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On Closed Ideals in a Certain Class of
Algebras of Holomorphic Functions

Héctor Merino-Cruz and Antoni Wawrzyńczyk

Abstract. We recently introduced aweighted Banach algebraAn
G of functions that are holomorphic

on the unit disc D, continuous up to the boundary, and of the class C(n) at all points where the
function G does not vanish. Here, G refers to a function of the disc algebra without zeros on D.
_en we proved that all closed ideals inAn

G with at most countable hull are standard. In this paper,
on the assumption thatG is an outer function in C(n)(D) having inûnite roots inAn

G and countable
zero set h0(G), we show that all the closed ideals I with hull containing h0(G) are standard.

1 Introduction

LetD denote the open unit disc in the complex planeC, and letA be the disc algebra
formed by all functions holomorphic in D and continuous on D. Let G be in A such
that G(z) /= 0 for all z ∈ D. For n ∈ N0 ∶= N∪ {0}, deûneAn

G as the completion of the
space of polynomials with respect to the norm

∥ f ∥G ,n =
n
∑
k=0

sup
z∈D
∣Gk f (k)(z)∣.

_ese algebras were introduced in [5] as generalizations of the algebras studied in [1]
and [2], which in our notation correspond to the case of G(z) = z2 − 1.

_e algebras An
z2−1 are isomorphic copies of Banach algebras, which appear to be

natural ranges of the Gelfand transform of certain convolution Sobolev algebras of
functions on the real half-line R+.

Using results from [6], we prove in [5] that for G ∈ A which is diòerentiable up to
the boundary T of D, the closed ideals I ⊂ An

G with at most countable hull

h0(I) ∶= {z ∈ T ∶ f (z) = 0, f ∈ I}

are standard. (See the deûnition in Section 2.) _is partially extends the results of [2].
_is paper concerns the case of an outer function G, which, moreover, is of class

C(n) on D and vanishes on an at most countable set. Hence the function G is an
element of An

G . _e main result provides conditions assuring that all closed ideals
contained in the closed ideal generated in An

G by G are standard. Accordingly to
Proposition 3.1, the class of above ideals coincideswith the class of idealswhich satisfy
{z ∈ T ∶ G(z) = 0} ⊂ h0(I).
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2 Standard Ideals in the Algebras An and An
G

LetAn be the algebra of functions holomorphic on the discD and of the class C(n) up
to the boundary, provided with the norm ∥ f ∥n = ∑

n
k=0 supz∈D ∣ f (k)(z)∣. _is norm

is visibly stronger than the norm ∥ ⋅ ∥G ,n restricted to An . Taking into account that
the space of complex polynomials is dense in (An , ∥ ⋅ ∥n), we conclude that An is
continuously and densely contained in An

G .
With a closed ideal J in An we associate the function UJ , which is the greatest

common inner divisor of all non-zero elements of J. Let

E j(J) = {z ∈ T ∶ f (z) = f ′(z) = ⋅ ⋅ ⋅ = f ( j)
(z) = 0 f ∈ J}, 0 ≤ j ≤ n.

_e sets E j(J) are compact and form a descending family. Let J(UJ ; E0(J), . . . , En(J))
denote the closed ideal of functions f ∈ An such that UJ divides f (denoted by UJ ∣ f )
and f ( j)∣E j(J) ≡ 0, 0 ≤ j ≤ n. _e above closed ideals are called standard.
B. I. Korenblyum proved that all closed ideals ofAn are standard.

_eorem 2.1 ([4]) Let J be a closed nontrivial ideal in An . _en

J = J(UJ ; E0(J), . . . , En(J)) .

_e convergence of a sequence of functions with respect to the norm ∥ ⋅ ∥G ,n im-
plies the uniform convergence on D and the almost uniform convergence of the
derivatives of the functions up to the order n on the set T ∖ h0(G). It follows that
every element of An

G is a function holomorphic on D, continuous on D and of the
class C(n) onD∖ h0(G), since the space of polynomials is dense inAn

G by deûnition.
_e following result gives a connection between Korenblyum’s theorem and the

problem of the structure of ideals in the algebraAn
G .

For G ∈ An and f ∈ An
G deûne γ( f ) = Gn f .

Proposition 2.2 If G ∈ An and f ∈ An
G , then γ( f ) ∈ An and γ∶An

G → An is an
injective bounded linear operator.

Proof For 0 ≤ k ≤ n we can write (Gn)(k) = Gn−kFk , where Fk ∈ A depends
polynomially on G and on the derivatives of G up to the order k. For f ∈ An

G and
0 ≤ i ≤ n, we have

(2.1) (Gn f )(i) =
i
∑

m=0
(

i
m
) f (m)

(Gn
)
(i−m)

=
n
∑

m=0
(

i
m
) f (m)GmGn−iFi−m .

For i ≤ n this function has a continuous extension on the closure D, hence γ( f ) =
Gn f ∈ An .
Equation (2.1) implies

sup
z∈D
∣(Gn f )(i)(z)∣ ≤ C

n
∑

m=0
sup
z∈D
∣ f (m)Gm

(z)∣,

where the constant C depends only on G and i. It follows that γ is a continuous
operator. It is obvious that γ is injective.
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Let I be an ideal inAn
G . Set h0(I) = {z ∈ T ∶ f (z) = 0, f ∈ I}, and for 1 ≤ j ≤ n let

h j(I) = {z ∈ T ∖ h0(G) ∶ f (z) = f ′(z) = ⋅ ⋅ ⋅ = f ( j)
(z) = 0}.

_e set h0(I) is compact, while the sets h j(I), 1 ≤ j ≤ n, are relatively closed in
T ∖ h0(I). An ideal I in An

G is said to be standard if it is of the form

I = I(UI ; h0(I), h1(I), . . . , hn(I))

∶= { f ∈ An
G ∶ UI ∣ f , f (k)∣hk(I) ≡ 0, 0 ≤ k ≤ n}.

_e following theorem was proved in [5].

_eorem 2.3 Let G ∈ A1 be a function nowhere vanishing in D. Every closed ideal I
in An

G such that h0(I) is at most countable is standard.

3 Main Results

A function f holomorphic on D is called an outer function if the unique inner func-
tion dividing f is constant. For F ∈ An

G let IF denote the ideal algebraically generated
in An

G by F and let IF be its closure in An
G .

Proposition 3.1 Let G ∈ An be an outer function such that the hull h0(G) is at most
countable. _en for arbitrary k ∈ N ,

IG k = I(1; h0(G),∅, . . . ,∅).

For k ≥ n, we have IG k ⊂ An .

Proof _e ûrst assertion follows by _eorem 2.3. For k ≥ n and f = Gkh with
h ∈ An

G , we obtain f = γ(Gk−nh) ∈ An by Proposition 2.2.

_eorem 3.2 Let G ∈ An be an outer function such that the hull h0(G) is at most
countable. Suppose that there exists in IG an approximate unit, that is, a sequence (ϕm)

such that ϕm f → f for every f ∈ IG . _en for every closed ideal I in An
G contained in

IG , theAn-ideal J(UI ; h0(I), h1(I) ∪ h0(G), . . . , hn(I) ∪ h0(G)) is dense in I.

Proof By Proposition 3.1 the assumption that the An
G-ideal I is contained in IG is

equivalent to the condition h0(G) ⊂ h0(I). _e sets h j(I) are relatively closed in
T ∖ h0(G), therefore the sets h j(I) ∪ h0(G) are compact.

Once again by Proposition 3.1 the ideal IG2n is dense in IG . _e space An is dense
in An

G . Consequently, for every m ∈ N, there is hm ∈ An
G such that for ψm = G2nhm it

holds ∥ϕm − ψm∥G ,n ≤ 1
m . Evidently, the sequence (ψm) is also an approximate unit

in IG k . In particular, for every f ∈ I we have that limm→∞G2nhm f = f . _e elements
hmGn f belong to I ∩An , as well as the elements hmG2n f , which, moreover, vanish
on h0(G) with all derivatives of order j ≤ n. _is proves that

ψm f ∈ J(UI ; h0(I), h1(I) ∪ h0(G), . . . , hn(I) ∪ h0(G))

and concludes the proof.
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_eorem 3.3 Under the assumptions of_eorem 3.2 the closed ideal I is standard.

Proof Denote Ĩ = I(UI ; h0(I), . . . , hn(I)). _en Ĩ is an ideal in An
G that contains I

and is contained in IG . By _eorem 3.2 the set

J̃ ∶= J(U Ĩ ; h0(Ĩ), h1(Ĩ) ∪ h0(G), . . . , hn(Ĩ) ∪ h0(G))

is dense in Ĩ. On the other hand, U Ĩ = UI , h j(Ĩ) = h j(I), 0 ≤ j ≤ n, hence
J̃ = J(UI ; h0(I), h1(I) ∪ h0(G), . . . , hn(I) ∪ h0(G)). _e latter set is dense in I by
_eorem 3.2. We obtain I = Ĩ.

4 Constructions of Approximate Units

_ere is a natural candidate for a (bounded) approximate identity in the ideal IG .
Every outer function is of the form G = eF for some function F holomorphic on D.
_e functions ϕm = G 1

m = e 1
m F are well deûned on D and, as proved subsequently,

form a bounded sequence with respect to the norm ∥ ⋅ ∥G ,n . For every f ∈ IG the
convergence ϕm f → f does hold. However, it is not obvious that ϕm belongs to An

G .
In this section we give some suõcient condition for ϕm ∈ An

G to hold.
_e following result was proved in [5].

Lemma 4.1 Let X be a compact topological space. Suppose that C(X) ∋ gm → g
uniformly on X. Suppose that g vanishes on a closed set S ⊂ X. Let ψm be a bounded
sequence in C(X) such that ψm → 1 almost uniformly on X ∖ S. _en gmψm → g
uniformly.

Denote by An
G the subspace of functions g in the disc algebra such that for every

0 ≤ j ≤ n the function G j g( j) extends continuously toD and vanishes on h0(G). _e
function ∥ ⋅ ∥G ,n is a norm on An

G . Notice that An
G is a closed subspace of An

G . In fact,
for every z0 ∈ h0(G) and 0 ≤ j ≤ n the functional “g → G j g( j)(z0)" is continuous on
An

G and vanishes on polynomial functions, hence it vanishes on An
G .

_eorem 4.2 Suppose that for some 0 < δ < 1 the function G satisûes the condition

M = sup
(z ,t)∈D×[δ ,1)

∣G(z)∣
∣G(tz)∣

<∞.

_en An
G = An

G .

Proof For f ∈ An
G , 0 < t ≤ 1, denote ft(z) = f (tz). Since ft ∈ An , it suõces to prove

that limt↗1 ft = f with respect to the norm ∥ ⋅ ∥G ,n .
To see this, note that limt→1(G j f ( j))t = G j f ( j) uniformly on D for 0 ≤ j ≤ n.
Now,

G j
( ft)( j)

= G j t j( f ( j)
)t = t j( G

Gt
)

j
(G j f ( j)

)t .

Take tm such that 0 < tm < 1 and tm → 1 as m → ∞. _en the functions
gm = (G j f ( j))tm tend uniformly to g = G j f ( j) as m → ∞ and the latter function
vanishes on h0(G).
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Moreover, the functions ψm = (G/Gtm)
j converge to 1 almost uniformly on

D ∖ h0(G). By Lemma 4.1 the proof follows.

_e next result follows by simple calculation.

Proposition 4.3 Let G ∈ An be an outer function. _e sequence ϕm = G 1
m belongs to

the space An
G and is bounded therein.

We need also the following result whose proof is straightforward by induction.

Lemma 4.4 Let p > 0, k ∈ N. _en

(G p
)
(k)

= pG p−1G(k)
+ p(p − 1) ∑

r=(r0 , . . . ,rk−1)

arG p−1+r0(G′
)
r1⋯(G(k−1)

)
rk−1 ,

where r0 ≥ −k, r j ∈ {0, 1, . . . , k} for j = 1, . . . , k − 1 and the coeõcients αr are
polynomials in p whose degree and coeõcients depend only on k.

Proposition 4.5 Let G ∈ An be an outer function. Let ϕm = G 1
m . _en ϕmG → G in

the space An
G .

Proof Without loss of generality we can suppose that ∥G∥∞ = 1.
By Lemma 4.4 we obtain for p = 1 + 1

m :

Gk
(ϕmG)(k) = (1 + 1

m
)ϕmGkG(k)

+

+ ( 1 +
1
m
)

1
m ∑

r=(r0 , . . . ,rk−1)

arϕmGr0+k
(G′
)
r1⋯(G(k−1)

)
rk−1 .

_e ûrst term on the right-hand side tends to GkG(k) uniformly by Proposition 4.3
and Lemma 4.1. Other terms of the ûnite sumon the right-hand contain non-negative
powers of G and of the derivatives of G of order less or equal to n, hence they are
bounded with respect to ∥ ⋅ ∥∞ norm. _anks to the coeõcient 1

m these terms tend to
zero uniformly.

_eorem 4.6 Let G ∈ An be an outer function such that h0(G) is at most countable.
Suppose that G satisûes one of the following conditions:
(i) there exists 0 < δ < 1 such that sup(z ,t)∈D×[δ ,1)

∣G(z)∣
∣G(tz)∣ <∞;

(ii) G ∈ A∞(D) and all zeros of G are of inûnitemultiplicity.
_en ϕm = G 1

m is an approximate unit in the closed ideal IG generated in An
G .

In consequence, every closed ideal in An
G contained in IG is standard.

Proof If condition (i) is satisûed, then An
G = An

G by _eorem 4.2. _e sequence ϕm
belongs An

G and is bounded in this space. Every element of the sequence vanishes on
h0(G) and, according to Proposition 3.1, belongs to IG .

_en, since the sequence (ϕm)m is bounded in An
G , the convergence ϕmG → G

implies the convergence ϕm f → f for every f ∈ IG . On the other hand, if G is an
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outer function with all zeros of inûnitemultiplicity, then G 1
m ∈ An(D) ⊂ An

G(D) and
the proof follows by the same arguments as above.

_eorem 3.3 proves the second assertion.
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