On a Group of Transformations connected with the 27 Lines of the Non-Singular Cubic Surface.

By Dr J. F. TINTO.

(Read 8th June 1917. Received 12th July 1917.)

1. Introductory.

In the paper, "Transformations founded on the Twisted Cubic and its Chord System," a series of space transformations was described, each of which had the property of transforming the chord system of one cubic into the chord system of the other. In the present paper it is shown that by the aid of a non-singular cubic surface the transformations of orders 1, 2, 3, 4, 5 may be derived directly without the intervention of a space transformation.

It will be found that these transformations form a group which is intimately associated with the 27 lines of the cubic.

2. Derivation of the Transformations.

Consider a cubic surface without conical points or other singularities, F_3 .

Let there be taken on it two twisted cubics Σ_3 , Σ_3' intersecting in r points where r may have any of the 5 values 1, 2, 3, 4, 5. No other values of r are possible.

Any chord ρ of Σ_3 meets F_3 in a single point P, and through Pwe can draw a unique chord ρ' of Σ_3' . ρ and ρ' thus correspond, and it is clear that the correspondence is (1, 1). Thus by means of the points of F_3 we can establish a (1, 1) relationship between the chord systems of Σ_3 and Σ_3' .

Let a point Q describe an arbitrary line. The chord system of Σ_s through it constitutes a ruled quartic which has Σ_s as double curve. This surface intersects F_s in a rational sextic without actual double points, which meets Σ_s in 10 points.

 Σ_{3}' meets the quartic in 12 points, of which 2r lie on Σ_{3} . Hence there remain 12 - 2r points of intersection, and these must lie on the rational sextic. Consequently, the chords of Σ_{3}' through the sextic generate a ruled surface of order $4 \times 6 - 2(12 - 2r)$, *i.e.* 4r.

The ruled quartic through Σ_2 therefore transforms into a ruled surface of order 4r, and so the transformation between the chord systems is of order r. We thus see that transformations of orders 1 to 5 are possible.

3. F-chords of a transformation.

The number and order of the F-chords of a transformation of order r are identical respectively with the number and order of the F-points of a plane Cremona transformation of order r.

The correspondent of a chord of Σ_3 may not be a unique chord of Σ_3' , but a surface of chords. This is only possible if the chord of Σ_3 be a line on F_3 . Further, the chord of Σ_3 , which is a *F*-chord, cannot also be a chord of Σ_3' , and hence it either does not intersect Σ_3' or it intersects it in 1 point only. There are thus two types of *F*-chord possible, and two only, viz. (a) a chord of Σ_3 which does not intersect Σ_3' , and whose corresponding surface is a ruled quartic. This chord corresponds to a *F*-point of order 2 in a Cremona transformation. (b) A chord of Σ_3 which intersects Σ_2' in 1 point, and whose corresponding surface is a conicoid. This chord corresponds to a *F*-point of order 1.

4. The F-systems of the various transformations.

(i) The quintic transformation : Σ_3 , Σ_3' intersect in 5 points.

There must exist 6 chords of Σ_3 , which are at the same time lines of F_3 which do not intersect Σ_3' , and there are 6 similar chords of Σ_3' These 12 lines constitute a double six. For, corresponding to a chord-line of Σ_3 we obtain a quartic which contains 5 of the chord-lines of Σ_3' . Hence any chord-line of Σ_3 intersects 5 of the chord-lines of Σ_3' .

The remaining 15 lines on the surface must each meet Σ_3 , Σ_3' in 1 point. It is easy to show that any one of them meets 6 of the remaining 14.

(ii) The quartic transformation: Σ_3 , Σ_3' intersect in 4 points.

There must exist 3 chord-lines of Σ_3 which do intersect Σ_3' , and *vice-versa*; and 3 which intersect Σ_3' in 1 point, and *vice-versa*.

Let these lines be denoted by

 $\begin{cases} {}_{2}L_{1}, {}_{2}L_{2}, {}_{2}L_{3}, {}_{1}L_{1}, {}_{1}L_{2}, {}_{1}L_{3}, \\ {}_{2}L_{1}', {}_{2}L_{2}', {}_{2}L_{3}', {}_{1}L_{1}', {}_{1}L_{2}', {}_{1}L_{3}', \end{cases}$

where the prefixes indicate order.

Corresponding to ${}_{2}L_{s}$ (s=1, 2, 3) we must have a quartic which contains ${}_{2}L_{1}'$, ${}_{2}L_{2}'$, ${}_{2}L_{3}'$ and two of ${}_{1}L_{s}'$ (s=1, 2, 3), say those with a different suffix. Corresponding to ${}_{1}L_{s}$ (s=1, 2, 3) we must have a conicoid containing two of the lines ${}_{2}L_{s}'$, say the two with different suffixes.

Hence we infer that ${}_{2}L_{*}$ meets ${}_{2}L_{1}'$, ${}_{2}L_{2}'$, ${}_{2}L_{3}'$ and two of ${}_{1}L_{*}'$, and that ${}_{1}L_{*}$ meets two of ${}_{2}L_{*}$.

To discover the relation of the remaining 15 lines to the above 12, we form the double six

$$\left\{ \begin{array}{cccc} {}_{2}L_{1}, {}_{2}L_{2}, {}_{2}L_{3}, {}_{3}M_{23}, {}_{3}M_{31}, {}_{12}, \\ {}_{23}', {}_{33}', {}_{31}', {}_{12}', {}_{2}L_{1}', {}_{2}L_{2}', {}_{2}L_{3}', \end{array} \right.$$

where M_{23} are 6 additional lines to be determined.

The 6 lines which are the third lines of the planes determined by $|M_{31}, {}_{2}L'_{3}|$, $|M_{12}, {}_{2}L'_{1}|$, etc., are identical with ${}_{1}L_{1}, {}_{1}L_{2}$, etc., and hence M_{31} is determined as the third line of the plane $|{}_{1}L_{1}, {}_{2}L_{3}|$, etc.

The lines M_{31} , etc., meet Σ_3 in 1 point, but do not intersect Σ'_3 , and vice-versa for the three M_{31} .

The remaining 9 lines are determined by the planes

 $|_{2}L_{1}, _{2}L_{1}'|, |_{2}L_{1}, _{2}L_{2}'|,$ etc.

They each meet both Σ_3 and Σ_2' in 1 point. Any one meets 6 of the remaining 8.

(iii) The cubic transformation: Σ_3 and Σ_3' intersect in 3 points.

There must exist one chord-line of Σ_s which does not meet $\Sigma_{s'}$; and 4 chord-lines which each meet $\Sigma_{s'}$ in one point. There is a similar system for $\Sigma_{s'}$.

Since any cubic on F_3 possesses 6 chord-lines, there will be one line of F_3 which is a chord-line of both Σ_3 and Σ'_3 .

Let the F-system be

$$\left\{ \begin{array}{c} {}_{2}L_{1}, {}_{1}L_{1}, {}_{1}L_{2}, {}_{1}L_{3}, {}_{1}L_{4}, \\ {}_{2}L_{1}', {}_{1}L_{1}', {}_{2}L_{2}', {}_{1}L_{3}', {}_{1}L_{4}'. \end{array} \right.$$

 $_{2}L_{1}$ must meet the 5 lines $_{2}L_{1}'$, $_{1}L_{1}'$, etc. $_{1}L_{s}$ (s = 1...4) must meet $_{2}L_{1}'$, and one of the 4 $_{1}L_{s}$, say the one with the same suffix.

Let M_6 denote the common chord-line of both cubics. We form the double sixes

(1)
$$\begin{cases} {}_{2}L_{1}, M_{5}, M_{1}, M_{2}, M_{3}, M_{4}, \\ M_{6}', {}_{2}L_{1}', {}_{1}L_{1}', {}_{1}L_{2}', {}_{1}L_{3}', {}_{1}L_{4}'. \end{cases}$$
(2)
$$\begin{cases} {}_{2}L_{1}', M_{5}', M_{1}, M_{2}', M_{3}', M_{4}', \\ M_{6}, {}_{2}L_{1}, {}_{1}L_{1}, {}_{1}L_{2}, {}_{1}L_{3}, {}_{1}L_{4}. \end{cases}$$

 M_5 and M'_5 are evidently identical. Each is the second transversal of the group $_1L_1$, $_1L_2$, $_1L_3$, $_1L_4$ (the first being $_2L'_1$).

This line M_5 cannot meet either Σ_3 or Σ'_3 , and it is the only line of this kind.

The lines M_{ϵ} (s = 1...4) meet Σ_3 in 1 point, but do not meet Σ_3' . Similarly for M_{ϵ}' .

The lines determined by the planes $|_{2}L_{1}, _{1}L_{i}'|$ (s = 1...4) are identical with M_{i} , and the lines determined by $|_{2}L_{1}', _{1}L_{i}|$ are identical with M_{i}' .

The six lines determined by the planes $|M_s, {}_1L'_s|$ (s=1...4) meet Σ_3 and Σ_3' each in one point.

The 4 lines determined by the planes $|M_5, L'_i|$ are identical with $_1L_s$ (s=1...4).

The line determined by the plane $|M_5, M_6|$ is the 27th line, and it meets Σ_3 and Σ'_3 each in one point.

(iv) The quadratic transformation: Σ_3 and Σ_3' intersect in two points.

There are 3 chord-lines of Σ_3 which intersect Σ_3' in one point, and *vice-versa*.

There are also 3 chord-lines of Σ_3 which are at the same time chord-lines of Σ_3' .

Let the F-system be

$$\begin{cases} {}_{1}L_{1}, {}_{1}L_{2}, {}_{1}L_{3}, \\ {}_{1}L_{1}', {}_{1}L_{2}', {}_{1}L_{3}'. \end{cases}$$

Any one of $_{1}L_{i}$ must meet 2 of $_{1}L_{i}$, and conversely.

Construct the double six

$$\begin{cases} {}_{1}L_{1}, {}_{1}L_{2}, {}_{1}L_{3}, M_{4}, M_{5}, M_{6}, \\ {}_{1}L_{1}', {}_{1}L_{2}', {}_{1}L_{3}', M_{4}', M_{5}', M_{6}'. \end{cases}$$

The lines M_i intersect Σ_3 in 1 point, but not Σ'_3 , and conversely for the lines M'_i .

The 3 lines determined by the planes $|_1L_1, _1L_2'|$ do not meet Σ_3 or Σ_3' , and they are the only three of this kind.

The 9 lines determined by the planes $|_{1}L_{*}$, $M_{r}'|$ meet Σ_{3} and Σ_{3}' in one point each.

The 3 lines determined by $|M_s, M_r'|$ meet both Σ_3 and Σ_3' in two points each, and are the common chord-lines referred to above.

The 9 lines given by

 $_{1}L_{1}, _{1}L_{2}, _{1}L_{3}; _{1}L_{1}', _{1}L_{2}', _{1}L_{3}',$

and $|_{1}L_{1}, _{1}L_{2}'|, |_{1}L_{3}, _{1}L_{1}'|, |_{1}L_{2}, _{1}L_{3}'|$

form a trihedral pair.

(v) The homographic transformation: Σ_3 and Σ_3' intersect in one point.

Here there are no F-lines.

There are 6 chord-lines of Σ_3 which are also chord-lines of Σ_3' . Of the remaining 21 lines 15 must meet both Σ_3 and Σ_3' in one point, while 6 do not meet either.

5. The group property.

Any two of the above transformations successively performed lead to a transformation of the same set. The set of 5 therefore constitutes a group which is intimately associated with the 27 lines of the surface.

By taking a plane section of the surface the group of transformations is converted into a group of plane Cremona transformations of orders 4, 8, 12, 16, 20. If Σ_3 and Σ_3' meet the plane in the points *ABC*, *A'B'C'*, by taking these points as the *F*-points of a quadratic transformation we obtain a group of transformations of orders 2, 4, 6, 8, 10.

If C_3 be the non-singular cubic in which F_3 intersects the plane, then it is easy to see that this cubic must be an invariant curve for all transformations of the group. The various *F*-points, in number 27, all lie on the invariant cubic.
