 0. Then we
have the estimate

𝐼±(𝑋; 𝜙) = − 2
𝐿

∑
𝑝,𝑒

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 )

+ 2
𝐿

(
−
𝐶±

2
𝐶±

1
𝑋− 1

6 +
(𝐶±

2 )
2

(𝐶±
1 )2 𝑋

− 1
3

) ∑
𝑝,𝑒

log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
𝛽𝑒 (𝑝) +𝑂 𝜀 (𝑋 𝜃−1+𝜎 (𝜔+ 1

2 )+𝜀 + 𝑋− 1
2+

𝜎
6 ),

where

𝛽𝑒 (𝑝) := 𝑦𝑝 (1 + 𝑝−
1
3 ) (𝜅𝑒 (𝑝) + 𝑝−1 + 𝑝−

4
3 ) − 𝑥𝑝 (𝜃𝑒 + 1

𝑝 ). (3.6)
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Proof. Applying (3.3), we see that

𝐼±(𝑋; 𝜙) = −
2𝐶±

1 𝑋

𝐿𝑁±(𝑋)
∑

𝑝

∞∑
𝑒=1

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 )

−
2𝐶±

2 𝑋
5
6

𝐿𝑁±(𝑋)
∑

𝑝

∞∑
𝑒=1

𝑦𝑝 (1 + 𝑝−
1
3 ) log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜅𝑒 (𝑝) + 𝑝−1 + 𝑝−

4
3 )

+𝑂 𝜀

(
𝑋 𝜃−1+𝜀

∑
𝑝𝑒≤𝑋𝜎

𝑒≥1

𝑝𝜔− 𝑒2 log 𝑝
)

= − 2
𝐿

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6 +
(𝐶±

2 )
2

(𝐶±
1 )2 𝑋

− 1
3

) ∑
𝑝

∞∑
𝑒=1

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 )

− 2
𝐿

(
𝐶±

2
𝐶±

1
𝑋− 1

6 −
(𝐶±

2 )
2

(𝐶±
1 )2 𝑋

− 1
3

) ∑
𝑝

∞∑
𝑒=1

𝑦𝑝 (1 + 𝑝−
1
3 ) log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜅𝑒 (𝑝) + 𝑝−1 + 𝑝−

4
3 )

+𝑂 𝜀
(
𝑋 𝜃−1+𝜎 (𝜔+ 1

2 )+𝜀 + 𝑋− 1
2+

𝜎
6
)
.

Note, in particular, that the error term 𝑂 (𝑋− 1
2+

𝜎
6 ) bounds the size of the contribution of the first omitted

term in the expansion of 𝑋
5
6 /𝑁±(𝑋) appearing in the second double sum above. Indeed, this follows

since 𝜅1 (𝑝) = 𝑝−
1
3 and

𝑋− 1
2

∑
𝑝≤𝑋𝜎

log 𝑝

𝑝
5
6

= 𝑂
(
𝑋− 1

2+
𝜎
6
)
.

The claimed estimate follows. �

Proof of Theorem 1.2. Combine Lemmas 3.1 and 3.2 with Proposition 3.3. �

We shall estimate 𝐼±(𝑋; 𝜙) further and find asymptotic expansions for the double sums in Proposition
3.3.

Lemma 3.4. Let 𝜙 be a real even Schwartz function whose Fourier transform is compactly supported,
define 𝜎 := sup(supp(𝜙)), and let ℓ be a positive integer. Define

𝐼1(𝑋; 𝜙) :=
∑

𝑝

∞∑
𝑒=1

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 ), 𝐼2(𝑋; 𝜙) :=
∑

𝑝

∞∑
𝑒=1

log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
𝛽𝑒 (𝑝).

Then, we have the asymptotic expansion

𝐼1(𝑋; 𝜙) = 𝜙(0)
4

𝐿 +
ℓ∑

𝑛=0

𝜙 (𝑛) (0)𝜈1(𝑛)
𝑛!

1
𝐿𝑛

+𝑂ℓ

( 1
𝐿ℓ+1

)
,

where

𝜈1 (𝑛) := 𝛿𝑛=0 +
∑

𝑝

∑
𝑒≠2

𝑥𝑝𝑒
𝑛 (log 𝑝)𝑛+1

𝑝
𝑒
2

(𝜃𝑒 + 1
𝑝 ) +

∑
𝑝

2𝑛 (log 𝑝)𝑛+1

𝑝

(
𝑥𝑝

(
1 + 1

𝑝

)
− 1

)
+
∫ ∞

1

2𝑛 (log 𝑢)𝑛−1(log 𝑢 − 𝑛)
𝑢2 R(𝑢)𝑑𝑢
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with R(𝑢) :=
∑

𝑝≤𝑢 log 𝑝 − 𝑢. Moreover, we have the estimate

𝐼2(𝑋; 𝜙) = 𝐿

∫ ∞

0
𝜙(𝑢)𝑒

𝐿𝑢
6 𝑑𝑢 +𝑂

(
𝑋
𝜎
6 𝑒−𝑐0 (𝜎)

√
log 𝑋

)
,

where 𝑐0 (𝜎) > 0 is a constant. Under the Riemann Hypothesis, we have the more precise expansion

𝐼2(𝑋; 𝜙) = 𝐿

∫ ∞

0
𝜙(𝑢)𝑒

𝐿𝑢
6 𝑑𝑢 +

ℓ∑
𝑛=0

𝜙 (𝑛) (0)𝜈2(𝑛)
𝑛!

1
𝐿𝑛

+𝑂ℓ

( 1
𝐿ℓ+1

)
,

where

𝜈2 (𝑛) := 𝛿𝑛=0 +
∑

𝑝

∞∑
𝑒=2

𝑒𝑛 (log 𝑝)𝑛+1𝛽𝑒 (𝑝)
𝑝
𝑒
2

+
∑

𝑝

(log 𝑝)𝑛+1

𝑝
1
2

(
𝛽1 (𝑝) −

1
𝑝

1
3

)
+
∫ ∞

1

(log 𝑢)𝑛−1(5 log 𝑢 − 6𝑛)
6𝑢 11

6
R(𝑢)𝑑𝑢.

Proof. We first split the sums as

𝐼1(𝑋; 𝜙) =
∑

𝑝

log 𝑝

𝑝
𝜙
(2 log 𝑝

𝐿

)
+ 𝐼 ′1(𝑋; 𝜙), 𝐼2(𝑋; 𝜙) =

∑
𝑝

log 𝑝

𝑝
5
6

𝜙
( log 𝑝

𝐿

)
+ 𝐼 ′2(𝑋; 𝜙), (3.7)

where

𝐼 ′1(𝑋; 𝜙) :=
∑

𝑝

∑
𝑒≠2

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 ) +
∑

𝑝

log 𝑝

𝑝

(
𝑥𝑝

(
1 + 1

𝑝

)
− 1

)
𝜙
(2 log 𝑝

𝐿

)
,

𝐼 ′2(𝑋; 𝜙) :=
∑

𝑝

∞∑
𝑒=2

log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
𝛽𝑒 (𝑝) +

∑
𝑝

log 𝑝

𝑝
1
2

𝜙
( log 𝑝

𝐿

) (
𝛽1 (𝑝) −

1
𝑝

1
3

)
. (3.8)

We may also rewrite the sums in (3.7) using partial summation as follows:∑
𝑝

log 𝑝

𝑝
𝜙
(2 log 𝑝

𝐿

)
=
∫ ∞

1

1
𝑢
𝜙
(2 log 𝑢

𝐿

)
𝑑 (𝑢 +R(𝑢))

=
𝜙(0)

4
𝐿 + 𝜙(0) −

∫ ∞

1

(−1
𝑢2 𝜙

(2 log 𝑢
𝐿

)
+ 2
𝑢2𝐿

𝜙′
(2 log 𝑢

𝐿

))
R(𝑢)𝑑𝑢,∑

𝑝

log 𝑝

𝑝
5
6

𝜙
( log 𝑝

𝐿

)
= 𝐿

∫ ∞

0
𝜙(𝑢)𝑒𝐿𝑢/6𝑑𝑢 + 𝜙(0)

−
∫ 𝑋𝜎

1

( −5
6𝑢2 𝜙

( log 𝑢
𝐿

)
+ 1
𝑢2𝐿

𝜙′
( log 𝑢

𝐿

))
𝑢

1
6 R(𝑢)𝑑𝑢. (3.9)

Next, for any ℓ ≥ 1 and |𝑡 | ≤ 𝜎, Taylor’s theorem reads

𝜙(𝑡) =
ℓ∑

𝑛=0

𝜙 (𝑛) (0)
𝑛!

𝑡𝑛 +𝑂ℓ (|𝑡 |ℓ+1), (3.10)

and one has a similar expansion for 𝜙′. The claimed estimates follow from substituting this expression into
(3.8) and (3.9) and evaluating the error term using the prime number theorem R(𝑢) 	 𝑢𝑒−𝑐

√
log 𝑢 . �

We end this section by proving Theorem 1.1.
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Proof of Theorem 1.1. Assume that 𝜃, 𝜔 ≥ 0 are admissible values in (1.2) and are such that 𝜃 +𝜔 < 1
2 .

Let 𝜙 be any real even Schwartz function, such that 𝜙 ≥ 0 and 1 < sup(supp(𝜙)) < ( 5
6 − 𝜃)/( 1

3 + 𝜔);
this is possible thanks to the restriction 𝜃 + 𝜔 < 1

2 . Combining Lemmas 3.1 and 3.2 with Proposition
3.3, we obtain the estimate3

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝔇𝜙 (𝐾) = 𝜙(0)
(
1 + log(4𝜋2𝑒)

𝐿
−

𝐶±
2

5𝐶±
1

𝑋− 1
6

𝐿
+

(𝐶±
2 )

2

5(𝐶±
1 )2

𝑋− 1
3

𝐿

)
+ 1
𝜋

∫ ∞

−∞
𝜙
( 𝐿𝑟

2𝜋

)
Re

(Γ′
±

Γ±
( 1

2 + 𝑖𝑟)
)
𝑑𝑟 − 2

𝐿

∑
𝑝,𝑒

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 )

−
2𝐶±

2 𝑋
− 1

6

𝐶±
1 𝐿

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒

log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
𝛽𝑒 (𝑝) +𝑂 𝜀 (𝑋 𝜃−1+𝜎 (𝜔+ 1

2 )+𝜀 + 𝑋− 1
2+

𝜎
6 ), (3.11)

where 𝜎 = sup(supp(𝜙)).
To bound the integral involving the gamma function in (3.11), we note that Stirling’s formula implies

that for s in any fixed vertical strip minus discs centred at the poles of Γ±(𝑠), we have the estimate

Re
(
Γ′
±

Γ±
(𝑠)

)
= log |𝑠 | +𝑂 (1).

Now, 𝜙(𝑥) 	 |𝑥 |−2, and thus,

1
𝜋

∫ ∞

−∞
𝜙
( 𝐿𝑟

2𝜋

)
Re

(Γ′
±

Γ±
( 1

2 + 𝑖𝑟)
)
𝑑𝑟 	

∫ 1

−1

����𝜙( 𝐿𝑟2𝜋

)����𝑑𝑟 + ∫
|𝑟 | ≥1

log(1 + |𝑟 |)
(𝐿𝑟)2 𝑑𝑟 	 1

𝐿
.

Moreover, Lemma 3.4 implies the estimates

− 2
𝐿

∑
𝑝,𝑒

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 ) 	 1

and

−
2𝐶±

2 𝑋
− 1

6

𝐶±
1 𝐿

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒

log 𝑝

𝑝
𝑒
2

𝜙
( log 𝑝𝑒

𝐿

)
𝛽𝑒 (𝑝)

= −
2𝐶±

2 𝑋
− 1

6

𝐶±
1

∫ ∞

0
𝜙(𝑢)𝑒

𝐿𝑢
6 𝑑𝑢 +𝑂

(
𝑋− 1

6 + 𝑋
𝜎−2

6
)
,

since the Riemann Hypothesis for 𝜁𝐾 (𝑠) implies the Riemann Hypothesis for 𝜁 (𝑠). Combining these
estimates, we deduce that the right-hand side of (3.11) is

≤ −𝐶𝜀𝑋
𝜎−1

6 −𝜀 +𝑂 𝜀 (1 + 𝑋
𝜎−1

6 −𝛿+𝜀 + 𝑋− 1
3+

𝜎
6 ),

where 𝜀 > 0 is arbitrary, 𝐶𝜀 is a positive constant and 𝛿 := 𝜎−1
6 − (𝜃 − 1 + 𝜎(𝜔 + 1

2 )) > 0. However,
for small enough 𝜀, this contradicts the bound

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝔇𝜙 (𝐾) = 𝑂 (log 𝑋),

3This is similar to the Proof of Theorem 1.2. However, since we have a different condition on 𝜃 (that is 𝜃 + 𝜔 < 1
2 ), there is

an additional error term in the current estimate.
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which is a direct consequence of the Riemann Hypothesis for 𝜁𝐾 (𝑠) and the Riemann-von Mangoldt
formula [IK, Theorem 5.31]. �

4. A refined Ratios Conjecture

The celebrated L-functions Ratios Conjecture [CFZ] predicts precise formulas for estimates of averages
of ratios of (products of) L-functions evaluated at points close to the critical line. The conjecture is
presented in the form of a recipe with instructions on how to produce predictions of a certain type in any
family of L-functions. In order to follow the recipe, it is of fundamental importance to have control of
counting functions of the type (1.1) and (2.3) related to the family. The connections between counting
functions, low-lying zeros and the Ratios Conjecture are central in the present investigation.

The Ratios Conjecture has a large variety of applications. Applications to problems about low-lying
zeros first appeared in the work of Conrey and Snaith [CS], where they study the one-level density of
families of quadratic Dirichlet L-functions and quadratic twists of a holomorphic modular form. The
investigation in [CS] has inspired a large amount of work on low-lying zeros in different families (see,
e.g. [M2, M3, HKS, FM, DHP, FPS1, FPS3, MS, CP, W]).

As part of this project, we went through the steps of the Ratios Conjecture recipe with the goal of
estimating the one-level density. We noticed that the resulting estimate does not predict certain terms
in Theorem 1.2. To fix this, we modified [CFZ, Step 4], which is the evaluation of the average of the
coefficients appearing in the approximation of the expression

𝑅(𝛼, 𝛾; 𝑋) :=
1

𝑁±(𝑋)
∑

𝐾 ∈F± (𝑋 )

𝐿
(

1
2 + 𝛼, 𝑓𝐾

)
𝐿
(

1
2 + 𝛾, 𝑓𝐾

) . (4.1)

More precisely, instead of only considering the main term, we kept track of the secondary term in
Lemma 4.1.

We now describe more precisely the steps in the Ratios Conjecture recipe. The first step involves the
approximate functional equation for 𝐿(𝑠, 𝑓𝐾 ), which reads

𝐿(𝑠, 𝑓𝐾 ) =
∑
𝑛<𝑥

𝜆𝐾 (𝑛)
𝑛𝑠

+ |𝐷𝐾 |
1
2−𝑠 Γ±(1 − 𝑠)

Γ±(𝑠)
∑
𝑛<𝑦

𝜆𝐾 (𝑛)
𝑛1−𝑠

+ Error, (4.2)

where 𝑥, 𝑦 are such that 𝑥𝑦  |𝐷𝐾 | (1 + |𝑡 |)2 (this is in analogy with [CS]; see [IK, Theorem 5.3] for a
description of the approximate functional equation of a general L-function). The analysis will be carried
out assuming that the error term can be neglected and that the sums can be completed.

Following [CFZ], we replace the numerator of (4.1) with the approximate functional equation (4.2)
and the denominator of (4.1) with (2.2). We will need to estimate the first sum in (4.2) evaluated at
𝑠 = 1

2 + 𝛼, where | Re(𝛼) | is sufficiently small. This gives the contribution

𝑅1(𝛼, 𝛾; 𝑋) :=
1

𝑁±(𝑋)
∑

𝐾 ∈F± (𝑋 )

∑
ℎ,𝑚

𝜆𝐾 (𝑚)𝜇𝐾 (ℎ)
𝑚

1
2+𝛼ℎ

1
2+𝛾

(4.3)

to (4.1). This infinite sum converges absolutely in the region Re(𝛼) > 1
2 and Re(𝛾) > 1

2 , however, later
in this section, we will provide an analytic continuation to a wider domain. We will also need to evaluate
the contribution of the second sum in (4.2), which is given by

𝑅2(𝛼, 𝛾; 𝑋) :=
1

𝑁±(𝑋)
∑

𝐾 ∈F± (𝑋 )
|𝐷𝐾 |−𝛼

Γ±
(

1
2 − 𝛼

)
Γ±

(
1
2 + 𝛼

) ∑
ℎ,𝑚

𝜆𝐾 (𝑚)𝜇𝐾 (ℎ)
𝑚

1
2−𝛼ℎ

1
2+𝛾

(4.4)
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(Once more, the series converges absolutely for Re(𝛼) < − 1
2 and Re(𝛾) > 1

2 , but we will later provide
an analytic continuation to a wider domain).

A first step in the understanding of the 𝑅 𝑗 (𝛼, 𝛾; 𝑋) will be achieved using the following precise
evaluation of the expected value of 𝜆𝐾 (𝑚)𝜇𝐾 (ℎ).

Lemma 4.1. Let 𝑚, ℎ ∈ N, and let 1
2 ≤ 𝜃 < 5

6 and 𝜔 ≥ 0 be, such that (2.3) holds. Assume that h is
cubefree. We have the estimate

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝜆𝐾 (𝑚)𝜇𝐾 (ℎ)

=
∏

𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ
𝑓 (𝑒, 𝑠, 𝑝)𝑥𝑝 +

( ∏
𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ

𝑔(𝑒, 𝑠, 𝑝)𝑦𝑝 −
∏

𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ
𝑓 (𝑒, 𝑠, 𝑝)𝑥𝑝

)
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

)
+𝑂 𝜀

( ∏
𝑝 |ℎ𝑚,𝑝𝑒 ‖𝑚

(
(2𝑒 + 5)𝑝𝜔 )

𝑋 𝜃−1+𝜀

)
,

where

𝑓 (𝑒, 0, 𝑝) :=
𝑒 + 1

6
+ 1 + (−1)𝑒

4
+ 𝜏𝑒

3
+ 1
𝑝

;

𝑓 (𝑒, 1, 𝑝) := − 𝑒 + 1
3

+ 𝜏𝑒

3
− 1

𝑝
;

𝑓 (𝑒, 2, 𝑝) :=
𝑒 + 1

6
− 1 + (−1)𝑒

4
+ 𝜏𝑒

3
;

𝑔(𝑒, 0, 𝑝) :=
(𝑒 + 1) (1 + 𝑝−

1
3 )3

6
+ (1 + (−1)𝑒) (1 + 𝑝−

1
3 ) (1 + 𝑝−

2
3 )

4

+ 𝜏𝑒 (1 + 𝑝−1)
3

+ (1 + 𝑝−
1
3 )2

𝑝
;

𝑔(𝑒, 1, 𝑝) := − (𝑒 + 1) (1 + 𝑝−
1
3 )3

3
+ 𝜏𝑒 (1 + 𝑝−1)

3
− (1 + 𝑝−

1
3 )2

𝑝
;

𝑔(𝑒, 2, 𝑝) :=
(𝑒 + 1) (1 + 𝑝−

1
3 )3

6
− (1 + (−1)𝑒) (1 + 𝑝−

1
3 ) (1 + 𝑝−

2
3 )

4
+ 𝜏𝑒 (1 + 𝑝−1)

3
.

Proof. We may write 𝑚 =
∏𝐽

𝑗=1 𝑝
𝑒 𝑗
𝑗 and ℎ =

∏𝐽
𝑗=1 𝑝

𝑠 𝑗
𝑗 , where 𝑝1, . . . , 𝑝𝐽 are distinct primes and for

each 𝑗 , 𝑒 𝑗 and 𝑠 𝑗 are nonnegative integers but not both zero. Then we see that∑
𝐾 ∈F± (𝑋 )

𝜆𝐾 (𝑚)𝜇𝐾 (ℎ) =
∑

𝐾 ∈F± (𝑋 )

𝐽∏
𝑗=1

(
𝜆𝐾

(
𝑝

𝑒 𝑗
𝑗

)
𝜇𝐾

(
𝑝

𝑠 𝑗
𝑗

) )
=
∑

k

∑
𝐾 ∈F± (𝑋 )
p: 𝑡 𝑦 𝑝𝑒 𝑇k

𝐽∏
𝑗=1

(
𝜆𝐾

(
𝑝

𝑒 𝑗
𝑗

)
𝜇𝐾

(
𝑝

𝑠 𝑗
𝑗

) )
,

where k = (𝑘1, . . . , 𝑘𝐽 ) runs over {1, 2, 3, 4, 5}𝐽 and p = (𝑝1, . . . , 𝑝𝐽 ). When each 𝑝 𝑗 has splitting
type 𝑇𝑘 𝑗 in K, the values 𝜆𝐾 (𝑝𝑒 𝑗

𝑗 ) and 𝜇𝐾 (𝑝𝑠 𝑗
𝑗 ) depend on 𝑝 𝑗 , 𝑘 𝑗 , 𝑒 𝑗 and 𝑠 𝑗 . Define

𝜂1, 𝑝 𝑗 (𝑘 𝑗 , 𝑒 𝑗 ) := 𝜆𝐾 (𝑝𝑒 𝑗
𝑗 ), 𝜂2, 𝑝 𝑗 (𝑘 𝑗 , 𝑠 𝑗 ) := 𝜇𝐾 (𝑝𝑠 𝑗

𝑗 )

for each 𝑗 ≤ 𝐽 with 𝑝 𝑗 of splitting type 𝑇𝑘 𝑗 in K, as well as

𝜂1,p (k, e) :=
𝐽∏

𝑗=1
𝜂1, 𝑝 𝑗 (𝑘 𝑗 , 𝑒 𝑗 ), 𝜂2,p (k, s) :=

𝐽∏
𝑗=1

𝜂2, 𝑝 𝑗 (𝑘 𝑗 , 𝑠 𝑗 ). (4.5)

https://doi.org/10.1017/fms.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.70


16 P. J. Cho et al.

We see that ∑
𝐾 ∈F± (𝑋 )

𝜆𝐾 (𝑚)𝜇𝐾 (ℎ) =
∑

k
𝜂1,p (k, e)𝜂2,p (k, s)

∑
𝐾 ∈F± (𝑋 )
p: 𝑡 𝑦 𝑝𝑒 𝑇k

1

=
∑

k
𝜂1,p (k, e)𝜂2,p (k, s)𝑁±

p (𝑋,𝑇k),

which by (2.3) is equal to

∑
k

𝜂1,p (k, e)𝜂2,p (k, s)
(
𝐶±

1

𝐽∏
𝑗=1

(𝑥𝑝 𝑗 𝑐𝑘 𝑗 (𝑝 𝑗 ))𝑋 + 𝐶±
2

𝐽∏
𝑗=1

(𝑦𝑝 𝑗 𝑑𝑘 𝑗 (𝑝 𝑗 ))𝑋
5
6 +𝑂 𝜀

( 𝐽∏
𝑗=1

𝑝𝜔
𝑗 𝑋

𝜃+𝜀

))
= 𝐶±

1 𝑋

(∑
k

𝜂1,p (k, e)𝜂2,p(k, s)
𝐽∏

𝑗=1
(𝑥𝑝 𝑗 𝑐𝑘 𝑗 (𝑝 𝑗 ))

)
+ 𝐶±

2 𝑋
5
6

(∑
k

𝜂1,p (k, e)𝜂2,p(k, s)
𝐽∏

𝑗=1
(𝑦𝑝 𝑗 𝑑𝑘 𝑗 (𝑝 𝑗 ))

)
+𝑂 𝜀

(∑
k

|𝜂1,p (k, e)𝜂2,p(k, s) |
𝐽∏

𝑗=1
𝑝𝜔

𝑗 𝑋
𝜃+𝜀

)
.

We can change the last three k-sums into products by (4.5). Doing so, we obtain that the above is equal to

𝐶±
1 𝑋

𝐽∏
𝑗=1

(
𝑥𝑝 𝑗 �̃� (𝑒 𝑗 , 𝑠 𝑗 , 𝑝 𝑗 )

)
+ 𝐶±

2 𝑋
5
6

𝐽∏
𝑗=1

(
𝑦𝑝 𝑗 �̃�(𝑒 𝑗 , 𝑠 𝑗 , 𝑝 𝑗 )

)
+𝑂 𝜀

( 𝐽∏
𝑗=1

(
𝑝𝜔

𝑗 (2𝑒 𝑗 + 5)
)
𝑋 𝜃+𝜀

)
= 𝐶±

1 𝑋
∏

𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ
�̃� (𝑒, 𝑠, 𝑝)𝑥𝑝 + 𝐶±

2 𝑋
5
6

∏
𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ

�̃�(𝑒, 𝑠, 𝑝)𝑦𝑝 +𝑂 𝜀

( 𝐽∏
𝑗=1

(
𝑝𝜔

𝑗 (2𝑒 𝑗 + 5)
)
𝑋 𝜃+𝜀

)
,

where

�̃� (𝑒, 𝑠, 𝑝) :=
5∑

𝑘=1
𝜂1, 𝑝 (𝑘, 𝑒)𝜂2, 𝑝 (𝑘, 𝑠)𝑐𝑘 (𝑝), �̃�(𝑒, 𝑠, 𝑝) :=

5∑
𝑘=1

𝜂1, 𝑝 (𝑘, 𝑒)𝜂2, 𝑝 (𝑘, 𝑠)𝑑𝑘 (𝑝).

A straightforward calculation shows that �̃� (𝑒, 𝑠, 𝑝) = 𝑓 (𝑒, 𝑠, 𝑝) and �̃�(𝑒, 𝑠, 𝑝) = 𝑔(𝑒, 𝑠, 𝑝) (see the
explicit description of the coefficients in Section 2; note that 𝜂2, 𝑝 (𝑘, 0) = 1) and the lemma follows. �

We now proceed with the estimation of 𝑅1(𝛼, 𝛾; 𝑋). Taking into account the two main terms in
Lemma 4.1, we expect that

𝑅1(𝛼, 𝛾; 𝑋) = 𝑅𝑀
1 (𝛼, 𝛾) +

𝐶±
2

𝐶±
1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

)
(𝑅𝑆

1 (𝛼, 𝛾) − 𝑅𝑀
1 (𝛼, 𝛾)) + Error, (4.6)

where

𝑅𝑀
1 (𝛼, 𝛾) :=

∏
𝑝

(
1 +

∑
𝑒≥1

𝑥𝑝 𝑓 (𝑒, 0, 𝑝)
𝑝𝑒 ( 1

2+𝛼)
+
∑
𝑒≥0

𝑥𝑝 𝑓 (𝑒, 1, 𝑝)
𝑝𝑒 ( 1

2+𝛼)+( 1
2+𝛾)

+
∑
𝑒≥0

𝑥𝑝 𝑓 (𝑒, 2, 𝑝)
𝑝𝑒 ( 1

2+𝛼)+2( 1
2+𝛾)

)
,

𝑅𝑆
1 (𝛼, 𝛾) :=

∏
𝑝

(
1 +

∑
𝑒≥1

𝑦𝑝𝑔(𝑒, 0, 𝑝)
𝑝𝑒 ( 1

2+𝛼)
+
∑
𝑒≥0

𝑦𝑝𝑔(𝑒, 1, 𝑝)
𝑝𝑒 ( 1

2+𝛼)+( 1
2+𝛾)

+
∑
𝑒≥0

𝑦𝑝𝑔(𝑒, 2, 𝑝)
𝑝𝑒 ( 1

2+𝛼)+2( 1
2+𝛾)

)
(4.7)
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for Re(𝛼),Re(𝛾) > 1
2 . Since

𝑅𝑀
1 (𝛼, 𝛾) =

∏
𝑝

(
1 + 1

𝑝1+2𝛼
− 1

𝑝1+𝛼+𝛾

+𝑂
( 1
𝑝

3
2+Re(𝛼)

+ 1
𝑝

3
2+3 Re(𝛼)

+ 1
𝑝

3
2+Re(𝛾)

+ 1
𝑝

3
2+Re(2𝛼+𝛾)

+ 1
𝑝

5
2+Re(3𝛼+2𝛾)

))
,

we see that

𝐴3(𝛼, 𝛾) :=
𝜁 (1 + 𝛼 + 𝛾)
𝜁 (1 + 2𝛼) 𝑅𝑀

1 (𝛼, 𝛾) (4.8)

is analytically continued to the region4 Re(𝛼),Re(𝛾) > − 1
6 . Similarly, from the estimates∑

𝑒≥1

𝑦𝑝𝑔(𝑒, 0, 𝑝)
𝑝𝑒 ( 1

2+𝛼)
=

1
𝑝

5
6+𝛼

+ 1
𝑝1+2𝛼

+𝑂
( 1
𝑝Re(𝛼)+ 3

2
+ 1
𝑝2 Re(𝛼)+ 4

3
+ 1
𝑝3 Re(𝛼)+ 3

2

)
,∑

𝑒≥0

𝑦𝑝𝑔(𝑒, 1, 𝑝)
𝑝𝑒 ( 1

2+𝛼)+( 1
2+𝛾)

= − 1
𝑝

5
6+𝛾

− 1
𝑝1+𝛼+𝛾

+𝑂
( 1
𝑝

4
3+Re(𝛼+𝛾)

)
,∑

𝑒≥0

𝑦𝑝𝑔(𝑒, 2, 𝑝)
𝑝𝑒 ( 1

2+𝛼)+2( 1
2+𝛾)

= 𝑂
( 1
𝑝

3
2+Re(𝛼+2𝛾)

)
,

we deduce that

𝐴4 (𝛼, 𝛾) :=
𝜁 ( 5

6 + 𝛾)𝜁 (1 + 𝛼 + 𝛾)
𝜁 ( 5

6 + 𝛼)𝜁 (1 + 2𝛼)
𝑅𝑆

1 (𝛼, 𝛾) (4.9)

is analytic in the region Re(𝛼),Re(𝛾) > − 1
6 . Note that by their defining product formulas, we have the

bounds

𝐴3(𝛼, 𝛾) = 𝑂 𝜀 (1), 𝐴4(𝛼, 𝛾) = 𝑂 𝜀 (1) (4.10)

for Re(𝛼),Re(𝛾) ≥ − 1
6 + 𝜀 > − 1

6 . Using this notation, (4.6) takes the form

𝑅1 (𝛼, 𝛾; 𝑋) = 𝜁 (1 + 2𝛼)
𝜁 (1 + 𝛼 + 𝛾)

(
𝐴3(𝛼, 𝛾) +

𝐶±
2

𝐶±
1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ( 𝜁 ( 5
6 + 𝛼)

𝜁 ( 5
6 + 𝛾)

𝐴4(𝛼, 𝛾) − 𝐴3(𝛼, 𝛾)
))

+ Error.

The above computation is sufficient in order to obtain a conjectural evaluation of the average (4.3).
However, our goal is to evaluate the one-level density through the average of 𝐿′

𝐿 ( 1
2 + 𝑟, 𝑓𝐾 ); therefore,

it is necessary to also compute the partial derivative 𝜕
𝜕𝛼𝑅1(𝛼, 𝛾; 𝑋) |𝛼=𝛾=𝑟 . To do so, we need to make

sure that the error term stays small after a differentiation. This is achieved by applying Cauchy’s integral
formula for the derivative

𝑓 ′(𝑎) = 1
2𝜋𝑖

∫
|𝑧−𝑎 |=𝜅

𝑓 (𝑧)
(𝑧 − 𝑎)2 𝑑𝑧

4To see this, write 𝜁 (1+𝛼+𝛾)
𝜁 (1+2𝛼) as an Euler product and expand out the triple product in (4.8). The resulting expression will

converge in the stated region.

https://doi.org/10.1017/fms.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.70


18 P. J. Cho et al.

(valid for all small enough 𝜅 > 0) and bounding the integrand using the approximation for 𝑅1 (𝛼, 𝛾; 𝑋)
above. As for the main terms, one can differentiate them term by term and obtain the expected approxi-
mation

𝜕

𝜕𝛼
𝑅1(𝛼, 𝛾; 𝑋)

���
𝛼=𝛾=𝑟

= 𝐴3,𝛼 (𝑟, 𝑟) +
𝜁 ′

𝜁
(1 + 2𝑟)𝐴3(𝑟, 𝑟) +

𝐶±
2

𝐶±
1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

)
×

(
𝐴4,𝛼 (𝑟, 𝑟) +

𝜁 ′

𝜁
( 5

6 + 𝑟)𝐴4(𝑟, 𝑟) − 𝐴3,𝛼 (𝑟, 𝑟) +
𝜁 ′

𝜁
(1 + 2𝑟) (𝐴4(𝑟, 𝑟) − 𝐴3(𝑟, 𝑟))

)
+ Error, (4.11)

where 𝐴3,𝛼 (𝑟, 𝑟) = 𝜕
𝜕𝛼 𝐴3(𝛼, 𝛾)

���
𝛼=𝛾=𝑟

and 𝐴4,𝛼 (𝑟, 𝑟) = 𝜕
𝜕𝛼 𝐴4(𝛼, 𝛾)

���
𝛼=𝛾=𝑟

.

Now, from the definition of 𝑓 (𝑒, 𝑗 , 𝑝) and 𝑔(𝑒, 𝑗 , 𝑝) (see Lemma 4.1) as well as (3.4) and (3.5), we
have

𝑓 (1, 0, 𝑝) + 𝑓 (0, 1, 𝑝) = 𝑔(1, 0, 𝑝) + 𝑔(0, 1, 𝑝) = 0,
𝑓 (𝑒, 0, 𝑝) + 𝑓 (𝑒 − 1, 1, 𝑝) + 𝑓 (𝑒 − 2, 2, 𝑝) = 𝑔(𝑒, 0, 𝑝) + 𝑔(𝑒 − 1, 1, 𝑝) + 𝑔(𝑒 − 2, 2, 𝑝) = 0,

𝑓 (𝑒, 0, 𝑝) − 𝑓 (𝑒 − 2, 2, 𝑝) = 𝜃𝑒 + 𝑝−1,

𝑔(𝑒, 0, 𝑝) − 𝑔(𝑒 − 2, 2, 𝑝) = (1 + 𝑝−
1
3 ) (𝜅𝑒 (𝑝) + 𝑝−1 + 𝑝−

4
3 ).

By the above identities and the definition (4.7), we deduce that

𝑅𝑀
1 (𝑟, 𝑟) = 𝐴3(𝑟, 𝑟) = 𝑅𝑆

1 (𝑟, 𝑟) = 𝐴4(𝑟, 𝑟) = 1.

It follows that for Re(𝑟) > 1
2 ,

𝑅𝑀
1,𝛼 (𝑟, 𝑟) =

𝑅𝑀
1,𝛼 (𝑟, 𝑟)
𝑅𝑀

1 (𝑟, 𝑟)
=

𝜕

𝜕𝛼
log 𝑅𝑀

1 (𝛼, 𝛾)
����
𝛼=𝛾=𝑟

=
∑

𝑝

(
−
𝑥𝑝 log 𝑝

𝑝
1
2+𝑟

𝑓 (1, 0, 𝑝) −
∑
𝑒≥2

𝑥𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

(
𝑓 (𝑒, 0, 𝑝) − 𝑓 (𝑒 − 2, 2, 𝑝)

))
+
∑

𝑝

(
−
∑
𝑒≥2

𝑥𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

(𝑒 − 1)
(
𝑓 (𝑒, 0, 𝑝) + 𝑓 (𝑒 − 1, 1, 𝑝) + 𝑓 (𝑒 − 2, 2, 𝑝)

))
= −

∑
𝑝

∑
𝑒≥1

𝑥𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

(
𝜃𝑒 +

1
𝑝

)
and

𝑅𝑆
1,𝛼 (𝑟, 𝑟) =

∑
𝑝

(
−
𝑦𝑝 log 𝑝

𝑝
1
2+𝑟

𝑔(1, 0, 𝑝) −
∑
𝑒≥2

𝑦𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

(
𝑔(𝑒, 0, 𝑝) − 𝑔(𝑒 − 2, 2, 𝑝)

))
+
∑

𝑝

(
−
∑
𝑒≥2

𝑦𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

(𝑒 − 1)
(
𝑔(𝑒, 0, 𝑝) + 𝑔(𝑒 − 1, 1, 𝑝) + 𝑔(𝑒 − 2, 2, 𝑝)

))
= −

∑
𝑝

∑
𝑒≥1

𝑦𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

(
1 + 𝑝−

1
3
) (
𝜅𝑒 (𝑝) + 𝑝−1 + 𝑝−

4
3
)

= −
∑

𝑝

∑
𝑒≥1

log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

(
𝛽𝑒 (𝑝) + 𝑥𝑝

(
𝜃𝑒 +

1
𝑝

))
,
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by (3.6). Thus, we have

𝐴3,𝛼 (𝑟, 𝑟) = 𝑅𝑀
1,𝛼 (𝑟, 𝑟) −

𝜁 ′

𝜁
(1 + 2𝑟) = −

∑
𝑝,𝑒≥1

(
𝜃𝑒 +

1
𝑝

) 𝑥𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

− 𝜁 ′

𝜁
(1 + 2𝑟)

and

𝐴4,𝛼 (𝑟, 𝑟) − 𝐴3,𝛼 (𝑟, 𝑟) = −
∑

𝑝,𝑒≥1

(𝛽𝑒 (𝑝) − 𝑝−
𝑒
3 ) log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

, (4.12)

which are now valid in the extended region Re(𝑟) > 0. Coming back to (4.11), we deduce that

𝜕

𝜕𝛼
𝑅1 (𝛼, 𝛾; 𝑋)

���
𝛼=𝛾=𝑟

= 𝐴3,𝛼 (𝑟, 𝑟) +
𝜁 ′

𝜁
(1 + 2𝑟)

+
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) (
𝐴4,𝛼 (𝑟, 𝑟) − 𝐴3,𝛼 (𝑟, 𝑟) +

𝜁 ′

𝜁
( 5

6 + 𝑟)
)
+ Error

= −
∑

𝑝,𝑒≥1

(
𝜃𝑒 +

1
𝑝

) 𝑥𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

−
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒≥1

(𝛽𝑒 (𝑝) − 𝑝−
𝑒
3 ) log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

+
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) 𝜁 ′
𝜁
( 5

6 + 𝑟) + Error,

where the second equality is valid in the region Re(𝑟) > 0.
We now move to 𝑅2(𝛼, 𝛾; 𝑋). We recall that

𝑅2(𝛼, 𝛾; 𝑋) = 1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

|𝐷𝐾 |−𝛼
Γ±( 1

2 − 𝛼)
Γ±( 1

2 + 𝛼)

∑
ℎ,𝑚

𝜆𝐾 (𝑚)𝜇𝐾 (ℎ)
𝑚

1
2−𝛼ℎ

1
2+𝛾

, (4.13)

and the Ratios Conjecture recipe tells us that we should replace 𝜆𝐾 (𝑚)𝜇𝐾 (ℎ) with its average. However,
a calculation involving Lemma 4.1 suggests that the terms |𝐷𝐾 |−𝛼 and 𝜆𝐾 (𝑚)𝜇𝐾 (ℎ) have nonnegligible
covariance. To take this into account, we substitute this step with the use of the following corollary of
Lemma 4.1.

Corollary 4.2. Let 𝑚, ℎ ∈ N, and let 1
2 ≤ 𝜃 < 5

6 and 𝜔 ≥ 0 be, such that (2.3) holds. For 𝛼 ∈ C with
0 < Re(𝛼) < 1

2 , we have the estimate

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

|𝐷𝐾 |−𝛼𝜆𝐾 (𝑚)𝜇𝐾 (ℎ) = 𝑋−𝛼

1 − 𝛼

∏
𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ

𝑓 (𝑒, 𝑠, 𝑝)𝑥𝑝

+ 𝑋− 1
6−𝛼

(
1

1 − 6𝛼
5

∏
𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ

𝑔(𝑒, 𝑠, 𝑝)𝑦𝑝 − 1
1 − 𝛼

∏
𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ

𝑓 (𝑒, 𝑠, 𝑝)𝑥𝑝

)
𝐶±

2
𝐶±

1

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

)
+𝑂 𝜀

(
(1 + |𝛼 |)

∏
𝑝 |ℎ𝑚,𝑝𝑒 ‖𝑚

(
(2𝑒 + 5)𝑝𝜔 )

𝑋 𝜃−1−Re(𝛼)+𝜀

)
.
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Proof. This follows from applying Lemma 4.1 and (1.1) to the identity∑
𝐾 ∈F± (𝑋 )

|𝐷𝐾 |−𝛼𝜆𝐾 (𝑚)𝜇𝐾 (ℎ) =
∫ 𝑋

1
𝑢−𝛼𝑑

( ∑
𝐾 ∈F± (𝑢)

𝜆𝐾 (𝑚)𝜇𝐾 (ℎ)
)

= 𝑋−𝛼
∑

𝐾 ∈F± (𝑋 )
𝜆𝐾 (𝑚)𝜇𝐾 (ℎ) + 𝛼

∫ 𝑋

1
𝑢−𝛼−1

( ∑
𝐾 ∈F± (𝑢)

𝜆𝐾 (𝑚)𝜇𝐾 (ℎ)
)
𝑑𝑢.

�

Applying this lemma, we deduce the following heuristic approximation of 𝑅2 (𝛼, 𝛾; 𝑋):

Γ±( 1
2 − 𝛼)

Γ±( 1
2 + 𝛼)

∑
ℎ,𝑚

1
𝑚

1
2−𝛼ℎ

1
2+𝛾

{
𝑋−𝛼

1 − 𝛼

∏
𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ

𝑓 (𝑒, 𝑠, 𝑝)𝑥𝑝

+ 𝑋− 1
6−𝛼

𝐶±
2

𝐶±
1

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ( 1
1 − 6𝛼

5

∏
𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ

𝑔(𝑒, 𝑠, 𝑝)𝑦𝑝 − 1
1 − 𝛼

∏
𝑝𝑒 ‖𝑚,𝑝𝑠 ‖ℎ

𝑓 (𝑒, 𝑠, 𝑝)𝑥𝑝

)}
=
Γ±( 1

2 − 𝛼)
Γ±( 1

2 + 𝛼)

{
𝑋−𝛼

𝑅𝑀
1 (−𝛼, 𝛾)

1 − 𝛼
+ 𝑋− 1

6−𝛼
𝐶±

2
𝐶±

1

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) (𝑅𝑆
1 (−𝛼, 𝛾)
1 − 6𝛼

5
−

𝑅𝑀
1 (−𝛼, 𝛾)

1 − 𝛼

)}
=
Γ±( 1

2 − 𝛼)
Γ±( 1

2 + 𝛼)
𝜁 (1 − 2𝛼)

𝜁 (1 − 𝛼 + 𝛾)

{
𝑋−𝛼 𝐴3(−𝛼, 𝛾)

1 − 𝛼

+ 𝑋− 1
6−𝛼

𝐶±
2

𝐶±
1

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ( 𝐴4 (−𝛼, 𝛾)
1 − 6𝛼

5

𝜁 ( 5
6 − 𝛼)

𝜁 ( 5
6 + 𝛾)

− 𝐴3 (−𝛼, 𝛾)
1 − 𝛼

)}
.

If Re(𝑟) is positive and small enough, then we expect that

𝜕

𝜕𝛼
𝑅2(𝛼, 𝛾; 𝑋)

���
𝛼=𝛾=𝑟

= −
Γ±( 1

2 − 𝑟)
Γ±( 1

2 + 𝑟)
𝜁 (1 − 2𝑟)

{
𝑋−𝑟 𝐴3 (−𝑟, 𝑟)

1 − 𝑟

+ 𝑋− 1
6−𝑟

𝐶±
2

𝐶±
1

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ( 𝜁 ( 5
6 − 𝑟)

𝜁 ( 5
6 + 𝑟)

𝐴4(−𝑟, 𝑟)
1 − 6𝑟

5
− 𝐴3(−𝑟, 𝑟)

1 − 𝑟

)}
+ Error.

We arrive at the following conjecture.

Conjecture 4.3. Let 1
2 ≤ 𝜃 < 5

6 and 𝜔 ≥ 0 be, such that (2.3) holds. There exists 0 < 𝛿 < 1
6 , such that

for any fixed 𝜀 > 0 and for 𝑟 ∈ C with 1
𝐿 	 Re(𝑟) < 𝛿 and |𝑟 | ≤ 𝑋

𝜀
2 ,

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝐿 ′( 1
2 + 𝑟, 𝑓𝐾 )

𝐿( 1
2 + 𝑟, 𝑓𝐾 )

= −
∑

𝑝,𝑒≥1

(
𝜃𝑒 +

1
𝑝

) 𝑥𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

−
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒≥1

(𝛽𝑒 (𝑝) − 𝑝−
𝑒
3 ) log 𝑝

𝑝𝑒 ( 1
2+𝑟 )

+
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) 𝜁 ′
𝜁
( 5

6 + 𝑟) − 𝑋−𝑟
Γ±( 1

2 − 𝑟)
Γ±( 1

2 + 𝑟)
𝜁 (1 − 2𝑟) 𝐴3 (−𝑟, 𝑟)

1 − 𝑟

−
𝐶±

2
𝐶±

1
𝑋−𝑟− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) Γ±( 1
2 − 𝑟)

Γ±( 1
2 + 𝑟)

𝜁 (1 − 2𝑟)
( 𝜁 ( 5

6 − 𝑟)
𝜁 ( 5

6 + 𝑟)
𝐴4(−𝑟, 𝑟)

1 − 6𝑟
5

− 𝐴3(−𝑟, 𝑟)
1 − 𝑟

)
+𝑂 𝜀 (𝑋 𝜃−1+𝜀).

(4.14)

Note that the two sums on the right-hand side are absolutely convergent.
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Traditionally, when applying the Ratios Conjecture recipe, one has to restrict the real part of the
variable r to small enough positive values. For example, in the family of quadratic Dirichlet L-functions
[CS, FPS3], one requires that 1

log 𝑋 	 Re(𝑟) < 1
4 . This ensures that one is far enough from a pole for

the expression in the right-hand side. In the current situation, we will see that the term involving 𝑋−𝑟− 1
6

has a pole at 𝑠 = 1
6 .

Proposition 4.4. Assume Conjecture 4.3 and the Riemann Hypothesis for 𝜁𝐾 (𝑠) for all 𝐾 ∈ F±(𝑋), and
let 𝜙 be a real even Schwartz function, such that 𝜙 is compactly supported. For any constant 0 < 𝑐 < 1

6 ,
we have that

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

∑
𝛾𝐾

𝜙
( 𝐿𝛾𝐾

2𝜋

)
= 𝜙(0)

(
1 + log(4𝜋2𝑒)

𝐿
−

𝐶±
2

5𝐶±
1

𝑋− 1
6

𝐿
+

(𝐶±
2 )

2

5(𝐶±
1 )2

𝑋− 1
3

𝐿

)
+ 1
𝜋

∫ ∞

−∞
𝜙

(
𝐿𝑟

2𝜋

)
Re

(Γ′
±

Γ±
( 1

2 + 𝑖𝑟)
)
𝑑𝑟 − 2

𝐿

∑
𝑝,𝑒

𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙

(
log 𝑝𝑒

𝐿

)
(𝜃𝑒 + 1

𝑝 )

−
2𝐶±

2 𝑋
− 1

6

𝐶±
1 𝐿

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒

log 𝑝

𝑝
𝑒
2

𝜙

(
log 𝑝𝑒

𝐿

)
(𝛽𝑒 (𝑝) − 𝑝−

𝑒
3 )

− 1
𝜋𝑖

∫
(𝑐)

𝜙
( 𝐿𝑠
2𝜋𝑖

) {
−
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) 𝜁 ′
𝜁
( 5

6 + 𝑠) + 𝑋−𝑠
Γ±( 1

2 − 𝑠)
Γ±( 1

2 + 𝑠)
𝜁 (1 − 2𝑠) 𝐴3(−𝑠, 𝑠)

1 − 𝑠

+
𝐶±

2
𝐶±

1
𝑋−𝑠− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) Γ±( 1
2 − 𝑠)

Γ±( 1
2 + 𝑠)

𝜁 (1 − 2𝑠)
( 𝜁 ( 5

6 − 𝑠)
𝜁 ( 5

6 + 𝑠)
𝐴4(−𝑠, 𝑠)

1 − 6𝑠
5

− 𝐴3(−𝑠, 𝑠)
1 − 𝑠

)}
𝑑𝑠

+𝑂 𝜀 (𝑋 𝜃−1+𝜀). (4.15)

Proof. By the residue theorem, we have the identity

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝔇𝜙 (𝐾) =
1

2𝜋𝑖

(∫
( 1
𝐿 )

−
∫
(− 1
𝐿 )

)
1

𝑁±(𝑋)
∑

𝐾 ∈F± (𝑋 )

𝐿 ′(𝑠 + 1
2 , 𝑓𝐾 )

𝐿(𝑠 + 1
2 , 𝑓𝐾 )

𝜙
( 𝐿𝑠
2𝜋𝑖

)
𝑑𝑠. (4.16)

Under Conjecture 4.3 and well-known arguments (see, e.g. [FPS3, Section 3.2]), the part of this sum
involving the first integral is equal to

− 1
2𝜋𝑖

∫
( 1
𝐿 )

𝜙
( 𝐿𝑠
2𝜋𝑖

) { ∑
𝑝,𝑒≥1

(
𝜃𝑒 +

1
𝑝

) 𝑥𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑠)

+
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒≥1

(𝛽𝑒 (𝑝) − 𝑝−
𝑒
3 ) log 𝑝

𝑝𝑒 ( 1
2+𝑠)

−
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) 𝜁 ′
𝜁
( 5

6 + 𝑠) + 𝑋−𝑠
Γ±( 1

2 − 𝑠)
Γ±( 1

2 + 𝑠)
𝜁 (1 − 2𝑠) 𝐴3(−𝑠, 𝑠)

1 − 𝑠

+
𝐶±

2
𝐶±

1
𝑋−𝑠− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) Γ±( 1
2 − 𝑠)

Γ±( 1
2 + 𝑠)

𝜁 (1 − 2𝑠)
( 𝜁 ( 5

6 − 𝑠)
𝜁 ( 5

6 + 𝑠)
𝐴4 (−𝑠, 𝑠)

1 − 6𝑠
5

− 𝐴3(−𝑠, 𝑠)
1 − 𝑠

)}
𝑑𝑠

+𝑂 𝜀 (𝑋 𝜃−1+𝜀),

where we used the bounds (4.10) and

𝜙
( 𝐿𝑠
2𝜋𝑖

)
=

(−1)ℓ

𝐿ℓ 𝑠ℓ

∫
R

𝑒𝐿 Re(𝑠)𝑥𝑒𝑖𝐿 Im(𝑠)𝑥𝜙 (ℓ) (𝑥)𝑑𝑥 	ℓ
𝑒𝐿 | Re(𝑠) | sup(supp(𝜙))

𝐿ℓ |𝑠 |ℓ
(4.17)

for every integer ℓ > 0, which is decaying on the line Re(𝑠) = 1
𝐿 . We may also shift the contour of

integration to the line Re(𝑠) = 𝑐 with 0 < 𝑐 < 1
6 .
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For the second integral in (4.16) (over the line Re(𝑠) = − 1
𝐿 ), we treat it as follows. By the functional

equation (2.1), we have

− 1
2𝜋𝑖

∫
(− 1
𝐿 )

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝐿 ′(𝑠 + 1
2 , 𝑓𝐾 )

𝐿(𝑠 + 1
2 , 𝑓𝐾 )

𝜙
( 𝐿𝑠
2𝜋𝑖

)
𝑑𝑠

=
1

2𝜋𝑖

∫
( 1
𝐿 )

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

𝐿 ′(𝑠 + 1
2 , 𝑓𝐾 )

𝐿(𝑠 + 1
2 , 𝑓𝐾 )

𝜙
( 𝐿𝑠
2𝜋𝑖

)
𝑑𝑠

+ 1
2𝜋𝑖

∫
(− 1
𝐿 )

1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

(
log |𝐷𝐾 | +

Γ′
±

Γ±
( 1

2 + 𝑠) +
Γ′
±

Γ±
( 1

2 − 𝑠)
)
𝜙
( 𝐿𝑠
2𝜋𝑖

)
𝑑𝑠.

The first integral on the right-hand side is identically equal to the integral that was just evaluated in the
first part of this proof. As for the second, by shifting the contour to the line Re(𝑠) = 0, we find that it
equals

��� 1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

log |𝐷𝐾 | !" 1
2𝜋𝑖

∫
(0)

𝜙
( 𝐿𝑠
2𝜋𝑖

)
𝑑𝑠 + 1

2𝜋𝑖

∫
(0)

(
Γ′
±

Γ±
( 1

2 + 𝑠) +
Γ′
±

Γ±
( 1

2 − 𝑠)
)
𝜙
( 𝐿𝑠
2𝜋𝑖

)
𝑑𝑠

=
��� 1
𝑁±(𝑋)

∑
𝐾 ∈F± (𝑋 )

log |𝐷𝐾 | !"𝜙(0)𝐿
+ 1
𝜋

∫ ∞

−∞
𝜙
( 𝐿𝑟

2𝜋

)
Re

(
Γ′
±

Γ±
( 1

2 + 𝑖𝑟)
)
𝑑𝑟.

By applying Lemma 3.2 to the first term, we find the leading terms on the right-hand side of (4.15).
Finally, by absolute convergence, we have the identity

1
2𝜋𝑖

∫
(𝑐)

𝜙
( 𝐿𝑠
2𝜋𝑖

) ∑
𝑝,𝑒≥1

(
𝜃𝑒 +

1
𝑝

) 𝑥𝑝 log 𝑝

𝑝𝑒 ( 1
2+𝑠)

𝑑𝑠 =
∑

𝑝,𝑒≥1

(
𝜃𝑒 +

1
𝑝

) 𝑥𝑝 log 𝑝

𝑝
𝑒
2

1
2𝜋𝑖

∫
(𝑐)

𝜙
( 𝐿𝑠
2𝜋𝑖

)
𝑝−𝑒𝑠𝑑𝑠

=
1
𝐿

∑
𝑝,𝑒≥1

(
𝜃𝑒 +

1
𝑝

) 𝑥𝑝 log 𝑝

𝑝
𝑒
2

𝜙
( 𝑒 log 𝑝

𝐿

)
,

since the contour of the inner integral can be shifted to the line Re(𝑠) = 0. The same argument works
for the term involving 𝛽𝑒 (𝑝) − 𝑝−

𝑒
3 . Hence, the proposition follows. �

5. Analytic continuation of 𝐴3(−𝑠, 𝑠) and 𝐴4(−𝑠, 𝑠)

The goal of this section is to prove Theorem 1.4. To do so, we will need to estimate some of the terms
in (4.15), namely,

𝐽±(𝑋) :=
2𝐶±

2 𝑋
− 1

6

𝐶±
1 𝐿

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒

log 𝑝

𝑝
5𝑒
6

𝜙

(
log 𝑝𝑒

𝐿

)
− 1

𝜋𝑖

∫
(𝑐)

𝜙
( 𝐿𝑠
2𝜋𝑖

) {
−
𝐶±

2
𝐶±

1
𝑋− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) 𝜁 ′
𝜁
( 5

6 + 𝑠) + 𝑋−𝑠
Γ±( 1

2 − 𝑠)
Γ±( 1

2 + 𝑠)
𝜁 (1 − 2𝑠) 𝐴3 (−𝑠, 𝑠)

1 − 𝑠

+
𝐶±

2
𝐶±

1
𝑋−𝑠− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) Γ±( 1
2 − 𝑠)

Γ±( 1
2 + 𝑠)

𝜁 (1 − 2𝑠)
( 𝜁 ( 5

6 − 𝑠)
𝜁 ( 5

6 + 𝑠)
𝐴4(−𝑠, 𝑠)

1 − 6𝑠
5

− 𝐴3(−𝑠, 𝑠)
1 − 𝑠

)}
𝑑𝑠, (5.1)

for 0 < 𝑐 < 1
6 . The idea is to provide an analytic continuation to the Dirichlet series 𝐴3 (−𝑠, 𝑠) and

𝐴4 (−𝑠, 𝑠) in the strip 0 < Re(𝑠) < 1
2 and to shift the contour of integration to the right.
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Lemma 5.1. The product formula

𝐴3(−𝑠, 𝑠) = 𝜁 (3)𝜁 ( 3
2 − 3𝑠)

∏
𝑝

(
1 − 1

𝑝
3
2+𝑠

+ 1
𝑝

5
2−𝑠

− 1
𝑝

5
2−3𝑠

− 1
𝑝3−4𝑠

+ 1
𝑝

9
2−5𝑠

)
(5.2)

provides an analytic continuation of 𝐴3(−𝑠, 𝑠) to | Re(𝑠) | < 1
2 except for a simple pole at 𝑠 = 1

6 with
residue

− 𝜁 (3)
3𝜁 ( 5

3 )𝜁 (2)
.

Proof. From (4.7) and (4.8), we see that in the region | Re(𝑠) | < 1
6 ,

𝐴3(−𝑠, 𝑠) =
∏

𝑝

(
1 − 1

𝑝3

)−1 (
1 − 1

𝑝1−2𝑠

)
×

(
1 + 1

𝑝
+ 1
𝑝2 +

∑
𝑒≥1

𝑓 (𝑒, 0, 𝑝)
𝑝𝑒 ( 1

2−𝑠)
+
∑
𝑒≥0

𝑓 (𝑒, 1, 𝑝)
𝑝𝑒 ( 1

2−𝑠)+ 1
2+𝑠

+
∑
𝑒≥0

𝑓 (𝑒, 2, 𝑝)
𝑝𝑒 ( 1

2−𝑠)+1+2𝑠

)
= 𝜁 (3)

∏
𝑝

(
1 − 1

𝑝1−2𝑠

) (
1
𝑝2 +

∑
𝑒≥0

1
𝑝𝑒 ( 1

2−𝑠)

(
𝑓 (𝑒, 0, 𝑝) + 𝑓 (𝑒, 1, 𝑝)

𝑝
1
2+𝑠

+ 𝑓 (𝑒, 2, 𝑝)
𝑝1+2𝑠

))
. (5.3)

The sum over 𝑒 ≥ 0 on the right-hand side is equal to

1
6

(
1 − 1

𝑝
1
2+𝑠

)2 ∑
𝑒≥0

(𝑒 + 1) 1
𝑝𝑒 ( 1

2−𝑠)
+ 1

2

(
1 − 1

𝑝1+2𝑠

) ∑
𝑒≥0

1 + (−1)𝑒
2

1
𝑝𝑒 ( 1

2−𝑠)

+ 1
3

(
1 + 1

𝑝
1
2+𝑠

+ 1
𝑝1+2𝑠

) ∑
𝑒≥0

𝜏𝑒
1

𝑝𝑒 ( 1
2−𝑠)

+ 1
𝑝

(
1 − 1

𝑝
1
2+𝑠

) ∑
𝑒≥0

1
𝑝𝑒 ( 1

2−𝑠)

=
1
6
·

(
1 − 1

𝑝
1
2 +𝑠

)2

(
1 − 1

𝑝
1
2 −𝑠

)2 + 1
2
·

1 − 1
𝑝1+2𝑠

1 − 1
𝑝1−2𝑠

+ 1
3
·

1 + 1
𝑝

1
2 +𝑠

+ 1
𝑝1+2𝑠

1 + 1
𝑝

1
2 −𝑠

+ 1
𝑝1−2𝑠

+ 1
𝑝
·

1 − 1
𝑝

1
2 +𝑠

1 − 1
𝑝

1
2 −𝑠

. (5.4)

Here, we have used geometric sum identities, for example,

∞∑
𝑘=0

𝜏𝑘𝑥
𝑘 =

∞∑
𝑘=0

𝑥3𝑘 −
∞∑

𝑘=0
𝑥3𝑘+1 =

1 − 𝑥

1 − 𝑥3 =
1

1 + 𝑥 + 𝑥2 (|𝑥 | < 1).

Inserting the expression (5.4) in (5.3) and simplifying, we obtain the identity

𝐴3(−𝑠, 𝑠) = 𝜁 (3)𝜁 ( 3
2 − 3𝑠)

∏
𝑝

(
1 − 1

𝑝
3
2+𝑠

+ 1
𝑝

5
2−𝑠

− 1
𝑝

5
2−3𝑠

− 1
𝑝3−4𝑠

+ 1
𝑝

9
2−5𝑠

)
in the region | Re(𝑠) | < 1/6. Now, this clearly extends to | Re(𝑠) | < 1/2 except for a simple pole at
𝑠 = 1/6 with residue equal to

− 𝜁 (3)
3

∏
𝑝

(
1 − 𝑝−

5
3 − 𝑝−2 + 𝑝−

11
3
)
= − 𝜁 (3)

3
1

𝜁 ( 5
3 )𝜁 (2)

,

as desired. �
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Lemma 5.2. Assuming the Riemann Hypothesis, the function 𝐴4(−𝑠, 𝑠) admits an analytic continuation
to the region | Re(𝑠) | < 1

2 , except for a double pole at 𝑠 = 1
6 . Furthermore, for any 0 < 𝜀 < 1

4 and in the
region | Re(𝑠) | < 1

2 − 𝜀, we have the bound

𝐴4(−𝑠, 𝑠) 	𝜀 (| Im(𝑠) | + 1)
2
3 .

Proof. By (4.7) and (4.9), for | Re(𝑠) | < 1
6 , we have that

𝐴4(−𝑠, 𝑠) =
∏

𝑝

(
1 − 1

𝑝1−2𝑠

) (
1 − 1

𝑝
5
6 −𝑠

) (
1 − 1

𝑝
1
3

)
(
1 − 1

𝑝2

) (
1 − 1

𝑝
5
6 +𝑠

) (
1 − 1

𝑝
5
3

) (
1
𝑝2

(
1 + 1

𝑝
1
3

)
+
∑
𝑒≥0

𝑔(𝑒, 0, 𝑝) + 𝑔 (𝑒,1, 𝑝)

𝑝
1
2 +𝑠

+ 𝑔 (𝑒,2, 𝑝)
𝑝1+2𝑠

𝑝𝑒 ( 1
2−𝑠)

)
,

since 𝑦−1
𝑝 − 𝑔(0, 0, 𝑝) = 1

𝑝2

(
1 + 1

𝑝
1
3

)
. Recalling the definition of 𝑔(𝑒, 𝑗 , 𝑝) (see Lemma 4.1), a straight-

forward evaluation of the infinite sum over 𝑒 ≥ 0 yields the expression

𝐴4 (−𝑠, 𝑠) = 𝜁 (2)𝜁 ( 5
3 )

∏
𝑝

(
1 − 1

𝑝1−2𝑠

) (
1 − 1

𝑝
5
6 −𝑠

) (
1 − 1

𝑝
1
3

)
(
1 − 1

𝑝
5
6 +𝑠

) ( (1 + 1
𝑝

1
3

)3 (
1 − 1

𝑝
1
2 +𝑠

)2

6
(
1 − 1

𝑝
1
2 −𝑠

)2

+

(
1 + 1

𝑝
1
3

) (
1 + 1

𝑝
2
3

) (
1 − 1

𝑝1+2𝑠

)
2
(
1 − 1

𝑝1−2𝑠

) +

(
1 + 1

𝑝

) (
1 + 1

𝑝
1
2 +𝑠

+ 1
𝑝1+2𝑠

)
3
(
1 + 1

𝑝
1
2 −𝑠

+ 1
𝑝1−2𝑠

) +

(
1 + 1

𝑝
1
3

)2 (
1 − 1

𝑝
1
2 +𝑠

)
𝑝
(
1 − 1

𝑝
1
2 −𝑠

) +
1 + 1

𝑝
1
3

𝑝2

)
.

Isolating the ‘divergent terms’ leads us to the identity

𝐴4(−𝑠, 𝑠) =𝜁 (2)𝜁 ( 5
3 )

∏
𝑝

(𝐷4, 𝑝,1 (𝑠) + 𝐴4, 𝑝,1(𝑠)),

where

𝐷4, 𝑝,1 (𝑠) :=
1 − 1

𝑝
5
6 −𝑠

1 − 1
𝑝

5
6 +𝑠

( (1 + 2
𝑝

1
3
− 2

𝑝

) (
1 − 1

𝑝
1
2 +𝑠

)2 (
1 + 1

𝑝
1
2 −𝑠

)
6
(
1 − 1

𝑝
1
2 −𝑠

)
+

1 − 1
𝑝1+2𝑠

2
+

(
1 − 1

𝑝
1
3
+ 1

𝑝

) (
1 + 1

𝑝
1
2 +𝑠

+ 1
𝑝1+2𝑠

) (
1 − 1

𝑝1−2𝑠

)
3
(
1 + 1

𝑝
1
2 −𝑠

+ 1
𝑝1−2𝑠

) + 1
𝑝

)

and

𝐴4, 𝑝,1(𝑠) :=
1 − 1

𝑝
5
6 −𝑠

1 − 1
𝑝

5
6 +𝑠

(
−

(
1 − 1

𝑝
1
2 +𝑠

)2 (
1 + 1

𝑝
1
2 −𝑠

)
6𝑝 4

3

(
1 − 1

𝑝
1
2 −𝑠

) −
1 − 1

𝑝1+2𝑠

2𝑝 4
3

−

(
1 + 1

𝑝
1
2 +𝑠

+ 1
𝑝1+2𝑠

) (
1 − 1

𝑝1−2𝑠

)
3𝑝 4

3

(
1 + 1

𝑝
1
2 −𝑠

+ 1
𝑝1−2𝑠

)
+

(
1 + 1

𝑝
1
3
− 1

𝑝
2
3
− 1

𝑝

) (
1 − 1

𝑝
1
2 +𝑠

) (
1 + 1

𝑝
1
2 −𝑠

)
− 1

𝑝
+ 1
𝑝2

(
1 − 1

𝑝
2
3

) (
1 − 1

𝑝1−2𝑠

))
.
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The term 𝐴4, 𝑝,1(𝑠) is ‘small’ for | Re(𝑠) | < 1
2 , hence, we will concentrate our attention on 𝐷4, 𝑝,1 (𝑠).

We see that

𝐷4, 𝑝,1 (𝑠) =
1 − 1

𝑝
5
6 −𝑠

1 − 1
𝑝

5
6 +𝑠

𝐷4, 𝑝,2 (𝑠) +
1
𝑝
+ 𝐴4, 𝑝,2(𝑠),

where

𝐷4, 𝑝,2 (𝑠) :=

(
1 + 2

𝑝
1
3

) (
1 − 1

𝑝
1
2 +𝑠

)2 (
1 + 1

𝑝
1
2 −𝑠

)
6
(
1 − 1

𝑝
1
2 −𝑠

) +
1 − 1

𝑝1+2𝑠

2

+

(
1 − 1

𝑝
1
3

) (
1 + 1

𝑝
1
2 +𝑠

+ 1
𝑝1+2𝑠

) (
1 − 1

𝑝1−2𝑠

)
3
(
1 + 1

𝑝
1
2 −𝑠

+ 1
𝑝1−2𝑠

)
and

𝐴4, 𝑝,2(𝑠) :=

(
1 − 1

𝑝
5
6 −𝑠

)
𝑝
(
1 − 1

𝑝
5
6 +𝑠

) ( −
(
1 − 1

𝑝
1
2 +𝑠

)2 (
1 + 1

𝑝
1
2 −𝑠

)
3
(
1 − 1

𝑝
1
2 −𝑠

) +

(
1 + 1

𝑝
1
2 +𝑠

+ 1
𝑝1+2𝑠

) (
1 − 1

𝑝1−2𝑠

)
3
(
1 + 1

𝑝
1
2 −𝑠

+ 1
𝑝1−2𝑠

) + 1

)
− 1

𝑝
,

which is also ‘small’. Taking common denominators and expanding out shows that

𝐷4, 𝑝,2 (𝑠) =
1

1 − 1
𝑝

3
2 −3𝑠

(
1 − 1

𝑝
− 1

𝑝
5
6+𝑠

+ 1
𝑝

5
6−𝑠

+ 1
𝑝

4
3−2𝑠

+ 𝐴4, 𝑝,3 (𝑠)
)
,

where

𝐴4, 𝑝,3(𝑠) := − 1
𝑝

3
2−𝑠

+ 1
𝑝

5
2−𝑠

− 1
𝑝

4
3
+ 1
𝑝

11
6 +𝑠

− 1
𝑝

11
6 −𝑠

+ 1
𝑝

7
3
− 1

𝑝
7
3−2𝑠

is ‘small’. More precisely, for | Re(𝑠) | ≤ 1
2 − 𝜀 < 1

2 and 𝑗 = 1, 2, 3, we have the bound 𝐴4, 𝑝, 𝑗 (𝑠) =

𝑂 𝜀

(
1

𝑝1+𝜀

)
. Therefore,

𝐴4(−𝑠, 𝑠) = 𝜁 (2)𝜁 ( 5
3 )𝜁 (

3
2 − 3𝑠)𝐴4(𝑠)

∏
𝑝

( (1 − 1
𝑝

5
6 −𝑠

)
(
1 − 1

𝑝
5
6 +𝑠

) (1 − 1
𝑝

5
6+𝑠

+ 1
𝑝

5
6−𝑠

+ 1
𝑝

4
3−2𝑠

))
, (5.5)

where

𝐴4(𝑠) :=
∏

𝑝

������
1 +

1
𝑝

(
1 − 1

𝑝
3
2 −3𝑠

− 1−𝑝
− 5

6 +𝑠

1−𝑝
− 5

6 −𝑠

)
+ 1−𝑝

− 5
6 +𝑠

1−𝑝
− 5

6 −𝑠
𝐴4, 𝑝,3(𝑠) +

(
1 − 1

𝑝
3
2 −3𝑠

)
(𝐴4, 𝑝,2(𝑠) + 𝐴4, 𝑝,1(𝑠))

1−𝑝
− 5

6 +𝑠

1−𝑝
− 5

6 −𝑠

(
1 − 1

𝑝
5
6 +𝑠

+ 1
𝑝

5
6 −𝑠

+ 1
𝑝

4
3 −2𝑠

)  !!!!"
is absolutely convergent for | Re(𝑠) | < 1

2 . Hence, the final step is to find a meromorphic continuation
for the infinite product on the right-hand side of (5.5), which we will denote by 𝐷3 (𝑠). However, it is
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straightforward to show that

𝐴4,4(𝑠) := 𝐷3 (𝑠)
𝜁 ( 8

3 − 4𝑠)𝜁 ( 5
3 − 2𝑠)𝜁 ( 13

6 − 3𝑠)
𝜁 ( 4

3 − 2𝑠)
(5.6)

converges absolutely for | Re(𝑠) | < 1
2 . This finishes the proof of the first claim in the lemma.

Finally, the growth estimate

𝐴4(−𝑠, 𝑠) 	𝜀 (| Im(𝑠) | + 1) 𝜀 |𝜁 ( 3
2 − 3𝑠)𝜁 ( 4

3 − 2𝑠) | 	𝜀 (| Im(𝑠) | + 1)
2
3

follows from (5.5), (5.6), as well as [MV, Theorems 13.18 and 13.23] and the functional equation for
𝜁 (𝑠). �

Now that we have a meromorphic continuation of 𝐴4(−𝑠, 𝑠), we will calculate the leading Laurent
coefficient at 𝑠 = 1

6 .

Lemma 5.3. We have the formula

lim
𝑠→ 1

6

(𝑠 − 1
6 )

2𝐴4 (−𝑠, 𝑠) =
1
6
𝜁 (2)𝜁 ( 5

3 )
𝜁 ( 4

3 )

∏
𝑝

(
1 − 1

𝑝
2
3

)2 (
1 − 1

𝑝

) (
1 + 2

𝑝
2
3
+ 1
𝑝
+ 1
𝑝

4
3

)
.

Proof. By Lemma 5.2, 𝐴4(−𝑠, 𝑠) has a double pole at 𝑠 = 1
6 . Moreover, by (5.5) and (5.6), we find that

𝐴4 (−𝑠,𝑠)
𝜁 ( 3

2−3𝑠)𝜁 ( 4
3−2𝑠) has a convergent Euler product in the region | Re(𝑠) | < 1

3 (this allows us to interchange
the order of the limit and the product in the calculation below), so that

lim
𝑠→ 1

6

(𝑠 − 1
6 )

2𝐴4(−𝑠, 𝑠) =
1
6

lim
𝑠→ 1

6

𝐴4 (−𝑠, 𝑠)
𝜁 ( 3

2 − 3𝑠)𝜁 ( 4
3 − 2𝑠)

=
𝜁 (2)𝜁 ( 5

3 )
6

∏
𝑝

(
1 − 1

𝑝

) (
1 − 1

𝑝
2
3

)2 (
1 − 1

𝑝
1
3

){ (
1 + 1

𝑝
1
3

)3 (
1 − 1

𝑝
2
3

)2

6
(
1 − 1

𝑝
1
3

)2

+

(
1 + 1

𝑝
1
3

) (
1 + 1

𝑝
2
3

) (
1 − 1

𝑝
4
3

)
2
(
1 − 1

𝑝
2
3

) +

(
1 + 1

𝑝

) (
1 + 1

𝑝
2
3
+ 1

𝑝
4
3

)
3
(
1 + 1

𝑝
1
3
+ 1

𝑝
2
3

) +

(
1 + 1

𝑝
1
3

)2 (
1 − 1

𝑝
2
3

)
𝑝
(
1 − 1

𝑝
1
3

) +
1 + 1

𝑝
1
3

𝑝2

}
.

The claim follows. �

We are now ready to estimate 𝐽±(𝑋) when the support of 𝜙 is small.

Lemma 5.4. Let 𝜙 be a real even Schwartz function, such that 𝜎 = sup(supp(𝜙)) < 1. Let 𝐽±(𝑋) be
defined by (5.1). Then we have the estimate

𝐽±(𝑋) = 𝐶±𝜙
( 𝐿

12𝜋𝑖

)
𝑋− 1

3 +𝑂 𝜀

(
𝑋
𝜎−1

2 +𝜀
)
,

where

𝐶± :=
5

12
𝐶±

2
𝐶±

1

Γ±( 1
3 )

Γ±( 2
3 )

𝜁 ( 2
3 )

2𝜁 ( 5
3 )𝜁 (2)

𝜁 ( 4
3 )

∏
𝑝

(
1 − 1

𝑝
2
3

)2 (
1 − 1

𝑝

) (
1 + 2

𝑝
2
3
+ 1
𝑝
+ 1
𝑝

4
3

)
. (5.7)
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Proof. We rewrite the integral in 𝐽±(𝑋) as

1
2𝜋𝑖

∫
(𝑐)

(−2)𝜙
( 𝐿𝑠
2𝜋𝑖

) {(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) (
−
𝐶±

2
𝐶±

1
𝑋− 1

6
𝜁 ′

𝜁
( 5

6 + 𝑠) + 𝑋−𝑠
Γ±( 1

2 − 𝑠)
Γ±( 1

2 + 𝑠)
𝜁 (1 − 2𝑠) 𝐴3 (−𝑠, 𝑠)

1 − 𝑠

)
+
𝐶±

2
𝐶±

1
𝑋−𝑠− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) Γ±( 1
2 − 𝑠)

Γ±( 1
2 + 𝑠)

𝜁 (1 − 2𝑠)
𝜁 ( 5

6 − 𝑠)
𝜁 ( 5

6 + 𝑠)
𝐴4(−𝑠, 𝑠)

1 − 6𝑠
5

+
(𝐶±

2
𝐶±

1

)2
𝑋−𝑠− 1

3
Γ±( 1

2 − 𝑠)
Γ±( 1

2 + 𝑠)
𝜁 (1 − 2𝑠) 𝐴3 (−𝑠, 𝑠)

1 − 𝑠

}
𝑑𝑠 (5.8)

for 0 < 𝑐 < 1
6 . The integrand has a simple pole at 𝑠 = 1

6 with residue

− 2𝜙
( 𝐿

12𝜋𝑖

) (
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

)
𝑋− 1

6

(𝐶±
2

𝐶±
1
− 2

5
Γ±( 1

3 )
Γ±( 2

3 )
𝜁 ( 2

3 )𝜁 (3)
𝜁 ( 5

3 )𝜁 (2)

)
− 2𝜙

( 𝐿

12𝜋𝑖

)𝐶±
2

𝐶±
1
𝑋− 1

3
Γ±( 1

3 )
Γ±( 2

3 )
5𝜁 ( 2

3 )
2

4
lim
𝑠→ 1

6

(𝑠 − 1
6 )

2𝐴4(−𝑠, 𝑠) +𝑂
(
𝜙
( 𝐿

12𝜋𝑖

)
𝑋− 1

2

)
(5.9)

= −𝐶±𝜙
( 𝐿

12𝜋𝑖

)
𝑋− 1

3 +𝑂 (𝑋
𝜎
6 − 1

2 )

by Lemma 5.3, as well as the fact that the first line vanishes. Due to Lemmas 5.1 and 5.2, we can shift
the contour of integration to the line Re(𝑠) = 1

2 − 𝜀
2 , at the cost of −1 times the residue (5.9).

We now estimate the shifted integral. The term involving 𝜁 ′

𝜁 ( 5
6 + 𝑠) can be evaluated by interchanging

sum and integral; we obtain the identity

1
𝜋𝑖

∫
( 1

2−
𝜀
2 )
𝜙
( 𝐿𝑠
2𝜋𝑖

) 𝜁 ′
𝜁
( 5

6 + 𝑠)𝑑𝑠 = − 2
𝐿

∑
𝑝,𝑒

log 𝑝

𝑝
5𝑒
6

𝜙
( log 𝑝𝑒

𝐿

)
. (5.10)

The last step is to bound the remaining terms, which is carried out by combining (4.17) with Lemmas
5.1 and 5.2. �

Finally, we complete the Proof of Theorem 1.4.

Proof of Theorem 1.4. Given Proposition 4.4 and Lemma 5.4, the only thing remaining to prove is (1.7).
Applying (5.8) with 𝑐 = 1

20 and splitting the integral into two parts, we obtain the identity

𝐽±(𝑋) =
2𝐶±

2 𝑋
− 1

6

𝐶±
1 𝐿

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) ∑
𝑝,𝑒

log 𝑝

𝑝
5𝑒
6

𝜙

(
log 𝑝𝑒

𝐿

)
− 1

𝜋𝑖

∫
( 1

20 )
𝜙
( 𝐿𝑠
2𝜋𝑖

) {(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) (
−
𝐶±

2
𝐶±

1
𝑋− 1

6
𝜁 ′

𝜁
( 5

6 + 𝑠) + 𝑋−𝑠
Γ±( 1

2 − 𝑠)
Γ±( 1

2 + 𝑠)
𝜁 (1 − 2𝑠) 𝐴3(−𝑠, 𝑠)

1 − 𝑠

)}
𝑑𝑠

− 1
𝜋𝑖

∫
( 1

20 )
𝜙
( 𝐿𝑠
2𝜋𝑖

) {𝐶±
2

𝐶±
1
𝑋−𝑠− 1

6

(
1 −

𝐶±
2

𝐶±
1
𝑋− 1

6

) Γ±( 1
2 − 𝑠)

Γ±( 1
2 + 𝑠)

𝜁 (1 − 2𝑠)
𝜁 ( 5

6 − 𝑠)
𝜁 ( 5

6 + 𝑠)
𝐴4 (−𝑠, 𝑠)

1 − 6𝑠
5

+
(𝐶±

2
𝐶±

1

)2
𝑋−𝑠− 1

3
Γ±( 1

2 − 𝑠)
Γ±( 1

2 + 𝑠)
𝜁 (1 − 2𝑠) 𝐴3(−𝑠, 𝑠)

1 − 𝑠

}
𝑑𝑠.

By shifting the first integral to the line Re(𝑠) = 1
5 and applying (5.10), we derive (1.7). Note that the

residue at 𝑠 = 1
6 is the first line of (5.9), which is equal to zero.

�
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Figure 2. A plot of (𝑝, 𝑓𝑝 (104, 𝑇𝑗 )) for 𝑝 < 104 and 𝑗 = 1, 2, 3.

A. Numerical investigations

In this section, we present several graphs5 associated to the error term

𝐸+
𝑝 (𝑋,𝑇) := 𝑁+

𝑝 (𝑋,𝑇) − 𝐴+
𝑝 (𝑇)𝑋 − 𝐵+

𝑝 (𝑇)𝑋
5
6 .

We recall that we expect a bound of the form 𝐸+
𝑝 (𝑋,𝑇) 	𝜀 𝑝𝜔𝑋 𝜃+𝜀 (see (1.2)). Moreover, from the

graphs shown in Figure 1, it seems likely that 𝜃 = 1
2 is admissible and the best possible. Now, to test the

uniformity in p, we consider the function

𝑓𝑝 (𝑋,𝑇) := max
1≤𝑥≤𝑋

𝑥−
1
2 |𝐸+

𝑝 (𝑥, 𝑇) |;

we then expect a bound of the form 𝑓𝑝 (𝑋,𝑇) 	𝜀 𝑝𝜔𝑋 𝜃− 1
2+𝜀 with 𝜃 possibly equal to 1

2 . To predict
the smallest admissible value of 𝜔, in Figure 2, we plot 𝑓𝑝 (104, 𝑇𝑗 ) for 𝑗 = 1, 2, 3, as a function of
𝑝 < 104. From this data, it seems likely that any 𝜔 > 0 is admissible. Now, one might wonder whether
this is still valid in the range 𝑝 > 𝑋 . To investigate this, in Figure 3, we plot the function 𝑓𝑝 (104, 𝑇3) for
every 104-th prime up to 108, revealing similar behaviour. Finally, we have also produced similar data
associated to the quantity 𝑁−

𝑝 (𝑋,𝑇𝑗 ) with 𝑗 = 1, 2, 3, and the result was comparable to Figure 2.
However, it seems like the splitting type𝑇4 behaves differently (see Figure 4 for a plot of 𝑝 · 𝑓𝑝 (104, 𝑇4)

for every 𝑝 < 105). One can see that this graph is eventually essentially constant. This is readily explained
by the fact that in the range 𝑝 > 𝑋 , we have 𝑁±

𝑝 (𝑋,𝑇4) = 0. Indeed, if p has splitting type 𝑇4 in a cubic
field K of discriminant at most X, then p must divide 𝐷𝐾 , which implies that 𝑝 ≤ 𝑋 . As a consequence,
𝑝 𝑓𝑝 (𝑋,𝑇4)  𝑋

1
2 , which is constant as a function of p. As for the more interesting range 𝑝 ≤ 𝑋 , it seems

like 𝑓𝑝 (𝑋,𝑇4) 	𝜀 𝑝−
1
2+𝜀𝑋 𝜀 (i.e. for 𝑇 = 𝑇4, the values 𝜃 = 1

2 and any 𝜔 > − 1
2 are admissible in (1.2)).

In Figure 5, we test this hypothesis with larger values of X by plotting 𝑝
1
2 · 𝑓𝑝 (105, 𝑇4) for all 𝑝 < 104.

This seems to confirm that for 𝑇 = 𝑇4, the values 𝜃 = 1
2 and any 𝜔 > − 1

2 are admissible in (1.2). In

5The computations associated to these graphs were done using development version 2.14 of pari/gp
(see https://pari.math.u-bordeaux.fr/Events/PARI2022/talks/sources.pdf), and the full code can be found here:
https://github.com/DanielFiorilli/CubicFieldCounts.
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Figure 3. A plot of some of the values of (𝑝, 𝑓𝑝 (104, 𝑇3)) for 𝑝 < 108.

Figure 4. A plot of (𝑝, 𝑝 𝑓𝑝 (104, 𝑇4)) for 𝑝 < 105.

other words, it seems like we have 𝐸+
𝑝 (𝑋,𝑇4) 	𝜀 𝑝−

1
2+𝜀𝑋

1
2+𝜀 , and the sum of the two exponents here

is 2𝜀, which is significantly smaller than the sum of exponents in Theorem 1.1, which is 𝜔 + 𝜃 ≥ 1
2 .

Note that this is not contradictory, since in that theorem we are assuming such a bound uniformly for all
splitting types and, from the discussion above, we expect that 𝐸+

𝑝 (𝑋,𝑇1) 	𝜀 𝑝𝜀𝑋
1
2+𝜀 is essentially the

best possible. Finally, we have also produced data for the quantity 𝑁−
𝑝 (𝑋,𝑇4). The result was somewhat

similar but far from identical. We would require more data to make a guess as strong as the one we made
for 𝐸+

𝑝 (𝑋,𝑇4).
For the splitting type 𝑇5, it seems like the error term is even smaller (probably owing to the fact that

these fields are very rare). Indeed, this is what the graph of 𝑝2 · 𝑓𝑝 (106, 𝑇5) for all 𝑝 < 103 in Figure 6
indicates. Again, there are two regimes. Firstly, by [B, p. 1216], 𝑝 > 2 has splitting type 𝑇5 in the cubic
field K if and only if 𝑝2 | 𝐷𝐾 , hence, 𝑁±

𝑝 (𝑋,𝑇5) = 0 for 𝑝 > 𝑋
1
2 (that is 𝑝2 · 𝑓𝑝 (𝑋,𝑇5)  𝑋

1
2 ). As
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Figure 5. A plot of (𝑝, 𝑝 1
2 𝑓𝑝 (105, 𝑇4)) for 𝑝 < 104.

Figure 6. A plot of (𝑝, 𝑝2 𝑓𝑝 (106, 𝑇5)) for 𝑝 < 103.

for 𝑝 ≤ 𝑋
1
2 , Figure 6 indicates that 𝑓𝑝 (𝑋,𝑇5) 	𝜀 𝑝−1+𝜀𝑋 𝜀 (e.g. for 𝑇 = 𝑇5, the values 𝜃 = 1

2 and any
𝜔 > −1 are admissible in (1.2)). Once more, it is interesting to compare this with Theorem 1.1, since it
seems like 𝐸+

𝑝 (𝑋,𝑇5) 	𝜀 𝑝−1+𝜀𝑋
1
2+𝜀 , and the sum of the two exponents is now − 1

2 + 2𝜖 . We have also
produced analogous data associated to the quantity 𝑁−

𝑝 (𝑋,𝑇5). The result was somewhat similar.
Finally, we end this section with a graph (see Figure 7) of

𝐸+(𝑋) := 𝑋− 1
2
(
𝑁+

all(𝑋) − 𝐶+
1 𝑋 − 𝐶+

2 𝑋
5
6
)

for 𝑋 < 1011 (which is the limit of Belabas’ program6 used for this computation). Here, 𝑁+
all (𝑋) counts all

cubic fields of discriminant up to X, including Galois fields (by Cohn’s work [C], 𝑁+
all (𝑋)−𝑁

+(𝑋) ∼ 𝑐𝑋
1
2 ,

6The program, based on the algorithm in [B], can be found here: https://www.math.u-bordeaux.fr/~kbelabas/research/cubic.html.
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Figure 7. A plot of 𝐸+(𝑋) for 𝑋 < 1011.

with 𝑐 = 0.1585 . . .). This strongly supports the conjecture that 𝐸+(𝑋) 	𝜀 𝑋
1
2+𝜀 and that the exponent 1

2
is the best possible. It is also interesting that the graph is always positive, which is not without reminding
us of Chebyshev’s bias (see, for instance, the graphs in the survey paper [GM]) in the distribution of
primes.

Given this numerical evidence, one may summarise this section by stating that in all cases, it seems
like we have square-root cancellation. More precisely, the data indicate that the bound

𝑁+
𝑝 (𝑋,𝑇) − 𝐴+

𝑝 (𝑇)𝑋 − 𝐵+
𝑝 (𝑇)𝑋

5
6 	𝜀 (𝑝𝑋) 𝜀 (𝐴+

𝑝 (𝑇)𝑋
) 1

2 (A.1)

could hold, at least for almost all p and X. This is reminiscent of Montgomery’s conjecture [Mo] for
primes in arithmetic progressions, which states that

∑
𝑛≤𝑥

𝑛≡𝑎 mod 𝑞

Λ(𝑛) − 𝑥

𝜙(𝑞) 	𝜀 𝑥𝜀
( 𝑥

𝜙(𝑞)

) 1
2 (𝑞 ≤ 𝑥, (𝑎, 𝑞) = 1).

Precise bounds such as (A.1) seem to be far from reach with the current methods, however, we hope to
return to such questions in future work.
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