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Abstract

We study the operational semantics of an extension of Girard's System Fm with two control
operators: an abort operation that abandons the current control context, and a callcc operation
that captures the current control context. Two classes of operational semantics are considered,
each with a call-by-value and a call-by-name variant, differing in their treatment of polymor-
phic abstraction and instantiation. Under the standard semantics, polymorphic abstractions
are values and polymorphic instantiation is a significant computation step; under the ML-like
semantics evaluation proceeds beneath polymorphic abstractions and polymorphic instanti-
ation is computationally insignificant. Compositional, type-preserving continuation-passing
style (cps) transformation algorithms are given for the standard semantics, resulting in terms
on which all four evaluation strategies coincide. This has as a corollary the soundness and
termination of well-typed programs under the standard evaluation strategies. In contrast, such
results are obtained for the call-by-value ML-like strategy only for a restricted sub-language
in which constructor abstractions are limited to values. The ML-like call-by-name semantics
is indistinguishable from the standard call-by-name semantics when attention is limited to
complete programs.

Capsule Review

A useful collection of results concerning various evaluation strategies for an extension of Fw
with the control operators callcc and abort. Four strategies are considered in all, differening
in their treatment of function application (call-by-value vs. call-by-name strategies) and in
whether reduction is allowed or prohibited under type abstractions (standard vs. ML-like
strategies). The various strategies are compared by translating programs into continuation-
passing style to make the evaluation order explicit.

* This is a revised and expanded version of'Explicit Polymorphism and CPS Conversion' pre-
sented at the Twenthieth Symposium on Principles of Programming Languages, Charleston,
SC, January, 1993. (Harper and Lillibridge, 1993a).

* This work was sponsored by the Defense Advanced Research Projects Agency, CSTO,
under the title 'The Fox Project: Advanced Development of Systems Software', ARPA
Order No. 8313, issued by ESD/AVS under Contract No. F19628-91-C-O168. Email:
rwh9cs.cmu.edu.

§ Supported by a National Science Foundation Graduate Fellowship. Email:
mdiacs.cmu.edu.

https://doi.org/10.1017/S0956796800001775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001775


394 R. Harper and M. Lillibridge

1 Introduction

The use of type theory as a central organizing principle has led to significant advances
in the design and implementation of programming languages. The influence of type
theory is well exemplified by the various dialects of ML (Gordon et al., 1979; Projet
Formel, 1987; Leroy and Mauny, 1992; Harper and Mitchell, 1993; MacQueen,
1986; Milner et al, 1990; Milner and Tofte, 1991), Hope (Burstall et al, 1980)
and Quest (Cardelli, 1989). These languages may be viewed as enrichments of the
Girard-Reynolds polymorphic typed A-calculus (Girard, 1972; Reynolds, 1974) with
more expressive typing constructs (such as subsumption (Cardelli et al, 1991) and
intersection types (Pierce, 1993)) and with primitive operations for expressing control
and store effects (Felleisen and Hieb, 1992; Harper et al, 1993; Tofte, 1990). Taken
together these extensions provide a highly expressive programming notation that
captures a wide range of programming techniques.

Advances in language design are often accompanied by corresponding advances
in compiler technology. Of particular relevance to this paper is the continuation-
passing style (cps) translation introduced by Reynolds (1972) and Fischer (1993).
The main idea of the cps translation is to make the control context of the evaluator
available as a run-time value, thereby making the order of evaluation explicit and
allowing for the extension of the language with non-local transfers of control. The
translation has proved to be an important tool for compiler writers, as empha-
sized by Steele (1978), Kranz et al (1986) and Appel (1992), among others. (See
Reynolds's survey (Reynolds, 1993) for a thorough account of the history of the use
of continuations in programming language semantics and implementation.)

In this paper we study the properties of the cps translation for the extension
of Girard's Fu (Girard, 1972; Girard et al, 1989) with two control operators, one
which discards the current evaluation context and one which captures the current
evaluation context (analogous to the call /cc primitive of Scheme (Clinger and
Rees, 1991)). These constructs provide a basis for defining higher-level patterns
of control such as co-routines (Haynes et al, 1986) and threads (Cooper and
Morrisett, 1990; Reppy, 1991). Several operational semantics for this extension of
Fa, are considered. These may be divided into two broad categories, the standard
semantics and the ML-like semantics, each of which admits a call-by-value (cbv)
and call-by-name (cbn) variant. These four interpretations cover the main semantics
for polymorphic functional languages that have been considered in the literature,
including those for ML (Milner et al, 1990), Haskell (Hudak and Wadler, 1990),
and Quest (Cardelli, 1989). The 'standard' semantics differ from their 'ML-like'
counterparts in the treatment of polymorphic abstractions. Under the standard
interpretation polymorphic abstractions are values, and polymorphic instantiation
is a non-trivial computation step. The ML-like semantics, on the other hand,
evaluate beneath polymorphic abstractions and regard polymorphic instantiation as
essentially trivial, mimicking the behavior of the untyped operational semantics of
ML programs.

We study the typing and semantic properties of the cps translation for each of
the operational interpretations of F̂ , enriched with control operators. The main
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goal is to extend the results of Plotkin (Plotkin, 1975) (for the untyped case)
and Meyer and Wand (Meyer and Wand, 1985) (for the simply typed case) to
this extension of F^. To capture the 'indifference' of the cps form to the cbv/cbn
distinction we begin by isolating three cps sub-languages of pure F^. The stan-
dard cps sub-language consists of a set of terms of Fm on which the cbv and
cbn variants of the standard semantics coincide and which is closed under eval-
uation by both of those variants. Similarly, the ML-like cps sub-language con-
sists of a set of terms on which the cbv and cbn variants of the ML-like se-
mantics coincide and which is closed under evaluation by the ML-like variants.
Finally, we isolate a 'strict' cps sub-language on which both variants of both se-
mantics coincide and which is closed under all four variants. We then consider
the cps translation from Fm enriched with control operators into a suitable cps
sub-language corresponding to each variant of each operational semantics. The
typing properties of the cps translations are established and used to derive termi-
nation and soundness results for Fa, with control operators. The correctness of the
translations is established by extending the methods of Plotkin (1975) and Griffin
(1990).

This paper is an extension of an earlier study conducted by the authors (Harper
and Lillibridge, 1993b) for the special case of ML under an untyped operational
semantics. In particular, the fundamental non-existence result for cps translations
established there is extended here to the case of the cbv ML-like interpretation of Fm

enriched with control operators. On the other hand, we establish the fundamental
properties of the standard semantics, and show that no surprises such as those
encountered for the ML-like interpretations arise. In view of these results it would
appear that a standard, rather than an ML-like, interpretation of enrichments of Fm

is most appropriate.

2 The Language

The syntax of F^ is defined as follows:

Kinds
Constructors
Terms

Kind Assignments
Type Assignments

K
A,B

M

A

r

.. a \ K =>K
: := M | Ans | A\—>/

::= x\lx:A.M\to
VAW) 1 XA{M

::= 0 |A,u:X
::= 0\T,x:A

i2 \Vu:K.A\
\i M2 | AM :/C

0

AM:X.X M

.M | M{A]

The meta-variable u ranges over constructor variables and the meta-variable x ranges
over term variables. The constructor Ans is an unspecified base type, representing the
type of'answers', the final results of evaluation for complete programs. The primitives
9C and <$ are the control operators abort and call-with-current-continuation (callcc).

The type system of F^ consists of a set of rules for deriving judgements of the
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following forms:

> A well-formed kind assignment
A > F well-formed type assignment
A > A : K well-formed constructor
A > A\ = A2 : K equal constructors

A; F > M : A well-formed term

The rules for deriving these judgements are largely standard; see the Appendix
for a complete definition. The treatment of control operators is novel and merits
further discussion. The typing rules governing the control primitives are as follows:

A>A :Q A ; F > M : Ans
(T-ABORT)

A;T>3CA{M) :A

A;F > M : (yu:Q.A—>u)—>A u £ dom(A)
(T-CALLCC)

A

Informally, SC abandons the current evaluation context, and yields as final result
the value of the given expression. Since the final answer computed by a program
is to have type Ans, we require that the argument to abort have type Ans. As
to <<f the informal interpretation is that the 'current continuation' is passed to the
argument of <g. The argument must therefore be of functional type, with domain
the type of continuations that accept values of type A, where A is the type of
the whole expression. For the sake of simplicity, we take this type of ,4-accepting
continuations to be Vu :Q.A—>u, reflecting the fact that a continuation, once invoked,
does not return to its call site. (See Harper et al. (1993) for further discussion of
this and related points. See also Griffin (1990) for a similar type system for control
operations. Relative to Griffin's language our type Ans plays the role of logical
falsehood, ±, and Vu:Q.A —> u plays the role of classical negation, ->A)

The following technical lemma summarizes some useful properties of the type
system:

Lemma 2.1
1. If F% \- A > F then F* I- > A
2. If F% h A > A : K then F% h > A
3. If F'i f- A > Ax = A2 : K then F'i h A > Ax : K and F% h A > A2 : K
4. If F'i \- A;F > M : A then F'i h- A > F and F* h A > A : Q

A context C is an expression of F^ with a single hole, written []:

Contexts C ::= • | XxA.C | CM | MC | Au.K.C | C{A) \ <gA(C) |

The hole in C may be filled by an expression M, written C[M], by replacing
the hole with M, incurring capture of free variables in M that are bound at the
occurrence of the hole. For example, if C = Au:Q.Xx:u.[\, and M = f{u}x, then
C[M] = Au:Q.Xx:t.f{u} x. The variables that are bound within the hole of a context
are said to be exposed (to capture) by that context. We write ETV(C) for the
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exposed constructor variables and EV(C) for the exposed ordinary variables of a
context.

Type checking in F^ is compositional in the sense that if an expression is well-
typed, then so are all constituent expressions.

Lemma 2.2 (Decomposition)
Suppose that F* h A;T > C[M] : A such that EV(C) n dom{T) = 0 and ETV(C) n
dom(A) = 0.T Then there exists A', V, and B such that:

. F*hA,A';r,r>M:B

Proof
Routine induction on the structure of contexts. •

Furthermore, only the type of a constituent of a well-formed expression is relevant
to typing. Consequently any constituent may be replaced by a term of the same type
without effecting typability of the whole expression.

Lemma 2.3 (Replacement)
Suppose that F^ 1- A;T > C[M] : A, with F^ I- A, A' ; r , r" > M : £ in accordance
with the decomposition lemma. If F* I- A, A", A'; T, T", V > M' : B then F^ I-
A,A";r , r">C[M'] :A.

Proof
Routine induction on typing derivations. •

3 Operational semantics for F*

We consider two main operational semantics for F* that differ in the treatment of
polymorphic abstraction and application.

3.1 Notation

Following Plotkin (1975) and Felleisen (1992), we specify an operational semantics
by defining the set of values, the set of evaluation contexts, and the one step evaluation
relation for that semantics. One-step evaluation is a binary relation on programs
that is defined by a set of rules of the form E [R] <—• M, where E is an evaluation
context, R is an expression, the redex, and M is determined as a function of E and
R. In this case E[R] is said to evaluate to M in one step. We define t->0>1 to be the
reflexive closure and <->* to be the reflexive, transitive closure of the <-> relation.

An F^ program is a closed term of type Ans. We will arrange things so that a
program P is either a value or can be represented in exactly one way as E[R] where
E is an evaluation context and R is a redex.

t The conditions on the exposed variables can always be satisfied by alpha-renaming C[M]
appropriately.
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3.2 Standard call-by-value semantics

The standard call-by-value (std-cbv) semantics is defined as follows:

V ::= x\Xx:A.M\Au:K.M
E ::= \\\EM\VE\E{A)

E[(Xx:A.M)V] <-+std_cbv E[[V/x]M]
E[(Au:K.M){A}] ^std.cbv E[[A/u]M]

E&A(M)] ^std.cbv M
E[VA(M)] ^std.cbv E[M(Au:n.Ax:A.%u(E[x]))] (u$FTV{A))

The first two evaluation rules specify ^-(reduction) steps. When it is necessary to
distinguish between them, we will use fix to refer to ^-reductions of ^-applications
and ^ to refer to /^-reductions of A-applications. The third and fourth rules define
the evaluation of the control operators. Note that the evaluation context E is 'reified'
as the polymorphic function Au:Q..Xx:A. S£u{E[x\). When applied to a target type
B and an argument u of type A, this function aborts the evaluation context at the
point of application and continues evaluation with the expression E[u]. Since the
evaluation context of invocation is abandoned, the result type, B, is arbitrary.

Lemma 3.1 (Canonical Forms)
1. If V is a closed value of functional type, then V = Xx:A.M for some type A

and term M.
2. If V is a closed value of quantified type, then V = Au:K.M for some kind K

and term M.

Theorem 3.2 (Progress)
If M is a closed, well-typed expression of type A, then either M is a value, or else
there exist a unique evaluation context E and unique redex R such that M = E[R].

Proof
The proof proceeds by induction on the structure of typing derivations, using
Lemma 2.2 and Lemma 3.1. •

Theorem 3.3 (Preservation)
If P is a program and P (-^std-cbv & t n e n Q ls a program.

Proof
If P "-^std.cbv Q, then P = E [R] for some evaluation context E and redex R. By
inspecting the definition of std-cbv evaluation contexts, we see that EV(E) = 0
and ETV(E) = 0. Hence, by Lemma 2.2 there exists a closed type B such that
F% \- 0;0 > R : B. We proceed by cases on the form of R. If R = 3CA{M\ then
Q = M and F^ I- 0;0 > M : Ans, as required. The remaining cases are handled
similarly. •

The following corollary is analogous to Milner's type soundness theorem for
ML(Milner, 1978):

Corollary 3.4 (Type Soundness)
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If P is a program, then either P is a value, or there is a program Q such that
p ^std-cbv Q-

Theorem 3.5 (Termination for Fm)
For every Fm program P there exists a pure value V such that P '—**ti cuv V•

Proof
When restricted to Fffl programs, the std-cbv evaluation relation is a particular /?-
reduction strategy, and hence by the strong normalization property of F^ (Girard,
1972) is terminating. The result must be a value by Lemma 3.1. •

Termination of F^ programs under the std-cbv semantics will be established in
section 5. The following property of std-cbv evaluation will be important to that
argument:

Lemma 3.6
Any infinite std-cbv evaluation sequence contains infinitely many /J-reduction steps.

Proof
It is sufficient to show that it is impossible to construct an infinite evaluation
sequence consisting solely of <% and <g steps. This can be done by showing that if
E[0A(M)] ^St(i-cbv E'[&'A>(M')] where (9 and & e {SC, %} then M' is a proper
subterm of M. •

3.3 Standard call-by-name semantics

The standard call-by-name (std-cbn) semantics is defined as follows:

V ::= Xx.A.M \ Au.K.M
E ::= \\\EM\E{A)

Note that variables are not values under the call-by-name interpretation.

E[(Au:K.M){A}] ^std.cbn E[[A/u]M]
^std.cbn M
^std.cbn E[M(Au-n.Xx:A.%u(E[x]))] (u

The canonical forms lemma and the progress and preservation theorems given
above for the standard call-by-value semantics carry over to the standard call-by-
name case.

Theorem 3.7 (Type Soundness)

If P is a program, then either P is a value, or there is a program Q such that
p ^std-cbn Q-

Theorem 3.8 (Termination for Fm)
If P is an F<y program, then there exists a value V such that P o->cfW.c/7n *'•

Just as for the std-cbv case, an infinite std-cbn evaluation sequence must contain
infinitely many /? steps.
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3.4 ML-like call-by-value semantics

The ML-like call-by-value (ml-cbv) semantics is defined as follows:

V ::= x\Xx:A.M \Au:K.V
E ::= 0 I EM \ VE | Au:K.E \E{A}

E[(Xx:A.M)V] ^mi_cbv E[[V/x]M]
E[(Au:K.V){A}] ^mi_cbv E[[A/u]V]

E[9rA(M)] ^mi_cbv M
E[VA(M)] ^>mi_cbv E[M(Au:Q..Xx:A.gru(E[x\)]\ {u(£FTV(A))

Note that the hole in an evaluation context can occur within the scope of a
constructor abstraction. Consequently, a constructor abstraction is a value only if
its body is a value.

Lemma 3.9 (Canonical Forms)
1. If V is a closed value of functional type, then V = Xx:A.M for some type A

and term M.
2. If V is a closed value of quantified type, then V = Au.K.V for some kind K

and value V.

Theorem 3.10 (Progress)
If M is a well-typed, closed term of type A, then either M is a value, or there exist
a unique evaluation context £ and a unique redex R such that M = E[R].

Proof
By induction on typing derivations, using Lemma 2.2 and Lemma 3.9. •

Theorem 3.11 (Preservation for Fm)
If P is an F(u program and P <-^mi.cbv Q, then Q is an Fm program.

Proof
Similar to the proof for the std-cbv case. •

Theorem 3.12 (Termination for Fm)
If P is an Fa, program, then there exists a value V such that P <—>* • • V.

The preservation theorem cannot be extended to full F*. It is instructive to see
where the obvious proof attempt breaks down. Let P = £'[Af:fi. ^ (M) ] , and let
£ = £'[At:Q.Q]. Then P = E[<tfA(M)] is reducible, and we must show that the reduct,
E[M(Au:Qlx:A.&u(E[x]))], is a program. By the decomposition lemma it suffices
to show that F% \- A',£:Q;0 > M (Au:Q.Xx:A. &u(E[x])) : A, where A' is derived from
£'. For this it suffices to show that F^ I- A', t:Cl,u:£l;x:A > E[x] : Ans. But notice
that E[x] = £'[At:Q.x], which may not be well-formed: the type A ascribed to x may
involve an occurrence of t that is captured by the inner A-abstraction. This may be
turned into a counter-example to the preservation theorem by a simple adaptation
of the argument given by the authors elsewhere (Harper and Lillibridge, 1993b).

If constructor abstractions are restricted so that Au:K.M is well formed only if
M is a value, the counterexample to preservation is avoided, and preservation can
be proved. Let us call this restricted language F%~.
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Theorem 3.13 (Preservation for P%~)
If P is a F*~ program, and P ^-*mi.cov Q, then g is a F*~ program.

Frao/
The ml-cbv and std-cbv semantics coincide on ?J~ terms. •

3.5 ML-like call-by-name semantics

The ML-like call-by-name (ml-cbn) semantics is denned as follows:

V ::= Ax:A.M\Au:K.V
E ::= fj \EM\ Au:K.E \ E{A}

E[(lx:A.Ml)M2] ^ml-cbn E[[M2/x]Ml]
E[(Au:K.V){A}] ^ml_cbn E[[A/u)V]

E[£A(M)] ^ml.cbn M
E[«A(M)] ^mi.cbn E[M(Au:£Ux:A.tfu(E[x}))] (u£FTV{A))

Theorem 3.14 (Type Soundness for F0})
If P is a program, then either P is a value, or there is a program Q such that
p ^ml-cbn Q-

The extension of preservation to F^ runs afoul of difficulties similar to those
encountered in the ml-cbv case, but is nevertheless sound. The key observation is
that in a call-by-name setting a polymorphic abstraction is evaluated only when
it is applied to a type constructor argument. By insisting that the polymorphic
instantiation occur prior to evaluation under the polymorphic abstraction, we avoid
the problems with capture that arise in the ml-cbv case. Such a semantics is denned
as follows:

V ::= Xx:A.M\Au:K.V
E ::= Q{A{}...{An}\(EM){Al}...{An}\Au:K.E

E[(Xx:AM,)M2) ^mUcbn> £[[M2/x]M,]
E[(Au:K.M){A}] ^ml_cbn> E[[A/u]M]

^Zl-cbri E[M(Au:QAx:A.%u(E[x]))) (u $ FTV(A))
It is easy to see that this semantics and the standard call-by-name semantics coincide
on complete programs (closed terms of basic type). Consequently, we shall not give
further consideration to the ml-cbn semantics.

3.6 Relation of ML-like semantics to ML

The dynamic semantics of ML is ordinarily denned on untyped terms. To relate our
ML-like semantics to the usual untyped semantics, we introduce a system of untyped
terms along with a call-by-name and call-by-value semantics for them, then relate
the ML-like semantics to the untyped semantics via erasure of type information.
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The syntax of untyped terms is defined as follows:

m : := x | /bc.m | mi m2 \ <£(m) \ &(m)

The call-by-value evaluation semantics for untyped terms (u-cbv) is defined as
follows:

v : := x | Xx.m

e ::= \] \ em\v e

e[{Xx.m)v] <—>u.ci)D e[[v/x]m]
e \Cfl\ IT1 ll ^ \ i £>\W\ A Y ffit ^*lvl ll

\JJO \ / j 1J—f* fill C I / l l f**w\ • ^j \ C- I ^—I / J

The call-by-name semantics for untyped terms (u-cbn) is defined similarly:

v ::= Xx.m
e ::= fj | em

e[(Xx.m)m'] "-^u.tfjn e[[m'/x]m]

e[V(m)] <-*u-cbn e[m kx.X{e[x])]

ei~t>v.'")i u-cbn "'
The ML-like semantics may be related to their untyped counterparts through the
erasure of type information:

x° = x
(Xx:A.M)° = Xx.M° (M N)° = M° N°

(Au:K.M)° = M° (M{A})° = M°

Erasure is extended to contexts by defining fj° = fj.

Lemma 3.15

1. ([M2/x]Mi)° = [Ml/x\M\, and {[A/u]M)° = M°.
2. C[M]° = C°[M°].
3. If V is a ml-cbv (ml-cbn) value, then V° is a u-cbv (u-cbn) value.
4. If £ is an ml-cbv (ml-cbn) evaluation context, then E° is an u-cbv (u-cbn)

evaluation context.

Lemma 3.16
Let Mi be a well-typed closed term.

1. If Mi ^>mi.cbv M2 or Mt ^>mi.cbn Mi by a pA step, then M°x = M£.
2. If Mi t-*mi.cbv M2 (Mi °-»m;.c/,n M2) by other than a 0A step, then

3. There exists a term M2 such that M\ <—>* , , M2 (Mi ^^* . , M2) by a
sequence of zero or more fi\ steps such that M2 is fi\ irreducible.

Proof
1. Erasure eliminates fi\ redices.
2. Erasure preserves ft., <$, and 3C steps.
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3. Each J?A step reduces the number of constructor abstractions.

•
With these facts in mind we may now relate the ML-like semantics to their

untyped counterparts:

Theorem 3.17 (Simulation)
Let Mi be a well-typed closed term.

1. If Mi <-^mi.ciJV M2, then M° ^-v0'1 , M|, and similarly for ml-cbn and u-cbn.
2. If M\ ^u-cbv m2, then 3M2 such that Mi <->* , , M2 and M2 = m2, and

similarly for ml-cbn and u-cbn.

Proof
We consider two illustrative cases. Suppose that Mi = E[(lx:A.M)V] '-•m/_c/w

E[[V/x]M] = M 2 . Then

M° = E°[(lx.M°)V°]

M2°

Suppose that Mf '-^u.cbv m2. By Lemma 3.16 there exists M3 such that M3 is not
reducible by a PA step and Mi <-•* , , M3 by a sequence of PA steps. Consequently,
M° = My, and hence M3 '—y

u.cbv m2. This means M3 must be ml-cbv reducible by
other than a J5A step since the erasure of an ml-cbv value is irreducible under u-cbv.
Hence M3 <-*mi_cbv M2 for some M2 and My '—>u.cbv M2 by Lemma 3.16. Since
the u-cbv evaluation relation is a partial function, we have that M2 = m2. •

The ml-cbn and ml-cbn' semantics coincide under erasure on programs.

Theorem 3.18 (Equivalence)
If Pi and P2 are programs such that Pf = P2° then

1. If Px ^m[.cbn Ox then 3Q2 such that P2 ^ ' ^ Q2 and Q\ = Q\.
2. If P2 ^->mi_cbn> Q.2 then 3Q, such that Pi <^ml_cbn Q\ and Q\ = Q°2.

Proof
First, prove a version of Theorem 3.17 with ml-cbn' in place of ml-cbn. The result
then follows from the simulation theorems. •

4 Continuation-passing style

The cps sub-language of F^ for a given semantics is a set of pure Fm terms on
which the call-by-name and call-by-value interpretations of that semantics coincide
and which is closed under evaluation under those interpretations. Such terms are
said to be indifferent to the by-name/by-value distinction (Plotkin, 1975). In this
section we define the standard and ML-like cps sub-languages of F^. In addition, we
isolate a third cps-sublanguage, called strict cps form, on which all four operational
interpretations of Fm coincide.
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4.1 Standard cps form

An analogue of untyped cps form, which we will call standard cps form (std-cps),
may be defined for the standard semantics. The grammar for this subset of Fm is as
follows:

W ::= x\kx:A.N\Au:K.N
N ::= W\NW\N{A}

The variable W ranges over standard cps values and the variable N ranges over
standard cps terms.

Lemma 4.1
1. The std-cps sub-language is closed under std-cbv and std-cbn evaluation.
2. Evaluation of std-cps programs terminates with a std-cps value under both

variants of the standard semantics.

Theorem 4.2 (Indifference)
The standard call-by-name and call-by-value semantics coincide on std-cps terms.

Proof
For terms in standard cps form the std-cbv and std-cbn semantics coincide with the
following operational semantics:

V ::= W E[{Xx:A.N)V] <-+ E[[V/x]N]
E ::= Q | E V \ E{A) E[(Au:K.N){A}] <̂-» E[[A/u]N]

D

4.2 ML-cps form

The ml-cbv and ml-cbn semantics do not coincide on standard cps terms. To see
this, consider the following standard cps term:

(Ax :(Vu :K .A), x) (Aw :K (Xy :A.y)c)

Under ml-cbv the innermost redex will be reduced first, whereas under ml-cbn the
outermost will be reduced first. An analogue of untyped cps form for the ML-like
semantics, which we call ml-cps form, is defined as follows:

W ::= x\Xx:A.N\ AuX.W
N ::= W\ NW \ Au:K.N \ N{A}

It is easy to see that every ml-cps term is a standard cps term, and that every
ml-cps value is a standard cps value. Note that if N is an ml-cps term, then N° is
an untyped cps term, and if W is an ml-cps value, then W° is an untyped cps value,
which was not the case for the standard cps form.

Lemma 4.3
1. The ml-cps sub-language is closed under both ml-cbv and ml-cbn evaluation.
2. Evaluation of ml-cps programs terminates with an ml-cps value under both

ml-cbv and ml-cbn evaluation.
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Theorem 4.4 (Indifference)
1. The ml-cbv and ml-cbn semantics coincide on ml-cps terms.
2. The std-cbv and std-cbn semantics coincide on ml-cps terms.

Proof
When restricted to terms in ml-cps form, the ml-cbv and ml-cbn semantics coincide
with the following operational semantics:

V ::= W E[{Xx:A.N)V] <-* E[[V/x]N]
E ::= Q \EV\ Au:K.E \ E{A} E[(Au:K.V){A}] <-> E[[A/u]V]

•

4.3 Strict cps form

The standard and ML-like semantics do not coincide on terms in ml-cps form.
Consider the ml-cps term AH:K.((XX:A.X)C). This term is a value under std-cbv and
std-cbn, but is not a value under either the ml-cbv or ml-cbn semantics. By further
restricting ml-cps to avoid constructor abstractions over non-values, we obtain a
subset of ml-cps called strict cps form (s-cps), on which all four interpretations
coincide:

W ::= x\Xx:A.N\\u:K.W
N ::= W | N W \ N{A}

Lemma 4.5
1. The strict cps sub-language is closed under both variants of the standard and

ML-like semantics.
2. Evaluation of strict cps programs under either variant of either semantics

terminates with a strict cps value.

Theorem 4.6 (Indifference)
Both variants of the standard and ML-like strategies all coincide on terms in strict
cps form.

Proof
When restricted to terms in strict cps form, all four operational semantics coincide
with the following semantics:

V ::= W E[(Xx:A.N)V] <-> E[[V/x]N]
E ::= U\EV\E{A} E[(Au:K.V){A}] ^ E[[A/u]V]

D

5 Conversion to continuation-passing style

In this section we define the continuation-passing translation of F^ into pure F^.
The main idea of the translation is to explicitly represent the evaluation context as
an expression of F^. The translation for a given semantics yields terms in the cps
form for that semantics. Moreover, the control operators are eliminated in favour
of direct manipulation of continuations.
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Both forms of the standard semantics admit translations into strict cps form (and
hence into standard cps form) that enjoy suitable generalizations of the Meyer-
Wand typing properties (Meyer and Wand, 1985). In view of the unsoundness of the
ML-like call-by-value semantics for F^ we are unable to give a similar translation
for this case, but rather only for the restricted language F^~ introduced in section 3.

5.1 Transformation of constructors

To state the typing properties of the cps translation we must give a corresponding
translation of types and constructors. These translations differ only in the treatment
of function types (call-by-name and call-by-value variants) and of quantified types
(standard and ML-like variants).

Definition 5.1

\A\ = (A'-*Ans)^>Ans

u = u (luX.A)" = hi.K.A'
Ans* = Ans (/li^)* = A\A\

Function types, call-by-value: Quantified types, standard:
(/4i-»/42)* = A\^>\A2\ (Vu:K.A)' = Vu:K.\A\
Function types, call-by-name: Quantified types, ML-like:

(Vu:K.A)' =

The constructor transforms are extended to type assignments T by denning
T*(x) = A' and |F|(x) = \A\ whenever T{x) = A.

Lemma 5.2 (Compositional Translation)
The following equations hold for both variants of both semantics:

1. {[Al/u]A2y = [A\/u]A'2.
2. \[Al/u]A2\ = [A\/u]\A2\.

The constructor transformations preserve kinds and equality:

Theorem 5.3 (Kind Preservation)
For both variants of both semantics:

1. If Fm h A > A : K, then FW\-A>A' :K.
2. If Fm h A > Ai = A2 : K, then Fw h A > A\ = A\ : K.
3. HF<o\-A>A:Sl, then Fm\-A>\A\ : fi.
4. If Fa, I- A > Ai = A2 : Q, then F^ h A > \A{ | = \A2\ : Q.

5.2 Transformation of terms

A cps translation is given by a translation for values, (—)*, and a translation for
general terms, |—|. These translations are defined by induction on the structure of
typing derivations, rather than 'raw' terms. This is largely a technical convenience
since both the source and target languages are explicitly-typed, and we are only
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\A;T>V:A\ = Xk:A'-*Ans.k V

> Mt M2 : A\ = ^k:A'->An
\M2\(Xx2:A'2.x1x2k)),

where A; F > Mi : A2-*A and A;F > M2 : A2

\A;r>M{Ai} :[Ai/u]A2\ = Xk:([Ai/u]A2)'-*Ans.
\M\(Xx:(Vu:Kl.A2)'.x{A\}k)

:A\ = Ak:Ans'->Ans.\M\(Am:A'.m)
\A;V><gA(M) :A\ = lk:A'—Ans.\M\Y, where

Y = Am:((Vun.A^u)->AY.mY'k, and
Y' = Aun.Al :(A-+u)'->Ans.

l(Xx:A'.Ak':u'->Ans.kx)

|A;F>M:,4 ' | = \M\,
where A; F > M : A and A > A = A' : SI

(A;r>x:A)' = x
(A;Y > Xx:A.M : A->A')' = Xx:A'.\M\

{A;r>Au:K.M :VuJC.A)' = Au:K.\M\

(A;V > V : A')' = V, where A;T> V : A and A > A = A' : Q

Fig. 1. The standard call-by-value transform.

interested in the properties of well-typed terms. In defining a translation on typing
derivations we must take account of coherence: since a given term may have several
typing derivations, it is important that all translations are equivalent. Although this
can be far from obvious in many cases (Breazu-Tannen, et al. 1991; Curien and
Ghelli, 1990), in the present setting coherence is readily established. The only non-
syntax-directed rule in the system is the rule of type equality, and uses of this rule
affect only the type labels attached to variables. But since the operational semantics
is insensitive to these labels, all translations are easily seen to be equivalent.

To simplify the presentation of the cps translations we adopt the following
conventions. New variables introduced by the transform are assumed to be chosen
so as to avoid capture. In cases where more than one clause of the transform applies
(this only occurs in the optimized versions), the first one listed is to be chosen.
When defining the transforms we suppress mention of the sub-derivations whenever
possible in the interest of brevity.

5.2.1 Standard call-by-value

The cps transform for the standard call-by-value semantics is given in figure 1.

Theorem 5.4 (Typing)
1. If f% h A;T > M : A, then \M\ is a strict cps value such that Fw h A;T* >

\M\ : \A\.
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| A ; T > V : A \ Y = Y K*

| A ; T > K, V2 : A \ Y = V} v\ Y
\A;F> ViM2 :A\Y = |M2|y, where A;F > M2 : A2, and

Y' = Xm2:A\.V\m2Y
\A;V>MiM2 : A\y = \Mi\Y', where A;F > M2 : A2, and

Y' = Aml:(A2^>Ay.\M2\Y", and
Y" = Xm2:A\.mxm2Y

\A;r>V{Ai} :[Ai/u]A2\r = V<< {A\}Y
\&;T>M{Ai}:[Ai/u\A2\Y = \M\Y>, where

Y' = lm:(yu:K.A2)'.m{A'i}Y

\A;T > SCA(M) : A\Y = lAf^,,,.,

\A;T><#A(M) :A\Y = \M\Y>, where
Y' = Am:((Vun.A-m)->Ay.

(ln:(Vu:a.A->u)'.mnY)Y", and
Y" = Au-n.Xl:(A-w)'-+Ans.

l(,Ax:A'.Ak':u'->Ans.Y x)

\A;Y > M : A'\Y = \M\Y,
where A; F > M : A and A > A = A' : fi

(A;T>x:A)1 = x
(&\T > kx:Ai. M :A,->/42)

t = Xx:A\.M.:A'2-^Ans. \M\k

(A;r>Au:K.M :Vu:K.A)l = Au:K.kk:A'->Ans.\M\k

(A;T > V : A'? = V\ where A;T > V : A and A> A = A' :Q

Fig. 2. The optimized standard call-by-value transform.

2. If F% h A;F > V : A, then V* is a strict cps value such that Fm h A ; P > V :

The correctness of the std-cbv cps transform for F^ may be established by adapting
methods introduced by Plotkin (1975) and Griffin (1990). The main idea is to consider
an 'optimized' cps translation in which most administrative redices (Plotkin, 1975)
are eliminated during translation. The optimized translation is relativized to an
explicitly-given continuation which is a representation of the current evaluation
context.

The optimized std-cbv cps transform is given in figure 2. I t satisfies essentially the
same typing properties as the unoptimized version.

Theorem 5.5 (Typing)

1. If F^ \- A;T > M : A and Y is a strict cps value such that Fm \- A;T > Y :
A'—>Ans, then \M\Y is a strict cps term such that Fw h A; F* > \M\y '• Ans.

2. If F% h A;T > V : A, then V^ is a strict cps value such that Fm I- A;F* > K* :
A'.
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The optimized transform is related to the unoptimized transform through the
notion of pv reduction defined as follows:

C[{kx:A.M)V] ->A C[[V/x]M]
C[(Au:K.M){A}] - A C[[A/u]M]

Notice that /?„ reduction may occur in any context, rather than just an evaluation
context.

Theorem 5.6 (Optimization)
\M\Y->*k\M\Y a n d K ' ^ K t .

The optimized transform is extended to evaluation contexts by considering the
hole to be a non-value and defining |A;T > fj : B\Y = Y. If F% h A;F > £ : A
(regarding the "hole" in £ as having some type B) and F^ 1- A;F > Y : A'—>Ans,
then \E\Y is a strict cbv value such that F^ I- A;F > \E\Y : B'—*Ans.

It is possible to regard any evaluation context as the composition of a series of
frames:

F ::= • M I K D I D W
Thus we may think of the evaluation context (^Q){^4} as the composition of frames

Lemma 5.7
Suppose that X is an expression that is not a std-cbv value. Then:

1- \UW = Y.
2. E [X] is not a std-cbv value.
3.

Theorem 5.8 (Decomposition)
1. If M is not a std-cbv value, then |£[M]|y = |M||£|y.
2. If V is a std-cbv value, then |7 | |E | r ->J, \E[V]\Y.

Proof
By induction on £ as a sequence of frames. Two illustrative cases are as follows:

\E[M]\Y = |Fo£ ' [M] | y

= \F[E'[M]]\Y

= \E'[M]\\FW

= \Vx V\Y

= K^iD)[
= \E[V]\Y

D
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It follows that \M\\EW ->'Pv \E[M]\Y for all terms M.

Theorem 5.9 (Simulation)
If P is a program and P ^'std.cbv Q, then \P\xxAnsx -*}„ \Q\xx:Am.x- Moreover, each
y?-step on P induces at least one ^-step on the converted form.

Proof
The main steps are to show that if P *-+std-cbv 2 by a /S-step, then \P\y —»t \Q\Y,

and if P °->s^-cbu Q ^ e i t h e r an ^ or ^ s tep, then \P\xx-.Ansx ->£„ \Q\xx-AnS.x- •

Theorem 5.10 (Termination)
For any program P,

1. There exists a unique std-cbv value V such that P -̂>* , , V.
2. If P ^'std.cbv V then \P\ (Xx:Ans.x) -*}v V where V is'such that V* -*'Pv V.

Proof
Part (1) is a consequence of simulation and the strong normalization property of
F,y. As previously remarked, any infinite std-cbv reduction sequence must contain
infinitely many /?-steps. Part (2) follows from the simulation and optimization
theorems, together with the observation that |F|,ix/jn5.x = V^. •

5.2.2 Standard call-by-name

The standard call-by-name semantics also admits a conversion into cps sharing
essentially the same properties as are enjoyed by the standard call-by-value cps
transformation. We have only to switch to the call-by-name variant of the constructor
transform and modify the term transform by replacing the variable, application, and
<£ clauses by the following clauses. Recall that under the call-by-name interpretation
variables are not considered to be values.

Definition 5.11

\A;T>x:A\ = x

|A ; r>MiM 2 :A\ = Xk:A'^Ans.\Mx\{kxx:{Ax^A2)'.xx\M2\k)
where A;F > M\ : A2-^A and A;F > M2 '• A2

:A\ = Xk:A'
\M\ {Xm:((Vu:Q..A-+u)-*Ay .mY k), where

Y = Xl:(iu:Q.A-*u)'^Ans.lY', and
Y' = Au:Q.?J:(A^uY^Ans.

I(lx:\A\.Xk':u ^-Ans.xk)

(A;T > Xx:A. M : A->A'Y = Ax:|y4|.|M|

Theorem 5.12 (Typing)
1. If F^ I- A;F > M : A, then there exists a strict cps value \M\ such that

FchAjIFMMI :\A\.
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|A;F> V :A\Y = Y V*

|A;F>x :A\Y = xY

|A;T> VlM2 :A\Y = V* (Xk:A'2-*Ans.\M2\k)Y
where A; F > M2 : A2

|A;F> Mi M2 :A\Y = \Mi\Y>, where A;F > M2 : A2, and
7' = M:(A2-*Ay.m(kk:Al^Ans.\M2\k)Y

\AS > V {A,} : [AJu]A2\Y = V^{A\}Y
\A;r>M{Ai}:[Al/u]A2\Y = \M\r, where

Y' = Am:(Vu:K.A2y.m{A\}Y

\A;T > XA(M) : A\r = | M | ^ M ,

\A;T><gA(M) :A\Y = \M\Y', where
Y' = Am:({Vu:n.A-*u)->A)'.mY"Y, and
Y" = Xl:(Vu£lA-wy->Ans.lY'", and
Y'" = Au:Q.M:(A-niy->Ans.

l{lx:\A\Ak':u'-*Ans.xY)

|A;F > M : A'\Y = \M\Y,
where A; F > M : A and A > A = A' :Q

(A;F>Ax:/li.M :/4i->i42)
t = Ax:\Ai\.lk:A'2->Ans.\M\k

(A;F> Au:K.M :Vu-X.A)t = Au:K.M:A'^>Ans.\M\k

(A;V>V:A'y = V\ where A;Ft> V : A and A > A = A' : fi

Fig. 3. The optimized standard call-by-name transform.

2. If F^ r- A;F > F : A, then there exists a strict cps value F* such that
Fm\-A;\r\»V :A\

Proof
Analogous to the standard call-by-value case. •

Theorem 5.13 (Simulation and Termination)
Let P be a program.

1. If P ^>'std_cbn V then | P\{Xx:Ans.x) - ^ V where 7' is such that V* - ^ F'.
2. There exists a unique std-cbn value V such that P c->* . . F.

Proo/
Similar to the call-by-value case. The necessary optimized transform is given in
figure 3. •

5.2.3 ML-like call-by-value

The constructor transforms for the standard semantics are based on the idea that
constructor applications are 'serious' computations (in the sense of Reynolds (1972)).
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For the restricted language F%~~ the body of a polymorphic abstraction must be a
value that is immediately passed to its continuation, and hence constructor appli-
cation is fundamentally a trivial computation step. We are thus led to consider an
alternative cps translation that more accurately reflects the computational behavior
of F^~ terms.

The definition of the alternative ml-cbv cps transform is the same as for the std-
cbv cps transform, with the following differences. We employ the ML-like definition
of the (—)* transform on constructors given in Definition 5.1, and take the following
clauses for constructor abstraction and application and for <g:

Definition 5.14

\A;r> M{A{} :[Ai/u]A2\ = JJc:([Ai/u\A2Y^Ans.
\M\(km:(Vu:K.A2)\k{m{A'l}))

\A;r > <gA(M) : A\ = Mc:A'
m(Au-n.lx:A\Mc':u'^>Ans.kx)k)

(A;r>Au:K.V:Vu:K.A)' = Au:K.V

This transformation does not yield terms in strict, or even ML-like, cps form.
In particular, terms of the form k (x {A}) arise in the transformation, violating
the condition that arguments to functions are restricted to values. By regarding
constructor applications as trivial computations (tantamount to values), we may
regard the translation as yielding terms in quasi-cps form, which is denned as
follows.

W ::= x\Xx:A.N \Au:K.W \W{A}
N ::= W | N W | Au:K.N \ N{A}

The set of terms in quasi-cps form is closed under ml-cbv and ml-cbn evaluation.
However, ml-cbv and ml-cbn do not coincide on this subset; the term (Xx:A.x)
{{Au:K.W){A}) may be further evaluated under ml-cbv, but not under ml-cbn
evaluation. However, the two semantics coincide under erasure:

Theorem 5.15
Let Pi and Pj be quasi-cps programs such that P° = P2°. If Pi '-*' < L QI and
Pl ^'ml-cbn Ql'then t h e r e e x i s t s 6'i a n d & s u c h t h a t ( e ' ) O = (62)O' Ql ^'ml-cbv 6>'

Proof
The erasure of quasi-cps form gives untyped cps form. The result follows from
the relationship between the ML-like semantics and the untyped semantics (see
Theorem 3.17) and the fact that the untyped semantics coincide on untyped cps
form. •

Theorem 5.16 (Typing)
1. If F%~ \~ A;F > M : A, then there exists a quasi-cps value \M\ such that

:\A\.
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2. If F^~ I- A;F > V : A, then there exists a quasi-cps value V such that
F - h A ; r > F * :A'.

This transform is essentially a typed version of the untyped call-by-value cps
transform.

Theorem 5.17
It F%~ \-A;T > M : A, then |M|° ->; \M°\ucbv.

Proof
By induction on typing derivations. One illustrative case is as follows:

|M{/l}r = lk.\M\°{lm.(k{A'}m)°)
= M..\M\°(Xm.km)

-» , Afc.|M|°fc

- , \M\°
= |M°|ucto

D

6 Summary

We have described four different operational interpretations for F*. Under the stan-
dard semantics, polymorphic abstractions are values and polymorphic instantiation
is a significant computation step. Under the ML-like semantics, which are intended
to model first erasing type information then evaluating using an untyped semantics,
evaluation proceeds beneath polymorphic abstractions and polymorphic instantia-
tion is essentially insignificant. We have analysed these two semantics, considering
a call-by-value and call-by-name variant for each, by means of the technique of cps
transformation.

The standard semantics—both call-by-value and call-by-name variants—validate
subject reduction, are terminating, and admit faithful, type-preserving transforma-
tions into continuation-passing style. We conclude that the standard semantics are
semantically unproblematic, at least from the point of view of compilation and
typing. These semantics have the significant advantage of being extensible to a more
sophisticated set of primitive operations, in particular, those that make non-trivial
use of type information at run time.

On the other hand, the ML-like call-by-value semantics is problematic—F*, when
evaluated under this semantics, fails to be sound. Restriction to the fragment F^~ in
which constructor abstractions are limited to values restores soundness at the cost
of losing ml-cbv's uniqueness. (Std-cbv and ml-cbv coincide on this fragment.) We
have presented an alternate cps transform for this fragment which treats constructor
application as a trivial computation unlike the normal std-cbv cps transform.
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A Rules for F^

Definition A.I (Constructor Context Formation Rules)

t>0

> A M ^ dom(A)

>A,u:K

Definition A.2 (Term Context Formation Rules)

>A

A>0

A>T AoA.Q x(£ dom(r)
A>r,x:^l

Definition A3 (Constructor Formation Rules)

> A

A

A

A>Ax :K2

A > u :

> Ax '. Q <

A > Ax —*

A,u:K>

A>Vu:X

A,u:Kx >

>Xu:Kx.A

=>K A>

A(u

b>

A2

A:

.A

A :

A2

0
A2 :C1

: Q

n
: Q

K2

:K2

A>AiA2:K

Definition A.4 (Constructor Equality Rules)

A

A*

A>

>A

>Ax

A

=

—

:K

A :

A2

K

:K

A>A2=Ai :K

A>Ai=A2:K A>A2 = A3:K

A>A{ =Ai :K

A > Ai = A\ : Q A > A2 = A2 : Q

A t> Ax -» A2 = A\ -> ylj : Q

(C-EMPTY)

(C-EXTEND)

(T-EMPTY)

(T-EXTEND)

(C-VAR)

(C-ARR)

(C-ALL)

(C-ABS)

(C-APP)

(REFL)

(SYMM)

(TRANS)

(C-ARR-EQ)
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A,u:K>A = A' :

A,u:Ki >A = A':K2

A>

A > Ay

A

A>

A

Xu:K\.A = lu:K\.A'

= A\:K2^>K A

A > A\ A2 = A\ A

,u:Kl>A2 :K2 A
{lu:Ki.A2)A1 = [A,

> A : K\ => K2 u (

:Kl^K2

>A2 = A'2 : K2

2-K

> A\ '. K\

i/u]A2 :K2

t dom(A)

A>Au:Ki.Au = A :

Definition A.5 (Term Formation Rules)

K2

A>T

(C-ALL-EQ)

(C-ABS-EQ)

(C-APP-EQ)

(C-BETA)

(C-ETA)

A;r>x:r(x)

A;T,x:A\ > M : A2

A;T >kx:AM : Ax -+ A2

A; r > Mi : A2 —• A A; F > M2 : A2

A;T>MlM2:A

A,u:K;T>M :A A>T

A;r>Au:KM :Vu:K.A

A;T>M :Vu:K.A' A> A : K

A;r>M{A} : [A/u]A'

A>A:Q A;T>M : Ans

A\T>a;A{M) :A

A;T > M : (Vu:fi./4—>u)—*A u £ dom(A)

A;F > <$A(M) : A

A;T>M:A A > A = A' : Q.

A;F>M :A'
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