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A generalization of a

theorem of Wedderburn

Steve Llgh

Outcalt and Yaqub have extended the Wedderburn Theorem which

states that a finite division ring is a field to the case where

R is a ring with identity in which every element is either

nilpotent or a unit. In this paper we generalize their result

to the case where R has a left identity and the set of

nilpotent elements is an ideal. We also construct a class of

non-commutative rings showing that our generalization of Outcalt

and Yaqub's result is real.

1. Introduction

Wedderburn1s Theorem, asserting that a finite division ring is

necessarily commutative, has been generalized in several directions [1, 6,

7, 8]. A survey on a few papers concerning commutativity theorems for

rings revealed that the two non-commutative rings defined on the Klein

group {G, +) have been cited quite often as counterexamples to show that

certain hypotheses cannot be deleted. In particular, one of them has the

following multiplication: if x # 0 is in G , then xg = 0 or xg = g

for all g in G . One of the purposes of this note is to characterize

the class of abelian groups which admit such multiplications. Then this

class of rings is used to obtain a generalization of a theorem of Outcalt

and Yaqub [«].

2. A class of non-commutative rings

DEFINITION. Let (G, +) be an abelian group and H a proper subset
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of G such that 0 £ H . Define a multiplication * on G as follows:
h * g ~ g and x * g = 0 for each h € H , x € G-H and g € G . The

multiplication * is called "trivial" if and only if (G, + ,. *) is a

ring.

We now give a complete characterization of the class of abelian groups

which admit a tr ivial multiplication.

THEOREM 1. An abelian group (G, +) admits a trivial multiplication
if and only if each element of G is of order tuo.

Proof. Suppose (G, + , *) is a ring and * is t r iv ia l . Then there
is h t 0 in G such that hg = g for each g in G . Let y i- 0 be
an element of G . Since (h+h)y = 0 or y , i t follows that
(h+h)y = 0 . Hence 0 = (h+h)y = y + y . Thus each element of (G, +) is
of order two.

Conversely, let (G,'+) be an abelian group of which each element is
of order two. Thus G can be considered as a vector space over Z .

Hence G has a basis B . For each x # 0 in G , there is a positive
integer n such that x = i>, + bo + . . . + b , b. € B . Let

H = {x 6 G : n is odd) . Define a multiplication * on G as follows:
if h € H , h * g = g for each g € G . For x € G-H , x * g = 0 for
each g i G . I t follows from [5] or can be verified easily that
(G, +, *) satisfies a l l the axioms of a ring except perhaps the right
distributive law. That the right distributive law also holds can be
checked easily. Hence (G, +, *) is a ring and the multiplication
defined is t r iv ia l . This completes the proof of the theorem.

Observe that the class of rings just constructed has the following
properties: the set of nilpotent elements is an ideal, left identities

exist, (xy) = x y for each element x and y . This class of non-
commutative rings serves as counterexamples to show that certain hypotheses
of various commutativity theorems cannot be omitted. For example, see [3,
4, 6, 7, « ] .

3. A cormiutativity theorem

Many generalizations of the famous Wedderburn's Theorem have appeared
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recently. In [8] Outcalt and Yaqub provided the following:

THEOREM (Outcalt and Yaqub). Let R be a ring with identity in

which each element is either nilpotent or a unit in R . Then

(a) the set N of nilpotent elements in R is an ideal;

(b) if (i) R/N is finite and (ii) x = y (mod N) implies that

2 2x = y or both x and y commute with all elements of N ,

then R is commutative.

We now extend the above resul t to a much larger class of r ings . We

simply assume the ring has a lef t identi ty and the set of nilpotent

elements i s an ideal . But f i r s t we s ta te another generalization of

Wedderburn's Theorem given by Herstein [7 ] .

THEOREM (Herstein). Let R- be a ring such that for every element x

in R there exists an integer n = n(x) , and a polynomial P(t) = p
x (* )

with integer coefficients, such that xn P(x) = xn . If all the nilpotent

elements of R are in the center of R , then R is commutative.

THEOREM 2. Let R be a ring with a left identity e and let the

set of nilpotent elements be an ideal. If

(i) R/N is finite and

(ii) x = y (mod N) implies that x = y or both x and y

commute with all elements of N ,

then R is commutative.

Proof. Firs t we show that e i s also a right ident i ty by

demonstrating that e i s unique. Suppose there exis ts w in if such

that wr = r for each r in R . Since R/N i s commutative, we see that

ew - we = w - e i s an element of N . Thus w = e (mod N) implies that

2 2u = u = e = e or both w and e commute with a l l elements of iV . In

the l a t t e r case, we see that e(u-e) = (w-e)e implies that e = W . Since

e is unique i t follows [2, p. 55] that e i s the ident i ty of R .

Next we wish to show that each element of tf i s in the center of R .

Since R/N i s f i n i t e , i t i s a direct sum of f ie lds :
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R/N = Fx/N © R2/H @ ... &R./N .

Using Lemmas 1 and 2 in [S]» we see that i f b. + N i s in R./N , then

ab • = b .a for each a in N . Now le t a i N and b € R . Then

b - b. + b + . . . + b . + n , n i N . Thus ab - ba , s ince by Lemma 1 i n
± c. 3

[S] N is a commutative subring of R and ab. = b .a for

1 = 1, ..., j . This shows that N is a subset of the center of R .

Since R/N is finite and has no nonzero nilpotent elements, i t

follows that for each x in R there is an integer n = n(x) such that

x1 - x is in N . Hence there is an integer k such that

x = x P(x) . Now by Herstein's Theorem R is commutative.

Recall that the class of non-commutative rings constructed in Section

2 satisfies the hypotheses of Theorem 2 except (ii). Hence we see that

Outcalt and Yaqub's result is a corollary of our theorem.

Finally we remark that in Theorem 2 one can assume a right identity

instead of a left identity. However, i t is not known whether or not one

can drop that assumption.
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