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§ 0. Introduction

A formal quantization of Poisson algebras was discussed by several
authors (see for instance DrinfeΓd [D]). A formal Lie algebra generated
by homotopy classes of loops on a Riemann surface Σ was obtained by
W. Goldman in [G], and its Poisson algebra was quantized, in the sense
of DrinfeΓd, by Turaev in [T]. Briefly speaking, a quantization of a com-
mutative Poisson algebra P is a noncommutatively extented algebra A
such that the noncommutativity is related to the Lie bracket of the
Poisson algebra P through a surjective homomorphism p: A-*P (see
Definition 2.1). In Turaev's quantization, the algebra A is a semi-group
algebra generated by links in the thickened Riemann surface ((Riemann
surface Σ) X (real line R)).

On the other hand, there is an obvious map from Goldman's Poisson
algebra to the ring ZfίίJ of polynomials with integral coefficients on the
first homology group Hx of the Riemann surface which assigns to each
loop its homology class. There arises a natural question whether it is
possible to construct a map from Turaev's algebra to the ring
the polynomial ring with coefficient in Z[i?i], such that the diagram

A >Z[Hί][h]
quantization \h —> 0

y
P

commutes. Our main purpose in this paper is to show that the polyno-
mial invariant of links introduced in § 3 (Definition 3.1) gives an answer
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to the above question (Theorem 4.2 and Theorem 5.4.2). In order to sat-
isfy the condition on quantization, the algebra A has to be a quotient
of the algebra of links divided by a certain ideal which corresponds to
a relation so called the skein relation. Since our polynomial invariant
satisfies the skein relation for certain types of triples of links, but not
for all Conway triples (see the condition (SR) in § 2 for the precise state-
ment), we adopt a quantization which is slightly different from Turaev's,
but the idea is following Turaev. We also consider quantizations of the
Poisson algebra generated by nonoriented loops, and discuss the same
question for nonoriented loops and links.

As an invariant of links, our polynomial invariants have different
nature from, for example, Alexander's, Jones, ... invariants. Actually if
a link is contained in a 3-ball in Σ X R, then our polynomial associated
to this link turns out to be zero. Roughly speaking, our polynomial
measures the global behavior of a link on the handles of the surface.

In § 1 and § 2, we review Goldman's Lie bracket and modified Turaev's
quantization. In § 3, we give a definition of our polynomial invariant of
oriented links, ane in § 4, discuss some properties of the polynomial in-
variant and its relation to the quantization. In § 5, we investigate non-
oriented cases. In Appendix, we discuss quantizations in a more general
setting, and construct a certain morphism which extends our polynomial
invariant.

§ 1. Lie algebra generated by oriented loops

In this paper, we denote by Σ an oriented Riemann surface, not
necessarily closed. Let π be the set of homotopy classes of loops on Σ,
(i.e. the set of conjugacy classes in the fundamental group of Σ). Let
Zπ denote the Z-module freely generated by π.

For each a e ft and a simple point p on a (we use the same nota-
tion for a representative of a homotopy class), we denote by ap the
corresponding element in the fundamental group based at p.

DEFINITION 1.1. For homotopy classes a and βeft, we define the
bracket by

[a,β] = Σ epap-βpeZπ,

where εp = ± 1 is the intersection number of a and β at p, and ap>βp is
the product in the fundamental group (see Fig. 1.1).
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Fig. 1.1.

For the proof of the fact that the above definition of the bracket is

independent of the choice of representatives, and for the proof of the

following, see [G].

PROPOSITION 1.2. (Zπ , [, ]) is a Lie algebra.

Let if be a commutative ring (we will consider only the ring Z of

integers for K). Let P be a if-module with a commutative multiplication

structure. We call P a Poisson algebra, if P carries a Lie algebra struc-

ture which satisfies the Leibniz rule with respect to the multiplication of

P. Let g be a Lie algebra. The direct sum of symmetric tensor products

of g, S*(g), has the canonical multiplication, and the Lie bracket on g

extends to a bracket on S*(g) using the Leibniz rule. Thus S*(g) can

be considered as a Poisson algebra.

DEFINITION 1.3. We denote by S(Zτt) the Poisson algebra constructed

from the Lie algebra Zπ as above.

§ 2. Quantization of S(Zπ)

Let P be a Poisson algebra over a ring K, and A a K [h]-algebra.

A if-module homomorphism p: A —> P is called a if [Λ]-module homomor-

phism, if for each f(h) e K[h] and each a e A, the equality p(f(h)a) =

f(0)p(a) holds.

DEFINITION 2.1. If the noncommutativity of A is related with the

bracket on P through a surjective K[h]-homomorphism p: A —>P by

ab - bae hp-χ([p{a), p(b)]),

then we call p\ A —> P a quantization of P.

Turaev obtained in [T] a quantization of S(Zτt). We define a quan-

tization of S(Zπ) which is conceptually the same as Turaev's.

Let Aj be the Z[h]-module freely generated by oriented links in Σ X

R. Define a multiplication LXL2 of two links Lj and L2 in Σ X R as
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follows; putting Lx (resp. L2) in Σ X {t > 0} (resp. Σ X {t < 0}) by parallel

translations along R, we define Lλ'L2 as the link obtained by taking the

union of Lx and L2. Thus Ax is considered as a semi-group algebra over

Z[/i]. Let l0 be the ideal of Aί generated by the following elements;

(SR) L+ — L_ — /ιL0, where L± and Lo are links such that (i) these three

links have the same representatives outside a 3-ball in which they look

like as Fig. 2.1 (Conway triple), and (ii) the numbers \L±\ and |L0 | of loop

components of L± and Lo satisfy the equality \L±\ = |L0 | + 1.

Let Z* (i = 1, , |L|) be the projection image on Σ of each loop com-

ponent of a given link L in Σ X R. Here the projection 21 X R -> Σ is

the canonical one. We define

(KL) = Π lt e S(Zπ).

It is easy to see that p turns out to be a Z[h]-module homomorphism

p: A = AJΪ» >S(Zπ).

The proof of the following is the same as that of Theorem 6.3.1. of [T].

PROPOSITION 2.2. p: A -* S(Zτt) is a quantization. In fact p satisfies

§3. Polynomials associated to oriented links

In this section we give a definition of the polynomial invariant. First

we construct a polynomial looking at one of the corresponding link-

diagrams on the Riemann surface, and then we show the polynomial is

independent of the choice of diagrams, i.e. under the Reidemeister moves

(see [R]). By oriented link diagram on a Riemann surface Σ, we mean

an oriented graph D on Σ whose vertices are as in Fig. 3.1, where the

vertex in Fig. 3.1. ( + 1) (resp. Fig. 3.1 (— 1)) is called of type + 1 (resp.
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— 1). The number \D\ of loop components of the corresponding link to

D is well defined, since there is associated a unique oriented link in

Σ X R to each oriented link diagram D on Σ,

(+l)-vertex

(—1)-vertex

Fig. 3.1.

state s = {v}

Fig. 3.2.

For a set s of vertices of D, let D(s) be the link diagram obtained

from D by changing D near the vertices in s as shown in Fig. 3.2 (for

the definition of state, see Definition 3.1).

We fix a basis {#J*=i of the homology group H^Σ; Z). Let D be an

oriented link diagram on Σ, and lt (i = 1, , \D\) the loop components

on Σ of the corresponding link in Σ X R (lt are considered to be pro-

jected on Σ). If the component lt realize the homology class 2y=i ajχj>

then, considering 2]?=i ajχj a s a polynomial in Z[xu ''-,xk]> we denote

this polynomial by (l^. Define

(D) = Π </«> € Z[xl9 •• , x j .

DEFINITION 3.1. By a sίαίβ of a link diagram D, we mean a subset

s of vertices such that \D\ = \D(s)\ + |s|, where |s | is the number of ver-

tices in s. We define a polynomial ((£))) e Z[xt, , xfc, h] by
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where the sum is taken over all states s of 23, and [s|_ denotes the num-

ber of vertices in s of type — 1.

THEOREM 3.2. The polynomial is an invariant of an oriented link.

In the following lemma, we prove ((D)) is invariant under the Reide-

meister moves, I, II and III.

LEMMA 3.3. ((23)) is invariant under the moves I.

The proof is trivial.

LEMMA 3.4. ((23)) is invariant under the moves II.

Proof. We denote by u and v the vertices in Π which are not in D

(see Fig. 3.3). If a state s contains neither u nor v, then it contributes

to ((23')) in the same way as to ((23)). A state s of 23' cannot contain

both u and v. The sum over all states s23' which contain one of u and

v is equal to 0, since these vertices have different types + 1 and — 1.

Move II

Fig. 3.3.

LEMMA 3.5. ((23)) is invariant under the moves III.

Proof. We fix a 1: 1 correspondence between the sets of vertices of

diagrams 23 and Π as in Fig. 3.4. Note that the corresponding vertices

υ% and v\ have the same type s ± 1, and that the sets of all states of 23

and Π are also in 1: 1 corresponddence. Under this correspondence it

is clear that <23(s)> = <23'(s)> for any state s.

D

Move III

Fig. 3.4.
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EXAMPLE 3.6. Let Σ = T2 be the 2-torus. We fix generators x and

y of H^T2; Z) as in Fig. 3.5. We exhibit examples in Fig. 3.6. In general,

we have the equality shown in Fig. 3.7.

Fig. 3.5.

n x-loops

= xhn

n loops in y-direction

Fig. 3.6.

Fig. 3.7.

h

§ 4. Properties of the polynomial and its relation to the quantiza-
tion

Given a Riemann surface Σ, we fix a basis {xJLi of the homology

group HX(Σ\ Z). To each oriented link L in Σ X R, we associated a poly-

nomial ((L)) e Z[xu '-',xk,h]. We list some properties of the polynomial

in the following;

THEOREM 4.1. Let L be an oriented link in Σ X R, and ((L)) the poly-

nomial constructed in § 3.
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(1) 1/ a link consists of d loop components, then ((L)} is homogeneous

of degree d.

(2) «LX*i, . . ,* f c,0) = </,>(*,,-..-,**).

(3) 1/ L is semi-local (i.e. there is a nonempty subset of L and a 3-

ball in Σ X R such that the subset is contained in the 3-ball and L is

disjoint from the boundary of the 3-feα/Z), then ((L)) = 0.

(4) If L+, L_ and Lo are a Conway triple with \L±\ = |L0| + 1, then

(5) If Lj and L2 have representatives with disjoint projection images

on Σ), then {LrL2} = «!*» «L2)>.

Proofs. (1) The homogeneity of the polynomial is a consequence of

the condition |D | = \D(s)\ + \s\ on states s.

(2) It is enough to note that \D(s)\ = \D\ if and only if |s | — 0.

(3) If L itself is contained in a 3-ball, then <D(s)> = 0 for all states

s. For general semi-local links, the triviality of the polynomial is a

consequence of (5).

(4) Choose link diagrams D+, D._ and A for L+, L_ and Lo such

that there is a small 2-disc on Σ where these diagrams look like as Fig.

2.1, and outside the disc they coincide. Let v0 be the vertex of D± in

the disc. Then all states of D+ are states of Z)_, and vise versa. If a

state s of D+ contains the vertex u0 then s — {u0} is a state of A> and

D+(s) = D_(s) = Dΰ(s — {v0}). This implies the equality.

(5) We can take link diagrams A for A and A for L2 such that

D1 Π A = 0 Then we have {states of A U A} — {states of A} X {states

of A}> and (— l)'SiU52i- = (— i)i ii- x (_ i)i*»ι- for any states ^ of A and

s2 of A This completes the proof.

Let p: A -> S(Zπ) be the quantization obtained in the last section.

The property (4) in Theorem 4.1 implies the well definedness of the Z[h]~

module homomorphism (( )): A ->Z[xt, , xk, h], and the property (2) im-

plies the commutativity of the following;

THEOREM 4.2. The diagram

A __—> Z[xί, - - , xk, h]

^ Z[Xl,--.,xk]

is well defined and commutative.
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§5. Nonoriented loops and links

So far we considered oriented loops and oriented links. In this sec-

tion, we consider the nonoriented case, but again fix the orientation of

the Riemann surface. We show the analogous results in parallel with

those in the preceding sections, and the indices of Propositions,... are

compatible.

5.1. Lie algebra generated by nonoriented loops

Let ft be the set of homotopy classes of (nonoriented) loops on a

given Riemann surface Σ9 and Zft the Z-module generated by ft. For

loops a and β given in general position on Σ, and for each point p e

aΠβ, we denote by (a β)* the loops obtained by changing a and β near

p as shown in Fig. 5.1. We define bracket structure on Zft as follows

(see [G]);

DEFINITION 5.1.1.

Σ

a

Fig. 5.1.

PROPOSITION 5.1.2. The Z-module Zft with the above bracket is a Lie

algebra.

For the proof, see [G].

DEFINITION 5.1.3. Let S(Zτr) denote the Poisson algebra correspond-

ing to the Lie algebra Zft.

5.2. Quantization

We consider nonoriented links in Σ X R, and construct the Z[h}-

algebra At with a semi-group algebra structure and an ideal Zo in the

same way as the oriented case except the condition (SR). In place of

(SR), we consider the following;

(GSR) L+ — L_ — h(LQ + L J , where L±, Lo and LTO are links such that

(i) these four links have the same representatives outside a 3-ball in
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which they are as in Fig. 5.2, and (ii) \L±\ = \L0\. + 1 = |LTO| + 1.

Fig. 5.2.

Multiplications on Aj and on the quotient A = AJΪQ and a Z[/ι]-

module homomorphism p: A -+ S(Zτr) are all defined in the same way as

in the oriented case.

PROPOSITION 5.2.2. p: A -> S(Zτf) is a quantization. In fact p satisfies

5.3. Polynomials associated to nonoriented links

Let D be a (nonoriented) link diagram on a Riemann surface Σ.

For a map s which associated to each vertex of D a number ± 1 or 0,

we change D near its vertices as shown in Fig. 5.3 to obtain a new

diagram D(s).

v

if s(υ) - 1 if s(v) = 0 if s(υ) = - 1

Fig. 5.3.

For the projection image lt (i = 1, , d = \D\) of each component

of the link corresponding to the diagram D, we choose an orientation

on lu and write its homology class by 2 αΛ> where {#*}*=! is a fixed

basis of H^Σ Z). Then we define a polynomial </*> by (l>> = Yj\aAxu

and a polynomial <D) by <JD) = []

DEFINITION 5.3.1. By a state of the diagram D, we mean a map s

as above such that \D\ = |O(s)| + |s|, where |s| is the number of vertices

which are associated to 1 or — 1 by s. Let |s|_ denote the number of

vertices which are assigned to — 1 by 5. We define

where the sum is taken over all states s of D.
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THEOREM 5.3.2. The polynomial {{ )) is a nonorίented link invariant.

Proof. The proof of the invariance under the Reidemeister moves is

the same as the oriented case except the following observation about

Move III.

We consider two diagrams D and Π as in Fig. 3.4, forgetting their

orientations. We fix the canonical 1: 1 correspondence between the sets

of states of D and Π. Remark that under the correspondence the re-

sulting diagrams D(s) and D'(s) are, in general, not homotopic, if there

are two vertices in Fig. 3.4 on which the state s is not zero. In order

to see the difference of contributions of such states on the polynomials

((D')} and ((DO), we choose the orientation on each loop component as in

Fig. 3.4. Then we reduce the difference in the form

<(D)> - ((&)) = f g

g = (aβϊ) + (aΐ-'β) + (aγβ-1) + (aβ-'T-1)

- (arβ) - (aβ->r) - (aβr1) - (ar-iβ-iy,

where / is some polynomial in Z[xu -' 9xk,h]9 and (aβϊ), ••• are the

polynomials in Z[xu , xk] which corresponds to the loops aβϊ, being

forgotten their orientations (the product aβϊ is taken in the fundamental

group), in the same way as <D>. From the definition of the polynomial,

( ), we have, for example, {aβϊ} = (aϊβ}, and thus g = 0.

5.4. Properties of the polynomial and its relation to the quan-
tization

The proof of the following is similar as Theorem 4.1.

THEOREM 5.4.1. (1) The polynomial ((L)) of a nonoriented link L with

d connected components is homogeneous of degree d.

(2) {L)){xu .-.,**,<)) = <L>(xl9 , xk).

(3) // L is semi-local {i.e. there is a nonempty subset of L and a 3-

ball in Σ X R such that the subset is contained in the S-ball and L is

disjoint from the boundary of the S-ball), then ((L)) = 0.

(4) If L+, L_, Lo and LM satisfy the condition (GSR) in (5.2), then

« + » « _ » ( « o » « - » )

(5) // Lx and L2 have representatives with disjoint projection images

on Σ), then {LrL2} = ((LJ •«£,».

Finally we state a relation of the polynomial in (5.3) to the quan-

tization in (5.2) in the following;
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THEOREM 5.4.2. The diagram

A >Z[xί9 --,xk,h]

9
\

λ — 0

is well defined and commutative.

Appendix

In Appendix, we consider an abstract procedure of quantization of

Poisson algebras, and construct a homomorphism of a noncommutative

algebra to a polynomial ring, in a general setting, and then we relate

this homomorphism to our polynomial invariant constructed in § 3.

A.I. Let be given

(1) a commutative ring R,

(2) a module V over iϊ,

(3) a skew symmetric bilinear form B: V® V-+R.

From these data, we can construct a Lie algebra structure on the module

g = @vev Rev with the free generators eυ parametrized by υ e V as fol-

lows. The Lie bracket is defined by

[eυ,ew] = B(υ, w)eΌ+w.

We extend this bracket to that on the symmetric tensor product space

S(g) by the Leibniz rule, obtaining a Poisson algebra (cf. Definition 1.3).

A.2. A quantization of this Poisson algebra is obtained as follows;

consider a bracket [, ]' on the module g ® R[h] defined by

[x, yY = h[x, y] (x, yeg),

and denote by Sh(g) the universal envelopping algebra of g ® R[h] with

respect to the Lie bracket [, ]'. The natural map Sh(g) -* S(g) obtained

by putting h = 0 is a quantization of the Poisson algebra S(g) in the

sense of Definition 2.1.

This quantization is functorial in the following sense. If /: g -> gf

is a Lie algebra homomorphism, then / canonically extends to a homo-

morphism S(g) -> S(g') (denoted by the same letter /), and then / is

lifted up to a homomorphism F: Sh(g) -> Sh(g'), so that the diagram

https://doi.org/10.1017/S0027763000003299 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003299


QUANTIZATION OF A POISSON ALGEBRA 125

Sh(g) - ^ >

S(g) ~y

commutes.

A.3. Let be given

(4) a commutative i?-algebra T

(5) an i?-algebra homomorphism λ: S(g) ~> T.

We are interested in R[h]-module homomorphisms A such that the fol-

lowing diagram commutes;

Sh(g) ~^> T[h]

S(g)-j* T.

From the Poincare-Birkhoff-Witt theorem, we know that Sh(g) is a free

j?[/ι]-module, since Sh(g) is a universal enveloping algebra, and also,

introducing a linear ordering on V, we can use an 2?-module basis of

S(g) as a basis of Sh(g). So there are prenty of homomorphisms A as

above. We will see that there exists, among them, a natural homomor-

phism A which is closely related to our polynomial invariant obtained in

§3.

A.4. Fix an element eVl eVn e Sh(g), where denotes the mul-

tiplication in Sh(g) as an enveloping algebra. Let's consider the com-

plete graph Γ(ή) with n vertices {1, , n} and with ί S ) edges that are

oriented from the smaller number to the larger number. Let Γ be a

subgraph of Γ{n), and {Γt; ί — 1, , \Γ\} the set of all connected com-

ponents of Γ. Let <T I λ9 B} denote the element in T defined by

( ΊΓ\ \

Π Σ Kej) Π B(vum,vum),
ϊ = l αβVert (Γ<) / w6Edge(Γ)

where u(0) and u(ί) denote the initial and terminal vertices of the edge

u. We define

A(eVί . # ej = Σ <Γ\λ9
Γ

where the sum is taken over all subgraphs which contain all vertices of
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Γ(ή) and have no 1-cycles. It is a direct calculation to verify that the

polynomials Λ(evi eVn) e T[h] satisfy the equality

Λ(eΌl eV2 X) - Λ(eva eVl X) = ΛΛfle,,, e j X)

for any Uj and u2 6 V and any X e SΛ(g). Therefore the homomorphism

A: Sh(g) -> T[h] is well defined, and makes the diagram in A.3 commu-

tative.

A.5. Now we consider the case where

( i ) R = Z

(ii) V = Ht(Σ;Z)
(iii) B — the intersection pairing on HX(Σ\ Z).

Let Sh(g) —• S(g) be the quantization associated to the Lie algebra g as

is obtained in the previous sections from the above data (i) ~ (iii). If

we start with Goldman's Lie algebra ZTΓ, then we get the quantization

SΛ(Z7r) -> S(Zπ). The homomorphism Zπ —• g induced by the Hurwitz

homomorphism πγ —> HX{Σ Z) is a Lie algebra homomorphism. Therefore

we get the following commutative diagram;

Sh{Zπ) —> Sh(g)

S(Zπ) > S(g).

A.6. Let Λo be the Z[Λ]-algebra generated by oriented links in the

product space Σ X R of a Riemann surface Σ with a real line R. We

consider the following ideal ΪH rather than the ideal 1Q in § 2. The ideal

ΪH in Ao is, by definition, generated by the following elements (HSR);

(m) L+ — L_ — hL0, if \L±\ = |L0 | + 1 (mixed Conway triple) ,

(p) L+ — L_ , if \L±\ = |L0 | — 1 (pure Conway triple),

where L± and LQ are Conway triples, and the letters p and m are the

initials of pure and mixed Conway triples (see [HP]). This is called the

homotopy skein relation, and the quotient AH = AjlH is called the

homotopy skein module of the 3-manifold. For our 3-manifold Σ X R the

homotopy skein module is of course a Z[Λ]-algebra. Hoste and Przytycki

has shown in [HP] that

AH s Sh(Zπ),
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A.7. Let's consider, for the Lie algebra g constructed in § (A.5)

from the homology group V = H^Σ Z), the following algebra and mor-

phism;

(iv) T=Z[xu . 9xn],

(v) λ: S(g) -*Z[xu , xn], the canonical homomorphism,

where xl9 and xn are the generators of H^Σ Z) as in §3. Summa-

rizing the constructions from §A.l to §A.6, we get the following com-

mutative diagram;

AH > Sh(g) >Z[xu ->,xn,h]

I
S(Zπ) > S(g) >Z[xl9 . . . , Λ J .

A direct calculation shows

THEOREM. The composition of homomorphisms in the upper horizontal

line of the above commutative diagram is the same as the polynomial in-

variant {( )) constructed in § 3.
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