Canad. Math. Bull. Vol. 58 (2), 2015 pp. 350–355 http://dx.doi.org/10.4153/CMB-2015-003-6 © Canadian Mathematical Society 2015

On Closed Ideals in a Certain Class of Algebras of Holomorphic Functions

Héctor Merino-Cruz and Antoni Wawrzyńczyk

Abstract. We recently introduced a weighted Banach algebra \mathcal{A}_G^n of functions that are holomorphic on the unit disc \mathbb{D} , continuous up to the boundary, and of the class $C^{(n)}$ at all points where the function G does not vanish. Here, G refers to a function of the disc algebra without zeros on \mathbb{D} . Then we proved that all closed ideals in \mathcal{A}_G^n with at most countable hull are standard. In this paper, on the assumption that G is an outer function in $C^{(n)}(\overline{\mathbb{D}})$ having infinite roots in \mathcal{A}_G^n and countable zero set $h_0(G)$, we show that all the closed ideals I with hull containing $h_0(G)$ are standard.

1 Introduction

Let \mathbb{D} denote the open unit disc in the complex plane \mathbb{C} , and let \mathcal{A} be the disc algebra formed by all functions holomorphic in \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Let G be in \mathcal{A} such that $G(z) \neq 0$ for all $z \in \mathbb{D}$. For $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, define \mathcal{A}_G^n as the completion of the space of polynomials with respect to the norm

$$||f||_{G,n} = \sum_{k=0}^{n} \sup_{z\in\mathbb{D}} |G^k f^{(k)}(z)|.$$

These algebras were introduced in [5] as generalizations of the algebras studied in [1] and [2], which in our notation correspond to the case of $G(z) = z^2 - 1$.

The algebras $\mathcal{A}_{z^2-1}^n$ are isomorphic copies of Banach algebras, which appear to be natural ranges of the Gelfand transform of certain convolution Sobolev algebras of functions on the real half-line \mathbb{R}_+ .

Using results from [6], we prove in [5] that for $G \in \mathcal{A}$ which is differentiable up to the boundary \mathbb{T} of \mathbb{D} , the closed ideals $I \subset \mathcal{A}_G^n$ with at most countable hull

$$h_0(I) \coloneqq \{z \in \mathbb{T} : f(z) = 0, f \in I\}$$

are standard. (See the definition in Section 2.) This partially extends the results of [2].

This paper concerns the case of an outer function G, which, moreover, is of class $C^{(n)}$ on $\overline{\mathbb{D}}$ and vanishes on an at most countable set. Hence the function G is an element of \mathcal{A}_G^n . The main result provides conditions assuring that all closed ideals contained in the closed ideal generated in \mathcal{A}_G^n by G are standard. Accordingly to Proposition 3.1, the class of above ideals coincides with the class of ideals which satisfy $\{z \in \mathbb{T} : G(z) = 0\} \subset h_0(I)$.

Received by the editors April 27, 2014; revised October 18, 2014.

Published electronically March 4, 2015.

The research of the first name autor was partially supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) under the grant 179846.

AMS subject classification: 46J15, 46J20, 30H50.

Keywords: Banach algebra, disc algebra, holomorphic spaces, standard ideal.

³⁵⁰

2 Standard Ideals in the Algebras \mathcal{A}^n and \mathcal{A}^n_G

Let \mathcal{A}^n be the algebra of functions holomorphic on the disc \mathbb{D} and of the class $C^{(n)}$ up to the boundary, provided with the norm $||f||_n = \sum_{k=0}^n \sup_{z \in \mathbb{D}} |f^{(k)}(z)|$. This norm is visibly stronger than the norm $||\cdot||_{G,n}$ restricted to \mathcal{A}^n . Taking into account that the space of complex polynomials is dense in $(\mathcal{A}^n, ||\cdot||_n)$, we conclude that \mathcal{A}^n is continuously and densely contained in \mathcal{A}^n_G .

With a closed ideal J in \mathcal{A}^n we associate the function U_J , which is the greatest common inner divisor of all non-zero elements of J. Let

$$E_j(J) = \{z \in \mathbb{T} : f(z) = f'(z) = \dots = f^{(j)}(z) = 0 \ f \in J\}, \quad 0 \le j \le n.$$

The sets $E_j(J)$ are compact and form a descending family. Let $J(U_J; E_0(J), \ldots, E_n(J))$ denote the closed ideal of functions $f \in \mathcal{A}^n$ such that U_J divides f (denoted by $U_J|f$) and $f^{(j)}|_{E_j(J)} \equiv 0, 0 \le j \le n$. The above closed ideals are called standard.

B. I. Korenblyum proved that all closed ideals of \mathcal{A}^n are standard.

Theorem 2.1 ([4]) Let J be a closed nontrivial ideal in A^n . Then

$$J = J(U_J; E_0(J), \ldots, E_n(J)).$$

The convergence of a sequence of functions with respect to the norm $\|\cdot\|_{G,n}$ implies the uniform convergence on $\overline{\mathbb{D}}$ and the almost uniform convergence of the derivatives of the functions up to the order *n* on the set $\mathbb{T} \setminus h_0(G)$. It follows that every element of \mathcal{A}_G^n is a function holomorphic on \mathbb{D} , continuous on $\overline{\mathbb{D}}$ and of the class $C^{(n)}$ on $\overline{\mathbb{D}} \setminus h_0(G)$, since the space of polynomials is dense in \mathcal{A}_G^n by definition.

The following result gives a connection between Korenblyum's theorem and the problem of the structure of ideals in the algebra \mathcal{A}_G^n .

For $G \in \mathcal{A}^n$ and $f \in \mathcal{A}^n_G$ define $\gamma(f) = G^n f$.

Proposition 2.2 If $G \in A^n$ and $f \in A^n_G$, then $\gamma(f) \in A^n$ and $\gamma: A^n_G \to A^n$ is an injective bounded linear operator.

Proof For $0 \le k \le n$ we can write $(G^n)^{(k)} = G^{n-k}F_k$, where $F_k \in \mathcal{A}$ depends polynomially on *G* and on the derivatives of *G* up to the order *k*. For $f \in \mathcal{A}_G^n$ and $0 \le i \le n$, we have

(2.1)
$$(G^n f)^{(i)} = \sum_{m=0}^{i} {i \choose m} f^{(m)} (G^n)^{(i-m)} = \sum_{m=0}^{n} {i \choose m} f^{(m)} G^m G^{n-i} F_{i-m}$$

For $i \leq n$ this function has a continuous extension on the closure $\overline{\mathbb{D}}$, hence $\gamma(f) = G^n f \in \mathcal{A}^n$.

Equation (2.1) implies

$$\sup_{z\in\mathbb{D}}|(G^nf)^{(i)}(z)|\leq C\sum_{m=0}^n\sup_{z\in\mathbb{D}}|f^{(m)}G^m(z)|,$$

where the constant *C* depends only on *G* and *i*. It follows that γ is a continuous operator. It is obvious that γ is injective.

H. Merino-Cruz and A. Wawrzyńczyk

Let *I* be an ideal in \mathcal{A}_G^n . Set $h_0(I) = \{z \in \mathbb{T} : f(z) = 0, f \in I\}$, and for $1 \le j \le n$ let

$$h_i(I) = \{z \in \mathbb{T} \setminus h_0(G) : f(z) = f'(z) = \cdots = f^{(j)}(z) = 0\}.$$

The set $h_0(I)$ is compact, while the sets $h_j(I)$, $1 \le j \le n$, are relatively closed in $\mathbb{T} \setminus h_0(I)$. An ideal *I* in \mathcal{A}_G^n is said to be standard if it is of the form

$$I = I(U_I; h_0(I), h_1(I), \dots, h_n(I))$$

:= { f \in A_G^n : U_I | f, f^{(k)} |_{h_k(I)} \equiv 0, 0 \le k \le n }.

The following theorem was proved in [5].

Theorem 2.3 Let $G \in A^1$ be a function nowhere vanishing in \mathbb{D} . Every closed ideal I in \mathcal{A}_G^n such that $h_0(I)$ is at most countable is standard.

3 Main Results

A function f holomorphic on \mathbb{D} is called an outer function if the unique inner function dividing f is constant. For $F \in \mathcal{A}_G^n$ let I_F denote the ideal algebraically generated in \mathcal{A}_G^n by F and let \overline{I}_F be its closure in \mathcal{A}_G^n .

Proposition 3.1 Let $G \in A^n$ be an outer function such that the hull $h_0(G)$ is at most countable. Then for arbitrary $k \in \mathbb{N}$,

$$I_{G^k} = I(1; h_0(G), \emptyset, \dots, \emptyset)$$

For $k \geq n$, we have $I_{G^k} \subset \mathcal{A}^n$.

Proof The first assertion follows by Theorem 2.3. For $k \ge n$ and $f = G^k h$ with $h \in \mathcal{A}^n_G$, we obtain $f = \gamma(G^{k-n}h) \in \mathcal{A}^n$ by Proposition 2.2.

Theorem 3.2 Let $G \in A^n$ be an outer function such that the hull $h_0(G)$ is at most countable. Suppose that there exists in \overline{I}_G an approximate unit, that is, a sequence (ϕ_m) such that $\phi_m f \to f$ for every $f \in \overline{I}_G$. Then for every closed ideal I in \mathcal{A}^n_G contained in \overline{I}_G , the \mathcal{A}^n -ideal $J(U_I; h_0(I), h_1(I) \cup h_0(G), \ldots, h_n(I) \cup h_0(G))$ is dense in I.

Proof By Proposition 3.1 the assumption that the \mathcal{A}_G^n -ideal I is contained in \overline{I}_G is equivalent to the condition $h_0(G) \subset h_0(I)$. The sets $h_j(I)$ are relatively closed in $\mathbb{T} \setminus h_0(G)$, therefore the sets $h_j(I) \cup h_0(G)$ are compact.

Once again by Proposition 3.1 the ideal $I_{G^{2n}}$ is dense in \overline{I}_G . The space \mathcal{A}^n is dense in \mathcal{A}_G^n . Consequently, for every $m \in \mathbb{N}$, there is $h_m \in \mathcal{A}_G^n$ such that for $\psi_m = G^{2n}h_m$ it holds $\|\phi_m - \psi_m\|_{G,n} \leq \frac{1}{m}$. Evidently, the sequence (ψ_m) is also an approximate unit in \overline{I}_{G^k} . In particular, for every $f \in I$ we have that $\lim_{m\to\infty} G^{2n}h_m f = f$. The elements $h_m G^n f$ belong to $I \cap \mathcal{A}^n$, as well as the elements $h_m G^{2n} f$, which, moreover, vanish on $h_0(G)$ with all derivatives of order $j \leq n$. This proves that

$$\psi_m f \in J(U_I; h_0(I), h_1(I) \cup h_0(G), \dots, h_n(I) \cup h_0(G))$$

and concludes the proof.

352

On Closed Ideals in Algebras of Holomorphic Functions

Theorem 3.3 Under the assumptions of Theorem 3.2 the closed ideal I is standard.

Proof Denote $\tilde{I} = I(U_I; h_0(I), \dots, h_n(I))$. Then \tilde{I} is an ideal in \mathcal{A}_G^n that contains I and is contained in \bar{I}_G . By Theorem 3.2 the set

$$\widetilde{J} := J(U_{\widetilde{I}}, h_0(\widetilde{I}), h_1(\widetilde{I}) \cup h_0(G), \dots, h_n(\widetilde{I}) \cup h_0(G))$$

is dense in \widetilde{I} . On the other hand, $U_{\widetilde{I}} = U_I$, $h_j(\widetilde{I}) = h_j(I)$, $0 \le j \le n$, hence $\widetilde{J} = J(U_I; h_0(I), h_1(I) \cup h_0(G), \dots, h_n(I) \cup h_0(G))$. The latter set is dense in I by Theorem 3.2. We obtain $I = \widetilde{I}$.

4 Constructions of Approximate Units

There is a natural candidate for a (bounded) approximate identity in the ideal \overline{I}_G . Every outer function is of the form $G = e^F$ for some function F holomorphic on \mathbb{D} . The functions $\phi_m = G^{\frac{1}{m}} = e^{\frac{1}{m}F}$ are well defined on $\overline{\mathbb{D}}$ and, as proved subsequently, form a bounded sequence with respect to the norm $\|\cdot\|_{G,n}$. For every $f \in \overline{I}_G$ the convergence $\phi_m f \to f$ does hold. However, it is not obvious that ϕ_m belongs to \mathcal{A}_G^n . In this section we give some sufficient condition for $\phi_m \in \mathcal{A}_G^n$ to hold.

The following result was proved in [5].

Lemma 4.1 Let X be a compact topological space. Suppose that $C(X) \ni g_m \to g$ uniformly on X. Suppose that g vanishes on a closed set $S \subset X$. Let ψ_m be a bounded sequence in C(X) such that $\psi_m \to 1$ almost uniformly on $X \setminus S$. Then $g_m \psi_m \to g$ uniformly.

Denote by \mathfrak{A}_G^n the subspace of functions g in the disc algebra such that for every $0 \le j \le n$ the function $G^j g^{(j)}$ extends continuously to $\overline{\mathbb{D}}$ and vanishes on $h_0(G)$. The function $\|\cdot\|_{G,n}$ is a norm on \mathfrak{A}_G^n . Notice that \mathcal{A}_G^n is a closed subspace of \mathfrak{A}_G^n . In fact, for every $z_0 \in h_0(G)$ and $0 \le j \le n$ the functional " $g \to G^j g^{(j)}(z_0)$ " is continuous on \mathcal{A}_G^n and vanishes on polynomial functions, hence it vanishes on \mathcal{A}_G^n .

Theorem 4.2 Suppose that for some $0 < \delta < 1$ the function G satisfies the condition

$$M = \sup_{(z,t)\in\mathbb{D}\times\lceil\delta,1)}\frac{|G(z)|}{|G(tz)|} < \infty$$

Then $\mathfrak{A}_G^n = \mathcal{A}_G^n$.

Proof For $f \in \mathfrak{A}_G^n$, $0 < t \le 1$, denote $f_t(z) = f(tz)$. Since $f_t \in \mathcal{A}^n$, it suffices to prove that $\lim_{t \ge 1} f_t = f$ with respect to the norm $\|\cdot\|_{G,n}$.

To see this, note that $\lim_{t\to 1} (G^j f^{(j)})_t = G^j f^{(j)}$ uniformly on $\overline{\mathbb{D}}$ for $0 \le j \le n$. Now,

$$G^{j}(f_{t})^{(j)} = G^{j}t^{j}(f^{(j)})_{t} = t^{j}\left(\frac{G}{G_{t}}\right)^{j}(G^{j}f^{(j)})_{t}.$$

Take t_m such that $0 < t_m < 1$ and $t_m \to 1$ as $m \to \infty$. Then the functions $g_m = (G^j f^{(j)})_{t_m}$ tend uniformly to $g = G^j f^{(j)}$ as $m \to \infty$ and the latter function vanishes on $h_0(G)$.

Moreover, the functions $\psi_m = (G/G_{t_m})^j$ converge to 1 almost uniformly on $\mathbb{D} \setminus h_0(G)$. By Lemma 4.1 the proof follows.

The next result follows by simple calculation.

Proposition 4.3 Let $G \in A^n$ be an outer function. The sequence $\phi_m = G^{\frac{1}{m}}$ belongs to the space \mathfrak{A}_{G}^{n} and is bounded therein.

We need also the following result whose proof is straightforward by induction.

Lemma 4.4 *Let* $p > 0, k \in \mathbb{N}$. *Then*

$$(G^{p})^{(k)} = pG^{p-1}G^{(k)} + p(p-1)\sum_{\mathbf{r}=(r_{0},\ldots,r_{k-1})} a_{\mathbf{r}}G^{p-1+r_{0}}(G')^{r_{1}}\cdots(G^{(k-1)})^{r_{k-1}},$$

where $r_0 \geq -k$, $r_j \in \{0, 1, \dots, k\}$ for $j = 1, \dots, k-1$ and the coefficients α_r are polynomials in p whose degree and coefficients depend only on k.

Proposition 4.5 Let $G \in \mathcal{A}^n$ be an outer function. Let $\phi_m = G^{\frac{1}{m}}$. Then $\phi_m G \to G$ in the space \mathfrak{A}_G^n .

Proof Without loss of generality we can suppose that $||G||_{\infty} = 1$. By Lemma 4.4 we obtain for $p = 1 + \frac{1}{m}$:

$$G^{k} \left(\phi_{m} G \right)^{(k)} = \left(1 + \frac{1}{m} \right) \phi_{m} G^{k} G^{(k)} + \left(1 + \frac{1}{m} \right) \frac{1}{m} \sum_{\mathbf{r} = (r_{0}, \dots, r_{k-1})} a_{\mathbf{r}} \phi_{m} G^{r_{0} + k} (G')^{r_{1}} \cdots (G^{(k-1)})^{r_{k-1}}.$$

The first term on the right-hand side tends to $G^k G^{(k)}$ uniformly by Proposition 4.3 and Lemma 4.1. Other terms of the finite sum on the right-hand contain non-negative powers of G and of the derivatives of G of order less or equal to n, hence they are bounded with respect to $\|\cdot\|_{\infty}$ norm. Thanks to the coefficient $\frac{1}{m}$ these terms tend to zero uniformly.

Theorem 4.6 Let $G \in A^n$ be an outer function such that $h_0(G)$ is at most countable. Suppose that G satisfies one of the following conditions:

- there exists $0 < \delta < 1$ such that $\sup_{(z,t)\in\mathbb{D}\times[\delta,1)} \frac{|G(z)|}{|G(tz)|} < \infty$; $G \in \mathcal{A}^{\infty}(\mathbb{D})$ and all zeros of G are of infinite multiplicity. (i)
- (ii)
- Then $\phi_m = G^{\frac{1}{m}}$ is an approximate unit in the closed ideal \overline{I}_G generated in \mathcal{A}_G^n . In consequence, every closed ideal in \mathcal{A}_G^n contained in \overline{I}_G is standard.

Proof If condition (i) is satisfied, then $\mathcal{A}_G^n = \mathfrak{A}_G^n$ by Theorem 4.2. The sequence ϕ_m belongs \mathcal{A}_G^n and is bounded in this space. Every element of the sequence vanishes on $h_0(G)$ and, according to Proposition 3.1, belongs to \overline{I}_G .

Then, since the sequence $(\phi_m)_m$ is bounded in \mathcal{A}^n_G , the convergence $\phi_m G \to G$ implies the convergence $\phi_m f \to f$ for every $f \in \overline{I}_G$. On the other hand, if G is an

354

outer function with all zeros of infinite multiplicity, then $G^{\frac{1}{m}} \in \mathcal{A}^n(\mathbb{D}) \subset \mathcal{A}^n_G(\mathbb{D})$ and the proof follows by the same arguments as above.

Theorem 3.3 proves the second assertion.

References

- J. E. Galé, P. J. Miana, and J. J. Royo, Estimates of the Laplace transform on convolution Sobolev algebras. J. Approx. Theory 164(2012), no. 1, 162–178. http://dx.doi.org/10.1016/j.jat.2011.09.011
- [2] J. E. Galé and A. Wawrzyńczyk, Standard ideals in weighted algebras of Korenblyum and Wiener types. Math. Scand. 108(2011), no. 2, 291–319.
- [3] K. Hoffman, *Banach spaces of analytic functions*. Prentice-Hall Series in Modern Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962.
- [4] B. I. Korenblyum, *Closed ideals in the ring Aⁿ*. Funkcional. Anal. i Prilozen. 6(1972), no. 3, 38–52.
- [5] H. Merino-Cruz and A. Wawrzyńczyk, Closed ideals in a new class of algebras of holomorphic functions on the disc. Comment. Math. 54(2014), no. 1, 29–37.
- [6] A. Sołtysiak and A. Wawrzyńczyk, *Ditkin's condition and ideals with at most countable hull in algebras of functions analytic in the unit disc.* Comment. Math. 52(2012), no. 1, 101–112.

Universidad Autónoma de Guerrero, Unidad Académica de Matemáticas, Av. Lázaro Cárdenas S/N, Col. La Haciendita, 39127 Chilpancingo, Gro., México *e-mail:* hmerinoc@gmail.com

Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa AP 55-534, 09340 México

e-mail: awaw@xanum.uam.mx