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Abstract. In the late stage of planet formation, planetesimals are perturbed by large (proto)
planets. There are four fates of planetesimals, (1) to collide with planets, (2) to escape from
the planetary region, (3) to survive in the planetary region, and (4) to fall onto the central
star. The ratios of these fates depend on initial orbital parameters. We performed numerical
simulations of gravitational scattering of planetesimals by a planet. We obtained the escape
rate of planetesimals and its dependence on the orbital parameters of the planetesimals and
the planet. We also calculated the rate for increasing the semimajor axis to more than 3000AU.
Using these results, we discuss the relative efficiency of the four giant planets of the solar system
in the formation of the Oort cloud.
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1. Introduction
The Oort cloud is the spherical comet reservoir surrounding the solar system, as first

proposed by Oort (1950). He suggested that the Oort cloud is constructed from plan-
etesimals through two dynamical stages: (1) transportation of planetesimals to the outer
region of the solar system by planets, and (2) pulling up of their perihelion distances
by the external forces of the galactic tide and passing stars. The first dynamical stage
was studied by several authors (e.g., Safronov 1972, Weidenschilling 1975). For example,
Weidenschilling (1975) studied the ejection rate of planetesimals by the four giant planets
analytically. He concluded that Jupiter ejected planetesimals with very high rate because
of its large mass and it can not form the Oort cloud. Simulations of both of the first and
the second stages were recently done by Dones et al. (2004). They showed that Saturn
is the planet most responsible for the Oort cloud formation. They deal with the solar
system and treat the two dynamical stages together. However, they do not focus on the
general properties of the elementary processes of the planet-planetesimal scattering.

In this paper, we investigate the first dynamical stage of the comet cloud formation by
using numerical calculations. On this first stage, planetesimals have four fates under the
strong gravitational influence of a planet: (1) collision with the planet, (2) escape from
the planetary system, (3) survival as a planetesimal, and (4) fall onto the central star.
We investigate the dependence of the rates of these fates upon the orbital parameters.
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Table 1. The ranges of the initial parameters.

parameter a e i [rad] ap [AU] mp [mJ]

range
ap
1+e

� a � ap
1−e

0-0.9 0.01-0.1 1, 5, 10, 30 0.1-10

2. Method of Calculation
2.1. Model and Integration Method

We integrate the orbits of planetesimals numerically using the forth-order Hermite scheme
(Makino & Aarseth 1992) with the hierarchical timestep (Makino 1991). We assume a
planet around a central star on a circular orbit and a mass-less planetesimal orbiting the
central star under the gravity of the planet. The equation of motion of the planetesimal
is

d2r
dt2

= −Gm�
r
r3

− Gmp

(
r − rp

|r − rp|3
+

rp

r3
p

)
, (2.1)

where r is the heliocentric distance of the planetesimal, G is the gravitational constant,
m� is the mass of the central star, and mp and rp are the mass and the heliocentric
distance of the planet. The last term on the r.h.s represents the indirect term.

2.2. Initial Conditions and Parameters
We assume an initial planetesimal disk which consists of mass-less planetesimals and a
planet. All the planetesimals have the same eccentricity e and inclination i. The inner
and outer edges, amin and amax, of the disk are amin = ap/(1 + e), amax = ap/(1 − e),
respectively. Here ap is the semimajor axis of the planet. The argument of perihelion ω
and the longitude of ascending node Ω are distributed randomly. The number density of
planetesimals is proportional to a−1. Our model contains 107 planetesimals per ring with
the width of 1AU. The ranges of the initial parameters are shown in Table.1. We consider
the parameter set i = 0.05rad, ap = 5AU, and mp = mJ as the standard case. We define
mJ ≡ 0.001m� where we set m� = m� (solar mass). In all cases, we calculate orbits of
planetesimals for 1 Kepler period (TK). During the orbit integration, if the separation
between a planet and a planetesimal becomes smaller than the radius of the planet Rp,
or the heliocentric distance of a planetesimal becomes smaller than the radius of a central
star R�, the planetesimal is counted as “collider” or “fall”, respectively. Planetesimals
not yet classified as colliders and falls are checked for their orbital elements at the final
time TK. If the perihelion distance of a planetesimal is smaller than R�, it is also counted
as “fall”. If the eccentricity of a planetesimal is larger than 1, it is counted as “escaper”.
Following to Dones et al. (2004), here we assume that planetesimals with a > 3000AU
or e > 1 can go to the next dynamical stage. Thus a planetesimal with a > 3000AU and
e < 1 is counted as “candidate”, candidate for a member of the Oort cloud.

2.3. Definitions of Probability and Efficiency
We denote Pesc and Pcan the probabilities of escape and candidate after a time span TK.
Using these probabilities P , we define the efficiencies K. Efficiencies Kesc and Kcan mean
the expected numbers of escaper and candidate per time and are defined as

K =
∫ amax

amin

PT−1
K ns(a)2πada, (2.2)

where ns(a) is a surface number density of planetesimals estimated as

ns(a) = n0a
θ, (2.3)
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where n0 is the surface number density at a=1AU, and θ is the power-index of the
distribution.

3. Probabilities
3.1. Escape from the Planetary System

Figure 1 shows Pesc against a, with e = 0.8 and e = 0.7 for the standard case. The orbit-
crossing regions with these parameters are from 2.78AU to 25AU and from 2.94AU to
16.7AU, respectively. Escapers appear almost over the entire orbit-crossing region. In this
region, Pesc increases along a and suddenly drops around the end of the region. The orbit-
crossing region increase with e. Pesc decreases with e at fixed a. There are no escapers

Figure 1. Probabilities of escape and
the empirical fits are plotted against a.
The circles and squares indicate Pesc with
e = 0.8 and e = 0.7 for the standard case
(i, ap, mp)=(0.05, 5, 1).

Figure 2. The same figure as figure 1. The
symbols indicate Pesc for e = 0.8, (i, ap, mp)=
(0.03, 5, 1)(circles), (0.05, 10, 1)(squares),
and (0.05, 5, 0.3)(triangles), respectively.

for e < 0.4. This absence of escaper is explained by the relative velocity vr between a
planetesimal and a planet and the fly-by theory under the two-body approximation. Using
the conservation of the Jacobi energy, vr is written as v2

r = {3− 2[(1− e2)a/ap]1/2 cos i−
ap/a}v2

p, where vp is the Kepler velocity of the planet. To escape from the planetary
system, vr need to satisfy |vp + vr| > vparabolic, where vparabolic is the local escape
velocity written as

√
2Gm�/ap. There is a minimum relative velocity vmin

r to escape
derived from the fly-by theory. A planetesimal gains the largest additional velocity of vr,
if it is scattered toward the direction of the velocity vector of the planet. Here vmin

r is
given by

vmin
r = vparabolic − vp

= (
√

2 − 1)vp. (3.1)

To satisfy the condition vr > vmin
r , we need e � 0.4. So planetesimals initially with

e � 0.4 can not escape. Figure 2 is the same as figure 1 but with different i, ap, and
mp. Pesc decreases with i. The orbit-crossing region increases with ap and Pesc at fixed
a decreases with ap but they can be scaled by ap. This is because vr is scaled by ap. Pesc

increases with mp. This is because the cross section for strong scattering is proportional
to m2

p. The main features of Pesc do not change when these parameters are changed. We
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plot the empirical fit with the approximated dependences, given by

P fit
esc ∼ 4

(
a

ap

)3

(1 − e) sin−1 i m2
p, (3.2)

in figures 1 and 2. Here we set the unit mass as m�. The derivation of this expression is
discussed in another paper.

3.2. Candidate for the Oort Cloud

Figure 3 shows Pcan against a, with e = 0.8 for the standard case. Candidates appear
almost over the orbit-crossing region. In this region, Pcan increases along a and suddenly
drops around the end of the region. This behavior is similar to that of Pesc. However, the
dependence on a is different. Figure 3 also shows Pcan with e = 0.7. Figure 4 is the same
as figure 3 but with different i, ap, and mp. The dependences of Pcan on i and mp are the
same as those of Pesc. The main features of Pcan do not change when these parameters
are changed. In figures 3 and 4, we plot the empirical fit given by

P fit
can ∼ 12

(
acan

ap

)−1 (
a

ap

)5

(1 − e)2 sin−1 i m2
p. (3.3)

This expression is valid under two conditions: (1) mp � 3mJ and (2) acan/ap � 100. The
derivation of this expression is also discussed in another paper.

Figure 3. Probabilities of candidate and the
empirical fits are plotted against a. Symbols
and parameters are the same as figure 1.

Figure 4. The same figure as figure 2. Sym-
bols and parameters are also the same as fig-
ure 2.

4. Efficiencies
Using the probabilities of Pesc and Pcan, we obtain the efficiencies of escape Kesc and

candidate Kcan. Here we adopt the standard disk model of θ = −3/2 (Hayashi 1981)
and n0 = 1 for simplicity. The integration is performed over the orbit-crossing region.
Figures 5 and 6 show the dependence of Kesc and Kcan on e. Both Kesc and Kcan

increase with e for e > 0.4. From the dependences of P fit
esc, P fit

can, (2.2), and the disk
model we assumed, we obtain the dependences Kfit

esc ∝ sin−1 i a−1
p m−2

p and Kfit
esc ∝

sin−1 i a−1
can m−2

p . For e � 0.5 and i < 0.07, Kfit
esc agrees Kesc within a factor of ∼ 2 and

Kfit
can agrees Kcan within a factor of ∼ 4.
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Figure 5. Efficiencies of escape(symbol) and
the empirical fits are plotted against e. The
solid, dash, short-dash, and dotted lines indi-
cate Kesc for (i, ap, mp)= (0.05, 5, 1)(stan-
dard case), (0.03, 5, 1), (0.05, 10, 1), and
(0.05, 5, 0.3), respectively.

Figure 6. Efficiencies of candidate and the
empirical fits are plotted against e. Lines and
parameters are the same as in figure 5.

5. Application to the Oort Cloud Formation
We apply the results to the Oort cloud formation. We assume that the planetesimal

disk has the outer edge at 50AU and adopt the four giant planets with present ap and
mp.

5.1. Standard Disk
Figure 7 shows Kesc and Kcan with i = 0.05rad and ns = a−3/2. For Saturn, Uranus, and
Neptune, Kesc and Kcan decrease with e for e > 0.8, e > 0.6, and e > 0.5 respectively.
This is because of the finite disk extent. Jupiter has the highest Kesc and Kcan. All planets
have Kesc higher than Kcan. This means that Jupiter is the planet most responsible for
transporting planetesimals to the Oort cloud, even if it produces many escapers. The
roles of Uranus and Neptune are comparable and both are much less than that of the
other two planets.

5.2. Hot Disk
We vary i of planetesimals around each planet. The massive planet effectively excites the
eccentricity and inclination of nearby planetesimals. Here we adopt i = (mp/3m�)1/3,
the reduced Hill radius of the planet. Figure 8 shows Kcan with i = (mp/3m�)1/3 and
ns = a−3/2. In this case, the planetesimals around Jupiter have the highest i and this
reduces Kcan. However, Jupiter still has the highest value and the relationships among
the efficiencies of the four planets are not changed.

6. Summary and Discussion
We investigated the orbital evolution of planetesimals scattered by a planet using

numerical calculations. We obtained the probabilities and the efficiencies in producing
escapers and candidates and their empirical expressions. We applied these results to
the Oort cloud formation. We consider two disk models: (1) standard disk and (2) hot
disk. With both disk models, Jupiter is the most effective planet to produce escape
and candidate for the Oort cloud. However, we have to consider more realistic initial
condition, especially the orbital elements of planetesimals around a planet. They depend
on the parameter of the planet, the existence of the gas disk, and the interaction among
planetesimals. We will investigate this in the near future work.
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Figure 7. Efficiencies Kesc and
Kcan(symbol) with the standard disk,

i=0.05rad, ns = a−3/2 are plotted against
e. The solid, dash, short-dash, and dotted
lines indicate Jupiter, Saturn, Uranus, and
Neptune, respectively.

Figure 8. The same figure as 7 but with the
hot disk, i = (mp/3m�)1/3, and ns = a−3/2.
Only Kcan is plotted.

Our calculations deal with the elementary process of gravitational scattering of plan-
etesimals by a planet. The parameter ranges we used are not restricted to the solar
system. Thus, we can apply the results to the extrasolar planetary systems. Using these
results, we can also estimate the formation rate of the comet clouds around the extrasolar
planetary systems.
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