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Non-extendable Zero Sets of Harmonic
and Holomorphic Functions

P. M. Gauthier

Abstract. In this paper we study the zero sets of harmonic functions on open sets in RN and holo-
morphic functions on open sets in CN . We show that the non-extendability of such zero sets is a
generic phenomenon.

Recall that a subset Y of a topological space X is said to be residual (in X) if X is
of second Baire category and X ∖ Y is of ûrst Baire category; i.e., it can be written
as a countable union of nowhere dense subsets of X. In particular, if X is of second
category and Y is a dense Gδ subset of X , then Y is residual in X .

We will show that the zero sets ofmost (in the sense of Baire category) harmonic
functions are not extendable near every boundary point. Also, we shall consider the
analogous situation for holomorphic functions on domains inCN . _ese results relate
well to thework of other authors on the genericity and non-extendability of universal
functions. Bernal-González and Ordóñez Cabrera [1] among others havemade con-
tributions that touch on the results here. Many of these authors have also considered
topics like “lineability” of properties considered in this paper. Wemight study this in
the future.

1 The Harmonic Case

We begin with an example that motivated our results.

Example 1.1 Consider a bounded open set D in RN . We show that there exists a
harmonic function u on D with the property that there is no harmonic function on
any open set G containing D, whose zeros on D are the same as those of u. Let F
be a closed subset of D consisting of the union of pairwise disjoint closed segments
[ak , bk], k = 1, 2, . . . , in D, whose respective lengths tend to zero, form a locally ûnite
family in D, and accumulate at each point of ∂D. We note that for this set F ⊂ Ω, the
hypotheses of [2, _eorem 3.19] are satisûed. Deûne a continuous function f on F
by mapping each segment [ak , bk] to the interval [−1,+1] ⊂ R. Let u be a harmonic
function on D, which approximates f within 1/2 on F. Let p be an arbitrary point of
∂D and ε > 0. We may choose a segment [ak , bk] within ε distance of p. _ere is a
point c ∈ [ak , bk] such that u(c) = 0. _us, u is a non-constant harmonic function in
D, whose zeros accumulate at every point of ∂D. Now, if G is an open set containing
D and v is a harmonic function onG whose zeros on D coincidewith those of u, then
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v vanishes at each point of ∂D. By theMaximum Principle, v must vanish identically
in D. _is contradicts the assumption that the zeros of v on D are the same as those
of u.

In this section we will show that the non-extendability of zero sets of harmonic
functions is a generic phenomenon. To formulate our results we introduce some no-
tation. For a function g, deûned on a set E, let ∥g∥E ∶= sup{∣g(x)∣ ∶ x ∈ E} denote its
supremum norm on E. Further, we denote by Z(g∣U) the set of zeros of the function
g on a set U ⊂ E. Finally, for an open set Ω ⊂ RN , we denote by H(Ω) the space of
harmonic functions on Ω endowed with the topology of local uniform convergence.

Deûnition 1.2 Let Ω be a proper domain in RN (N ≥ 2). We say that a function
u ∈ H(Ω) belongs in the class N(Ω) of hypernull functions on Ω if it satisûes the
following property:

For every p ∈ ∂Ω, for every ball Bp centred at p, and for every component U of
Ω ∩ Bp , there are no functions vp real analytic in Bp and not identically 0 such
that Z(u∣U) ⊂ Z(vp ∣U).

_eorem 1.3 Let Ω be a proper domain in RN . _en N(Ω) is a dense Gδ subset of
the space H(Ω).

For the purposes of the proofwe introduce the following notion. By an horoball in
an open set Ω, we understand a pair (A, q), where A is an open ball in Ω such that
{q} = ∂Ω ∩ ∂A.

_e following remark is borrowed from a paper we are currently writing with
Myrto Manolaki.

Remark 1.4 Let Bp be a ball centered at a point p ∈ RN and let C be an open cone
with vertex at p. _en there is a sequence xn tending to p in C ∩ Bp , such that if u is
analytic in Bp and vanishes on this sequence, then u = 0.

Proof Wemay assume that p = 0, B0 is the unit ball B and C = rθ ∶ θ ∈ U , 0 < r < 1,
where U is an open subset of the unit sphere. Let θ1 , θ2 , . . . , be a countable dense
subset of U , and consider the countable set of radial segments S1 , S2 , . . . , emanating
from 0, where S j = {rθ j ∶ 0 < r < 1/ j}, j = 1, 2, . . . . Now, let {xn} be a sequence
tending to 0 on the union of the S j , such that for each j, there is a subsequence on
S j . If u is analytic in B and vanishes on this sequence, then u = 0 on the segment
L j ∩ B, where L j is the line on which S j lies, since the zeros have an accumulation
point, namely 0. Since u is continuous and zero on a dense subset of the cone C , it
is zero on all of C , but since C is an open subset of B, it follows that u = 0 on all of
B.

Lemma 1.5 For each proper open subset Ω ⊂ RN , there is a countable collection of
horoballs (Ak , qk) in Ω, such that for each p ∈ ∂Ω, for each ball Bp centred at p and
for each component Up of Ω ∩ Bp , we have Ak ⊂ Up for some k and qk ∈ Bp .
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Proof Let X be a countable dense subset of ∂Ω. For every ûxed x ∈ X and j ∈ N, let
{Ux , j, i ∶ i ∈ Ix , j},where Ix , j ⊂ N is the set of connected components ofΩ∩B(x , 1/ j).
For each componentUx , j, i , choose a point y ∈ ∂Ux , j, i∩B(x , 1/ j) and letV be a ball in
Ux , j, i , whose closure is closer to y than to the boundary S(x , 1/ j) of B(x , 1/ j). Let Sy
be the segment from the center of V to the point y.We displace the ball V bymoving
its center along the segment Sy until V ûrst meets a boundary point q of Ux , j, i . By
construction, q ∈ ∂V ∩ ∂Ω, but it may not be the only such point. Wemay choose an
horoball (A, q), by taking A to be an open ball inV , such that q = ∂A∩∂V .With each
x , j, i we have associated an horoball (A, q). _is gives a countable family of horoballs
(Ax , j, i , qx , j, i),We may arrange these in a sequence (Ak , qk), where the qk may not
be all distinct. We thus obtain a countable family of horoballs,whose boundary points
qk are dense on ∂Ω.

Let p ∈ ∂Ω, Bp be a ball centred at p and Up a component of Ω ∩ Bp . Choose
q ∈ ∂Up ∩ Bp and j ∈ N such that the ball Bq , j of centre q and radius 1/ j is contained
in Bp . Let Uq , j, i be a component of Ω ∩ Bq , j that meets Up . By construction, one
of the horoballs (Ak , qk) corresponds to this Uq , j, i . _us, Ak ⊂ Uq , j, i ⊂ Up . _is
concludes the proof.

Finally, we will make use of the following fact.

HarmonicHurwitz_eorem Let Ω be a domain inRN and suppose un is a sequence
of zero-free harmonic functions in Ω converging locally uniformly in Ω to a function u.
_en either u is a zero-free harmonic function or u ≡ 0.

_e proof of this fact is straightforward. We can assume that un > 0. Hence, u ≥ 0.
Suppose u(z0) = 0. _en, u assumes its minimum and so u ≡ 0.

Now we have all the tools to prove themain theorem of this section.

Proof of_eorem 1.3
Step 1. First, we show that N(Ω) is non-empty.

Suppose ûrst that ∂Ω consists of ûnitely many points p1 , . . . , pm . Let r1 > r2 > ⋅ ⋅ ⋅
with r j ↘ 0, and for each k ∈ {1, 2, . . . ,m}, denote by Bk , j the ball of radius r j centred
at pk . Choose r1 so small that the closed balls Bk ,1 are disjoint and contained in Ω,
except for their respective centres pk . For each k, let Kk be an open cone, with vertex
pk . Wemay form the spherical caps Ck , j ∶= Kk ∩ ∂Bk , j . Let F be the relatively closed
subset of Ω formed by the union of the caps Ck , j . We deûne a continuous function
ϕ on F, by setting ϕ = (−1) j on Ck , j , for each j. By [2, _eorem 3.19], there exists
a harmonic function u on Ω such that ∣u − ϕ∣ < 1/2 on F. On each ray R ⊂ Kk , the
function u has a sequence of zeros converging to pk . Suppose ũ is real analytic in an
open ball Bk , centred at pk . If the zeros of ũ contain those of u in Ω ∩ Bk , then ũ = 0
on a sequence of points tending to pk on R ∩ Bk . _us, ũ = 0 on R ∩ Bk . Since this
is true for every R ⊂ Kk , we have that ũ = 0 on Kk ∩ Bk . Consequently, ũ = 0 on Bk .
_is completes the proof in case ∂Ω is a ûnite set.

Now suppose that ∂Ω is inûnite. We claim that to prove a function u belongs in
N(Ω) it is suõcient to show the following. For every q in a dense subset Q of ∂Ω,
for every ball Bq centred at q, and for every component U of Ω ∩ Bq , there are no
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functions vq real analytic in Bq and not identically 0 such that

Z(u ∣U) ⊂ Z(vp ∣U).
To see this, suppose that the above holds for a dense subset Q of ∂Ω. Let p ∈ ∂Ω.
Suppose there is a ball Bp centred at p, a component U of Ω ∩ Bp , and a function vp
real analytic on Bp such that Z(vp ∣Bp) ⊃ Z(u∣U). Choose q ∈ Q ∩ ∂U ∩Bp and a ball
Bq ⊂ Bp centred at q. Let vq ∶= vp ∣Bq and let Uq be any component of U ∩ Bq . _en,
vq is a real analytic function on Bq for which Z(vq ∣(Uq ∩ Bq)) ⊃ Z(u∣(Uq ∩ Bq)).
From the deûnition of Q, it follows that vq = 0 on Bq and consequently that vp = 0 on
Bp . _is establishes the claim.
By Lemma 1.5,wemay choose a dense sequence of points q1 , q2 , . . . on ∂Ωwith the

property that for each p ∈ ∂Ω, for each ball B centred at p, and for each component
U of Ω ∩U , there is an open ball Ak contained in U for which ∂Ak ∩ ∂Ω = {qk}.

In general, supposewe have an open ball Awhose closure is contained in Ω except
for one point q ∈ ∂A∩ ∂Ω. Let Bq be a ball centred at q and of radius r less than that
of A. _en the closed spherical cap C = A∩ ∂Bq is non empty. Let K be the cone with
vertex q generated by the cap C. Let r = r1 > r2 > ⋅ ⋅ ⋅ with r j ↘ 0. We may form the
spherical caps C j = K ∩ ∂B j , where B j is the ball of radius r j centred at q.

We apply this procedure for each qk , to form a sequence Ck , j of corresponding
spherical caps converging to qk , but we must do this carefully. First, we choose C1,1.
Next, we choose C1,2 and C2,1, making sure that C2,1 is disjoint from C1,1 and C1,2.
_e general procedure is as follows. Consider the inûnitematrix

{(k, j) ∶ k = 1, 2, . . . , j = 1, 2, . . .} .

Let Dℓ ∶= {(m, ℓ−m+ 1) ∶ m = 1, 2. . . . , ℓ} be the entries of this matrix along the ℓ-th
anti-diagonal, that is along the segment starting at (1, ℓ) and running southwest in a
straight line to (ℓ, 1). We choose the caps successively in D1, D2, . . . , Dn , . . . . At each
step, for an entry (k, j) in some Dn , we choose a cap Ck , j suõciently close to qk that
it is disjoint from the previously constructed caps.

_eunion of these caps is a relatively closed subset E ofΩ that satisûes thehypothe-
ses of [2,_eorem 3.19]. Deûne a continuous function ϕ on E by setting ϕ = (−1) j on
Ck , j for each k and j. _ere exists a harmonic function u on Ω, such that ∣u−ϕ∣ < 1/2
on E. Fix qk , a ball B centred at qk and a component U of Ω∩B. _ere is an horoball
(Ak , qk) with Ak ⊂ U . _e argument used for the case that ∂Ω was ûnite shows
that u has the desired property for each qk . Since these points are dense in ∂Ω, this
concludes the proof of Step 1.

Step 2. Next, we show that the family of functions u ∈ N(Ω) is dense in H(Ω).
Let h be a function in H(Ω), let K be a compact subset ofΩ, and let ε be a positive

number. Denote by K̂ the Ω-hull of K, that is, the union of K and all bounded com-
ponents of RN ∖ K that are relatively compact in Ω. _en K̂ is also a compact subset
ofΩ. In Step 1, we can drop ûnitelymany caps, and sowe can assume that all caps are
disjoint from K̂. Since K̂ ∪ E satisûes the hypotheses of [2,_eorem 3.19], instead of
merely approximating ϕ on E, we can simultaneously approximate h on K̂. We thus
obtain a function u ∈ H(Ω), which, not only has the desired behaviour on E, but also
approximates h within ε on K̂, and a fortiori on K. _is concludes the proof of Step 2.
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Step 3. We now prove that the family Xp of functions in H(Ω) that fail to have the
property of non-extendability at a particular boundary point p is of ûrst Baire cate-
gory.
Fix a compact ball K ⊂ Ω. If u ∈ Xp , then certainly u /≡ 0 so

max{ ∣u(x)∣ ∶ x ∈ K} > 0.

Also, there exists a ball Bp centred at p, a component U of Ω ∩ Bp and a function
vp real analytic and not identically 0 on Bp such that Z(u∣U) ⊂ Z(vp ∣Bp). We can
consider RN as the real part of CN = RN + iRN . In a neighborhood of p = p + i0,
the function vp extends to a holomorphic function ṽp . By choosing Bp smaller, we
can assume that ṽp is bounded on the ball B̃p , centered at p + i0 in CN = RN + iRN

and having the same radius as Bp . Multiplying by a small positive number, we may
assume that ∣ṽp ∣ ≤ 1. Since vp /≡ 0, it follows that ∥vp∥S > 0, where S is the sphere
centred at p whose radius is half that of Bp . Let j and k be positive integers. Denote
by B j the ball centred at p and of radius 1/ j and S( j) the sphere of centre p and radius
half that of B j .

Let U i , j , i = 1, 2, . . . , be the components of Ω ∩ B j and denote by H i , j(u) the
family of functions v analytic in the ball B j , which are respectively restrictions of
holomorphic functions ṽ bounded by 1 on B̃ j , for which Z(u∣U i , j) ⊂ Z(v∣B j). Let

X i , j,k = {u ∈ H(Ω) ∶ ∥u∥K ≥ 1/k, there is v ∈ H i , j(u), ∥v∥S( j) ≥ 1/k} .

_en
Xp ⊂ ⋃

i , j,k
X i , j,k ,

and we will show that each X i , j,k is closed and nowhere dense in H(Ω).
To show that X i , j,k is closed, suppose u1 , u2 , . . . are in X i , j,k and un → u locally

uniformly on Ω. _en ∥u∥K ≥ 1/k and so u /≡ 0. For each un let vn be a function
associated with un by the deûnition of X i , j,k ; that is,

vn ∈ H i , j(un) and ∥vn∥S( j) ≥ 1/k.
Also, let ṽn denote the holomorphic extension of vn on the complex ball B̃ j . Since
{ṽn} is a normal family, wemay assume that vn → v, where v is an analytic function
on B j , which is the restriction of a function ṽ holomorphic on B̃ j .
Clearly ∣v∣ ≤ 1 and max ∣v∣ ≥ 1/k on S( j). _us, v /≡ 0 on U i , j . Let q ∈ U i , j be a

point where v(q) /= 0. Let Bq be a closed ball centred at q in U i , j on which v is zero
free. _en, vn is zero free on Bq for large n, and consequently un is also zero free on
Bq . By the harmonic version ofHurwitz_eorem, either u ≡ 0 on Bq or u is zero-free
on Bq . Since u /≡ 0 on Ω, it follows that u is zero-free on Bq . In particular, u(q) /= 0.
We have shown that

Z(u∣U i , j) ⊂ Z(v∣U i , j).
_us, v ∈ H i , j(u) and X i , j,k is closed.

Next,we claim that the sets X i , j,k are nowhere dense. Indeed, supposewe are given
a function h ∈ H(Ω), a compact set K ⊂ Ω, and ε > 0. In Step 2, we showed that
there exists a function u ∈ H(Ω) having the property that for each p ∈ ∂Ω, for each
ball Bp centred at p, and for each component U of Ω ∩ B, there is no non-constant
analytic function vp on Bp whose zeros contain those of u on U . Hence, u /∈ Xp . In
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constructing this function u we were able moreover to ensure that ∣u − h∣ < ε on K.
_us, H(Ω) ∖ Xp is dense, and consequently each X j,k is a nowhere dense set. It
follows that Xp is of ûrst Baire category in H(Ω). Since H(Ω) is a complete metric
space, the subset Xp is residual. _is concludes the proof of Step 3.

Since a countable union of sets of category one is still of category one, for every
countable subset Q of ∂Ω, the family of functions in H(Ω), that fail to satisfy the
conclusion of the theorem for some q ∈ Q, is still of ûrst category. Let Q be a dense
countable subset of ∂Ω. _en the family X of functions in H(Ω) that satisfy the
conclusion of the theorem with respect to each point in Q is residual, that is its com-
plement is of ûrst category. But, as in Step 1, if a function u has the desired property
for a dense subset of the boundary, then it has it for every point of the boundary. _is
concludes the proof.

2 The Holomorphic Case

For a complex manifold X and an open set U ⊂ X, denote by O(U) the family of
functions holomorphic on U . For a compact set K ⊂ X, we denote O(K) the family
of functions f on K, which are holomorphic on some open neighbourhood U of K
(depending on f ) .

_e following lemma on simultaneous approximation and interpolation is a par-
ticular case of [3,_eorem 3.1].

Lemma 2.1 Let X be a Stein manifold and let K ⊂ X be a compact set that is holo-
morphically convex. If B = {b i}∞i=1 is a discrete sequence of points in X with B ⊂ X ∖K,
and if {w i}∞i=1 is a sequence in C, then for every f ∈ O(K) and every ε > 0, there exists
a function g ∈ O(X) such that
(i) ∣g(x) − f (x)∣ < ε for all x ∈ K, and
(ii) g(b i) = w i for all i ∈ N.

We also need the following Hurwitz type lemma.

Lemma 2.2 If a sequence gn of zero-free holomorphic functions on a domainΩ ⊂ CN

converges locally uniformly to a function g, then g is either zero-free or identically zero.

Proof Let gn be a a sequence of zero-free holomorphic functions on Ω that con-
verges locally uniformly on Ω to a function g and suppose that g(p) = 0 for some
p ∈ Ω. If B is a ball in Ω centred at p, thenwe can apply the one-variableHurwitz the-
orem, for every complex line ℓ through p, to conclude that the function g is identically
zero on ℓ ∩ B. _us, g ≡ 0 on B and consequently on Ω.

To state our result for the case of CN , we ûrst generalize the notion of hypernull
functions in the natural way.

Deûnition 2.3 A holomorphic function f on a domain Ω ofCN is called hypernull
on Ω if it has the property that, for every p ∈ ∂Ω and for every ball Bp in CN centred
at p, if gp is a function holomorphic in Bp and, for some component Up of Ω ∩ Bp ,
we have Z( f ∣Up) ⊂ Z(gp ∣Up), then gp = 0.
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Remark 2.4 We have shown that for each domain Ω ⊂ RN there exist nonconstant
harmonic hypernull functions on Ω, and so harmonic functions on Ω that cannot be
extended harmonically to any larger domain. _is is no longer true for holomorphic
functions on domains of CN for N ≥ 2, as a consequence of theHartogs Lemma. For
this reason, in the statement of the following theorem, it is essential to restrict our
attention to domains of holomorphy.

_eorem 2.5 Let Ω be a domain of holomorphy in CN . _en the set of hypernull
holomorphic functions on Ω is a dense Gδ subset of the space O(Ω) of holomorphic
functions on Ω, endowed with the topology of local uniform convergence.

Proof If Ω = CN , the theorem is trivial, since there is nothing to prove. Suppose
Ω /= CN . _e proof is similar to that of the harmonic case, except that we will replace
caps by points.
By Lemma 1.5 there is a countable collection of balls Ak ⊂ Ω, such that for each

p ∈ ∂Ω, for each ball Bp centred at p and for each component Up of Ω ∩ Bp , we have
that Ak ⊂ Up , for some k, and there is a point qk in Bp ∩ ∂Ω ∩ ∂Ak .

We claim that a function f ∈ O(Ω) satisûes the required conclusion at each point
p ∈ ∂Ω if it does so at each qk . To see this, let f satisfy the required property at each
qk and let p be an arbitrary point of ∂Ω. Suppose we have a ball Bp centred at p and
gp a function holomorphic in Bp and, for some component Up of Ω ∩ Bp , we have
Z( f ∣Up) ⊂ Z(gp). Choose Ak ⊂ Up with qk ∈ ∂Ω ∩ ∂Ak . Let Bk be a ball centred
at qk and contained in Bp and let Uk be the component of Ω ∩ Bk which meets Ak .
_en Uk ⊂ Up and so Z( f ∣Uk) ⊂ Z( f ∣Up) ⊂ Z(gp). Since gp is holomorphic in Bk ,
it follows that gp = 0 on Bk . Consequently, gp = 0 on Bp , which conûrms the claim.
For each k, it follows from the deûnition of Ak and qk that we may construct a

sequence bk , j as in Remark 1.4 that converges to qk in Ω as j →∞. By a diagonal pro-
cess, wemay construct a sequence bℓ of distinct points in Ω that is eventually outside
of every compact subset ofΩ and that, for every qk , contains such a subsequence that
tends to qk .

Given a function h ∈ O(Ω), an O(Ω)-convex compact set K ⊂ Ω and ε > 0, we
may assume that the sequence bℓ is disjoint from K. _ere is a function f ∈ O(Ω)
such that ∣ f − h∣ < ε on K and f (bℓ) = 0, for each ℓ. _is follows from Lemma 2.1,
since domains of holomorphy are Stein manifolds. _e function f has the properties
required in the theorem. We have shown that the functions satisfying the required
properties form a dense subfamily of O(Ω).

We shall now show that most functions in O(Ω) have the required properties.
Namely, we shall show that the exceptional functions form a family of ûrst Baire cat-
egory and since the space O(Ω) is of second Baire category, functions satisfying the
conclusion will be generic in the sense of Baire category. Since we have shown that
the family of functions that fail to satisfy the property is the same as the family of
functions which, for some k, fail to satisfy the property at qk , and since a countable
union of ûrst category sets is still of ûrst category, it suõces to ûx a boundary point
p, and show that the family Xp of functions that fail to have the property of the con-
jecture, for this particular boundary point p is of ûrst Baire category. Fix a compact
ball K ⊂ Ω. If f ∈ Xp , then certainly f /≡ 0, so maxK ∣ f ∣ > 0. Also, there exists a
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ball Bp centred at p and a function gp holomorphic and not identically 0 on Bp such
that Z( f ∣Up) ⊂ Z(gp) for some component Up of Ω ∩ Bp . Since the same is true for
every smaller ball, we can assume that gp is bounded on the ball Bp . Multiplying by
a small positive number, we can assume that ∣gp ∣ ≤ 1. Since gp /≡ 0, it follows that
maxS ∣gp ∣ > 0, where S is the sphere centred at p whose radius is half that of Bp .
Denote by B j the ball centred at p and of radius 1/ j and S( j) the sphere of centre

p and radius half that of B j . Let U i , i = 1, 2, . . . , be the components ofΩ∩B j . Denote
by Oi , j( f ) the family of functions g holomorphic in the ball B j , bounded by 1 on B j ,
for which Z( f ∣U i) ⊂ Z(g). Set

X i , j,k = { f ∈ O(Ω) ∶ max
K

∣ f ∣ ≥ 1/k, ∃g ∈ Oi , j(u),max
S( j)

∣g∣ ≥ 1/k}.

_en
Xp ⊂ ⋃

i , j,k
X i , j,k

and we will show that each X i , j,k is closed and nowhere dense in O(Ω).
To show that X i , j,k is closed, suppose f1 , f2 , . . . are in X i , j,k and fn → f . _en

maxK ∣ f ∣ ≥ 1/k and so f /≡ 0. For each fn , let gn be a function associated to fn by the
deûnition of X i , j,k . Since {gn} is a normal family,wemay assume that gn → g,where
g is a holomorphic function on B j . Clearly, ∣g∣ ≤ 1 and max ∣g∣ ≥ 1/k on S( j). _us,
g /≡ 0. Let q ∈ U j be a point where g(q) /= 0. Let Q be a compact ball centred at q in
U i on which g is zero free. _en, gn is zero free on Q for large n, and consequently,
fn is also zero free on Q. By Lemma 2.2, either f ≡ 0 on Q or f is zero-free on Q.
Since f /≡ 0 on Ω, it follows that f is zero-free on Q, and in particular f (q) /= 0. We
have shown that

Z( f ∣U i) ⊂ Z(g).
_us, g ∈ Oi , j(u) and X i , j,k is closed.
Finally, we claim that each closed set X i , j,k is nowhere dense. _is is equivalent

to showing that its complement is dense. But its complement contains all functions
satisfying the property of the theorem and we have shown that the latter is dense.

References
[1] L. Bernal-González andM. Ordóñez Cabrera, Lineability criteria, with applications. J. Funct. Anal.

266(2014), no. 6, 3997–4025. http://dx.doi.org/10.1016/j.jfa.2013.11.014
[2] S. J. Gardiner, Harmonic approximation. London Math. Soc. Lecture Notes Series, 221, Cambridge

University Press, Cambridge, 1995.
[3] P. E. Manne, E. F. Wold, and N. Øvrelid, Holomorphic convexity and Carleman approximation by

entire functions on Stein manifolds. Math. Ann. 351(2011), 571–585.
http://dx.doi.org/10.1007/s00208-010-0605-4

Département demathématiques et de statistique, Université deMontréal,Montréal, Que., H3C 3J7
e-mail: gauthier@dms.umontreal.ca

https://doi.org/10.4153/CMB-2015-059-1 Published online by Cambridge University Press

http://dx.doi.org/10.1016/j.jfa.2013.11.014
http://dx.doi.org/10.1007/s00208-010-0605-4
mailto:gauthier@dms.umontreal.ca
https://doi.org/10.4153/CMB-2015-059-1

