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The interaction of a particle and a polymer brush
coating a permeable surface

Avshalom Offner1,‡ and Guy Z. Ramon1,†
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Coating of filtration membranes with a polymer brush holds great promise for efficiently
preventing the deposition of fouling particles. The polymer chains are compressed
by incoming particles, carried with the permeation flow towards the membrane, and
consequently exert a repulsive force that acts to keep the particles away from the membrane
surface. Here, we theoretically investigate the effect of a polymer brush coating on the
permeation-induced hydrodynamic force, Fh, pulling a particle towards the membrane,
and its balance with the steric repulsion exerted by the compressing brush, resisting the
particle’s approach. Lubrication theory yields an ordinary differential equation for the
pressure, from which Fh is calculated numerically. Further, an asymptotic analysis is
performed for the limiting cases of a dilute or dense brush, providing analytic expressions
that demonstrate how brush properties affect Fh. Finally, the equilibrium position of a
particle is evaluated by considering a balance between the opposing forces. The results
provide an upper boundary for the brush properties, beyond which the brush is barely
compressed under conditions typical of membrane filtration processes. Further increasing
the brush density or thickness only decreases the total system permeance, resulting in
increased energy consumption. The results shed light on the mechanisms by which a
polymer brush affects the forces acting on a foulant particle, providing quantitative
measures for assessing the potential efficacy of brush coatings.

Key words: colloids, lubrication theory

1. Introduction

In colloidal science, coating surfaces with a polymer ‘brush’ is an effective
stabilisation strategy, preventing coagulation in suspensions, as was first suggested by
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van der Waarden (1950). Polymer brushes are also extensively used as protective layers
that resist adsorption of undesired materials onto surfaces (Halperin 1999; Ma et al.
2019; Yan, Bockstaller & Matyjaszewski 2020). In particular, membranes used for
separation processes are prone to unwanted material deposition, exacerbated by the flow
through the membranes. Hence, polymer brush coatings have been considered as a
promising strategy for fouling prevention (Keating, Imbrogno & Belfort 2016; Werber,
Osuji & Elimelech 2016). These grafted polymers are known primarily for their ability
to exert a repulsive force when compressed (Milner 1989); however, they also affect the
hydrodynamic interaction between surfaces. Fredrickson & Pincus (1991) modelled the
effect of a polymer brush on the hydrodynamic force acting on a particle approaching
a stationary impermeable surface. Their analysis assumed a highly compressed brush,
i.e. a low-permeability brush, modelled as a porous medium squeezed between the two
surfaces, for which the flow may be described by the Brinkman equation, employing
lubrication theory. In particular, the model assumed that the brush is so dense, translated to
an extremely low permeability, that the velocity distribution in it resembles a ‘plug flow’.
Potanin & Russel (1995) relaxed this assumption and, using lubrication theory with a full
solution of the Brinkman equation, numerically calculated the hydrodynamic force as a
function of separation distance and provided analytic expressions for limiting cases. Both
Fredrickson & Pincus (1991) and Potanin & Russel (1995) showed how the presence of a
polymer layer in the thin gap between surfaces significantly increases the hydrodynamic
force.

It is well known that the lubrication interaction of a particle in proximity to a planar
surface induces a force that may be either attractive or repulsive, depending on the
direction of relative motion. Brenner (1961) first solved the case of a particle moving
towards a planar impenetrable surface. This result was then extended to permeable surfaces
by Goren (1979), demonstrating that surface permeability eliminates the singularity at
contact, with the force attaining a constant value that depends on the particle size and the
permeability of the surface. Knox et al. (2015) and Venerus (2018) studied the squeeze flow
between porous disks, and in the context of membrane separation, most relevant for the
present work, this problem was studied by Ramon & Hoek (2012) and Ramon et al. (2013),
who employed a lubrication approach and derived asymptotic solutions for the attractive
force between a solid spherical particle and a permeable boundary (further analysis of this
problem may be found, for example, in Knox et al. (2017) and in the references listed in
Ramon et al. (2013)).

Here, we study the hydrodynamic force on a particle as affected by the presence of a
polymer brush coating a permeable surface (e.g. a filtration membrane), and the interplay
of this force and the steric repulsion exerted by the brush upon compression. A lubrication
model is formulated, from which the pressure field and the force are evaluated. The
characteristics of the brush layer and the steric force it exerts are outlined. An asymptotic
analysis is performed for various limiting cases. Finally, we consider the equilibrium
position of the particle under the opposing action of the two forces.

2. Model formulation

We consider a spherical particle with radius R in proximity to a planar membrane, with
permeance (permeability per unit thickness) k, covered by a polymer brush layer of average
thickness h0. We assume that there are no chemical reactions between the particle and
polymer, and that the polymer chains are of equal length and are in contact with a good
solvent. A background pressure p0 drives a permeation rate V0 through the membrane. The
particle, advected by the flow, makes contact with the polymer brush layer, which exerts a
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Figure 1. Schematic illustration of the system. A particle of radius R near a membrane (with permeance k)
through which a velocity V0 is induced. The particle compresses a polymer brush of initial thickness h0. The
gap between the particle and the membrane is h(r) ≈ δ + r2/2R, where δ is the distance of closest approach. In
the diagram, � (≡ Γ −1/2, where Γ is the ‘graft density’) is the distance between graft points of the polymer
at the surface, a is the ‘effective’ monomer diameter and ξ is the ‘correlation length’, representing the average
distance between chains.

repulsive force as it is compressed, acting to keep the particle away from the membrane.
In what follows, we are interested in the attractive hydrodynamic force exerted by the flow
and the equilibrium that may exist between it and the repulsive force of the brush as it is
compressed (see figure 1 for a schematic illustration).

The hydrodynamic force on the particle, induced by the flow through the brush and
the underlying membrane, is calculated in the lubrication limit by integrating the pressure
along the particle surface, which is approximated by the shape h(r) = δ + r2/2R, where δ

denotes the distance of closest approach. In what follows, a lubrication equation is derived,
from which the pressure distribution may be evaluated. We begin with the equations
for the steady-state velocity field within the gap confined between the particle and the
membrane, in the lubrication limit, namely, the axisymmetric, incompressible continuity
and Brinkman equations, given in scaled form as

1
r

∂

∂r
(ru) + ∂v

∂z
= 0, (2.1)

∂2u
∂z2 − 4

Λξ(r)2 u = dp
dr

. (2.2)

These equations are valid when h0/R ≡ ε � 1, where h0 ≈ NΓ 1/3a5/3 is the brush
thickness at equilibrium (Halperin 1999), with Γ ≡ �−2 denoting the graft density, i.e. the
number of polymer chains per unit area, a is the ‘effective’ monomer size and N is the
number of monomers in a chain (see figure 1). Here, u and v are the respective r and z
velocity components, scaled by ε−1V0 and V0, respectively, and p is the pressure, scaled
by μV0R/εh0, where μ is the viscosity. Further, r is scaled by (2Rh0)

1/2, while z, h and δ

are scaled by h0. The permeability in the Brinkman equations is here represented by the
‘correlation length’,

ξ(r) ≈ h(r)3/4

(NΓ )3/4a5/4 , (2.3)
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an important parameter in polymer physics, which characterises the distance over which
interactions occur mostly between segments of the same chain (Rubinstein & Colby
2003). As such, ξ represents an average distance between chains, and so ξ2 provides an
estimate of the ‘pore’ dimensions and is used as a proxy of a permeability coefficient
(Milner 1989; Fredrickson & Pincus 1991). With this definition, the brush permeance, kp,
in dimensionless form, is the parameter Λ ≡ (2ξ0/h0)

2 = 4kp/h0, where ξ0 = ξ |h=h0 =
Γ −1/2 is the characteristic scale for the correlation length.

Potanin & Russel (1995) derived a solution for u(r, z) by solving (2.2) inside and outside
the polymer brush layer, the result of which is mathematically complicated and does not
lend itself to derivation of analytic approximations using asymptotic analysis. To facilitate
the present analysis, we focus on the ‘lubricating region’, i.e. a region of scale (Rh0)

1/2

about the point of closest approach, responsible for most of the hydrodynamic interaction.
We assume that in this region the particle is in contact with the polymer brush, and hence
the velocity is calculated only inside the brush layer. This invariably results, to some extent,
in an overestimation of the forces on the particle at large values of δ. With this assumption,
the solution to (2.2), subjected to the no-slip boundary conditions, u|z=0 = u|z=h(r) = 0,
is

u(r, z) = −Λξ(r)2

4
dp
dr

[
1 − sech

(
h(r)

Λ1/2ξ(r)

)
cosh

(
h(r) − 2z
Λ1/2ξ(r)

)]
, (2.4)

which, when substituted into (2.1) and integrated with respect to z, yields the lubrication
equation

Λ

4r
d
dr

[
rhξ2

(
1 − tanh(h/(Λ1/2ξ))

h/(Λ1/2ξ)

)
dp
dr

]
− αp + 1 = 0, (2.5)

where α = 2Rk/h2
0. The boundary conditions for (2.5) require that the pressure decays to

zero in the far field and that symmetry about the centreline is maintained, i.e.

p|r→∞ = 0,
dp
dr

∣∣∣∣
r=0

= 0. (2.6a,b)

Finally, the hydrodynamic force is calculated using

Fh = 2π

∞∫
0

rp(r) dr, (2.7)

2.1. Steric repulsion through polymer brush compression
The flow driven through the membrane carries particles towards it. However, once a
particle makes contact with a brush, which is too dense for it to penetrate (i.e. satisfying
R � ξ (Halperin 1999)), it compresses the brush, resulting in a repulsive force. Following
de Gennes (1980), this force may be evaluated, in the limit h0 � R, as

Fs =
∫
A

Π dA = 2πRh0

1∫
δ

Π(z) dz, (2.8)

where A is the area of contact. Here, Π is the osmotic pressure, given by the scaling theory
of semidilute polymer solutions (Alexander 1977; de Gennes 1980) as

Π(z) = kBTΓ 3/2(z−9/4 − z3/4), (2.9)
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where kB is Boltzmann’s constant and T is the absolute temperature. Combining (2.8) and
(2.9), the non-dimensional steric force is (Klein et al. 1994)

Fs = 7δ−5/4 + 5δ7/4 − 12, (2.10)

which is here scaled by 8πRh0kBTΓ 3/2/35. The steric force (2.10) holds for 0 < δ � 1
and is identically zero when δ = 1, i.e. when the particle does not yet compress the brush.

3. Asymptotic analysis

Generally, the pressure field provided by (2.5) may only be evaluated numerically. In what
follows, we derive analytic solutions for various limiting cases. The scaled permeance
of the brush is given by Λ ∝ kp/h0, for which two cases are treated: (i) a ‘dilute’ brush
(Λ � 1), perturbed near a base state in which the brush is absent; and (ii) a ‘dense’ brush,
for which the base state depends on whether the dominant resistance to flow comes from
the brush or the membrane. In the asymptotic analysis, the scaled membrane permeance
is small, α � 1. While the asymptotic solutions provide the pressure field, these are not
shown here explicitly since we seek the hydrodynamic force, found by integrating the
pressure over the particle surface via (2.7).

3.1. Dilute brush (Λ � 1)

In the case of a ‘dilute’ brush, characterised by a small graft density Γ , the pressure may
be expanded as p(r, Λ) = p0(r) + Λ−1p1(r) + O(Λ−2), where p0 is the pressure field in
the absence of a brush. Furthermore,

1 − tanh(h/(Λ1/2ξ))

h/(Λ1/2ξ)
= h2

3Λξ2 − 2h4

15Λ2ξ4 + 17h6

315Λ3ξ6 + O(Λ−4). (3.1)

Including the membrane permeance in this case is achieved by assuming α ≈ Λ−1, leading
to a set of perturbation problems, written here to O(Λ−2) as

1
12r

d
dr

[
rh3 dpi

dr

]
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1, i = 0,

Λαpi−1 + 1
30r

d
dr

[
rh7/2 dpi−1

dr

]
, i = 1,

Λαpi−1 + 1
30r

d
dr

[
rh7/2 dpi−1

dr

]
− 17

1260r
d
dr

[
rh4 dpi−2

dr

]
, i = 2,

(3.2)
in which the term αΛ = O(1), with α /=Λ−1 necessarily. Three (and more) terms may
be calculated for the expansion of p; however, only the first two terms yield analytic
expressions for the force. The hydrodynamic force in this case is

Fh = 3π

2δ
− 3πα

4δ3 + 8π

5Λδ1/2 + O(Λ−2), (3.3)

in which the leading-order term recovers the result of Brenner (1961) for the force on a
sphere approaching an impermeable surface. The second and third terms are the O(Λ−1)
correction to this classical result, where the second term recovers the result of Goren
(1979) and Ramon et al. (2013), showing that a finite permeance decreases the force, and
the third term is a new correction representing the addition of the polymer brush on the
surface, which increases the force.
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3.2. Dense brush (Λ � 1)

In the case of a dense brush, the hyperbolic tangent term in (2.5) is approximately Λ1/2ξ/h.
If Λ, α � 1, however, the pressure in (2.5) must be rescaled to avoid a singularity in the
leading-order lubrication equation. We begin by rescaling the coordinate r = δ1/2η, to
obtain

Λδ3/2

4η

d
dη

[
η(1 + η2)5/2

(
1 − Λ1/2

δ1/4(1 + η2)1/4

)
dp
dη

]
− αp + 1 = 0, Λ, α � 1.

(3.4)
Next, we define a new dimensionless parameter,

β ≡ 4α

Λδ3/2 = 1
δ3/2

k
εkp

, (3.5)

and identify two possible scenarios: β � 1, i.e. the membrane permeance is much smaller
than that of the polymer brush, k � εkp; and β � 1, for which the permeance ratio
between the membrane and brush satisfies k/kp � ε.

3.2.1. The case β � 1
In this limit the brush layer permeance, however small, is still much larger than that of the
membrane it covers. The pressure is rescaled as P = Λδ3/2p/4 and (3.4) becomes

1
η

d
dη

[
η(1 + η2)5/2

(
1 − 2α1/2

δβ1/2 (1 + η2)−1/4
)

dP
dη

]
− βP + 1 = 0. (3.6)

The asymptotic order of α/β ∝ Λ � 1 is indeterminate. The effect of reducing the brush
density is found by assuming α = O(β3) and expanding the pressure as P = P0(η) +
βP1(η) + O(β2). For convenience, we define

γ = 2α1/2

δβ3/2 = O(1), (3.7)

such that (3.6) may be written as

1
η

d
dη

[
η(1 + η2)5/2 dPi

dr

]
=

⎧⎨
⎩

−1, i = 0,

Pi−1 + γ

η

d
dη

[
η(1 + η2)9/4 dPi−1

dr

]
, i � 1.

(3.8)

Here, an analytic expression for the force (2.7) may be found only to O(β),

Fh = π

Λδ1/2

[
4
3

+ β

(
16γ

21
− 1

18

)]
+ O(β2), (3.9)

where the leading-order term recovers the ‘plug-flow’ result derived by Fredrickson &
Pincus (1991), and the O(β) term is the correction due to a finite (small) membrane
permeance and a small increase in the brush permeance. While the membrane permeance
clearly decreases the hydrodynamic force, lowering the brush density – which is expected
to decrease this force – is here seen, in the O(β) correction, to increase it. This is because,
as Λ → 0, the polymer brush becomes impermeable, such that the flow is unaffected by
the presence of the membrane. Decreasing the brush density ‘exposes’ the flow to the
membrane, which is then less permeable than the brush. Consequently, the combined
permeance (membrane and brush) decreases and the correction to the force is positive.
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Rewriting (3.9) in terms of α, Λ and δ gives

Fh = 4π

3Λδ1/2 − 2πα

9Λ2δ2 + 16π

21Λ1/2δ3/4 , (3.10)

in which the requirement that the leading-order term dominates over the last term leads to
δ � Λ2 for which the correction is valid.

3.2.2. The case β � 1
Here, the permeance ratio is k/kp � ε and the pressure is rescaled as P = αp, so that

β−1

η

d
dη

[
η(1 + η2)5/2

(
1 − 2α1/2

δβ1/2 (1 + η2)−1/4
)

dP
dη

]
− P + 1 = 0, (3.11)

in which expanding P as a series of β−1 clearly results in a singular perturbation problem,
with the leading-order solution P0 = 1 unable to satisfy the far-field boundary condition.
We introduce yet another rescaled coordinate η = β1/3ζ , with which (3.11) becomes

1
ζ

d
dζ

[
ζ(β−2/3 + ζ 2)5/2

(
1 − 2α1/2

δβ2/3 (β−2/3 + ζ 2)−1/4
)

dP
dζ

]
− P + 1 = 0, (3.12)

enabling a regular perturbation for β−2/3 � 1 by expanding P(ζ, β) = P0(ζ ) + β−2/3

P1(ζ ) + O(β−4/3). An analytic solution is found for the leading-order equation

1
ζ

d
dζ

[
ζ 6 dP0

dζ

]
− P0 + 1 = 0, (3.13)

and the corresponding force, written in term of Λ, α and δ, is

Fh = c
Λ2/3α1/3δ

, (3.14)

where c = 31/6Γ (1/3)2/22/3 ≈ 5.43.
The dependence of the hydrodynamic force, Fh, on the brush permeance, Λ, is presented

in figure 2(a), comparing the asymptotics with the numerical calculations. Figure 2(b)
maps the asymptotic solutions from the current work, as well as those from previous
studies, in the Λ–β plane. Here, results appearing on the right end of the scale describe
the absence of a brush. Meanwhile, β marks the permeance ratio between the membrane
and brush, such that low values denote a brush permeance much larger than that of the
membrane.

4. Equilibrium

When the hydrodynamic and steric forces are exactly balanced, the particle reaches its
equilibrium position, which should be sufficiently away from the membrane surface so as
to avoid performance deterioration (Keating et al. 2016). In order to evaluate this balance,
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Figure 2. (a) The hydrodynamic force, scaled by FStokes = 6πμRV0, as a function of brush permeance,
Λ ≡ 4kp/h0, for α = 10−3. The red solid line is the numerical calculation, while the blue dashed, green
dashed-dotted and violet dotted lines mark the asymptotic solutions (3.3), (3.10) and (3.14), respectively.
(b) Mapping of the asymptotic solutions to (2.5) in the Λ–β plane. Black dots mark leading-order solutions;
lines and shaded areas mark asymptotic solutions valid for a finite range of Λ, β.

Fh is rescaled by 8πRh0kBTΓ 3/2/35, so that

Fh = V̂0Λ
3/2

∞∫
0

rp(r) dr, (4.1)

where the scaled permeation velocity is defined as

V̂0 = 35μRh0V0

8πkBT
. (4.2)

The asymptotic solutions (3.3), (3.10) and (3.14) are, in rescaled form, respectively,

Fh = V̂0

2

(
3Λ3/2

2δ
− 3αΛ3/2

4δ3 + 8Λ1/2

5δ1/2

)
, Λ � 1, (4.3)

Fh = V̂0

2

(
4Λ1/2

3δ1/2 − 2α

9Λ1/2δ2 + 16Λ

21δ3/4

)
, Λ, β � 1, (4.4)

Fh = c∗V̂0Λ
5/6

α1/3δ
, Λ � 1, β � 1, (4.5)

where c∗ = c/2π ≈ 0.86. The scaled equilibrium position, δeq, is found by equating (4.1)
with (2.10) and numerically solving for δ. Analytic expressions may be obtained at the limit
of close approach, i.e. when δ � 1, in which (2.10) simplifies to Fs ≈ 7δ−5/4. Considering
the limit α → 0 simplifies (4.3) and (4.4), resulting in the following approximations:

δeq ≈
(

14
3

)4

Λ−6V̂−4
0 , δ � 1, Λ � 1, (4.6)

δeq ≈
(

21
4

)4/3

Λ−2/3V̂−4/3
0 , δ � 1, Λ � 1. (4.7)
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Figure 3. (a) The hydrodynamic (Fh; solid and dotted-dashed curves for α → 0 and α = 10−3, respectively)
and steric (Fs; dashed black curve) forces, evenly scaled, as functions of the scaled distance, δ, for various
values of Λ, the brush permeance. Here, the scaled permeation velocity is V̂0 = 10−1. Fh is calculated
numerically by (4.1), and Fs is given by (2.10). (b) Equilibrium position, δeq, for which Fh = Fs, as a function
of V̂0 for varying Λ. Solid and dashed lines denote α → 0 and α = 10−3, respectively, and the black dashed
and dotted curves are the asymptotics for δ � 1, Λ � 1 and Λ � 1, respectively. The shaded area marks the
typical range of V̂0 for membrane separation (see table 1).

Figure 3(a) illustrates the dependence of each force on the distance from the membrane,
δ, at a scaled permeation velocity V̂0 = 10−1, which is within the characteristic range
of membrane separation (see table 1), and is chosen for a clear comparison between the
competing forces. The hydrodynamic force is calculated numerically by (4.1) for various
values of the brush permeance, Λ, with membrane permeance set as α → 0 and α = 10−3.
The steric force, Fs(δ), is calculated explicitly from (2.10). Intersections of the curves
for Fs and Fh mark the equilibrium positions at each Λ. Figure 3(a) demonstrates that
the membrane permeance has little effect on the lubrication force for large δ. At close
approach, however, Fh tends to infinity for α → 0, while α > 0 leads to a finite force
as δ → 0, as expected. We note that here the hydrodynamic force increases with Λ, as
opposed to the trend in figure 2, due to the rescaling of Fh in (4.1), to enable an even
comparison with Fs, while the results in figure 2 are scaled with the Stokes drag, in order
to emphasise the increased drag due to the lubrication interaction. Physically, a decreased
Λ means the brush becomes denser and so Fh increases. Within the parameter range
shown in table 1, representing ‘real-world’ membrane separation, a brush permeance of
Λ = O(10−3) results in δeq ≈ 1, at which point decreasing Λ further will not improve
the anti-fouling performance. Rather, it will decrease the combined membrane and brush
permeance, K = (k−1 + k−1

p )−1, which will then require a larger pressure p0 to maintain
the same permeation velocity, resulting in increased energy consumption.

Figure 3(b) displays the equilibrium position of the particle, δeq, found via the balance
between the attractive and repulsive forces, as a function of the scaled velocity, V̂0, for
representative values of Λ, with α → 0 and α = 10−3. Naturally, an increase in V̂0 forces
the particle closer to the membrane. A denser brush increases particle repulsion, resulting
in a larger δeq for a given V̂0. Neglecting the effect of membrane permeance (α → 0),
a decrease in Λ shifts the slope from δeq ∝ V̂−4

0 (Λ � 1) to δeq ∝ V̂−4/3
0 (Λ � 1),

corresponding to the shift from Fh ∝ δ−1 (Brenner 1961) to Fh ∝ Λ−1δ−1/2 (Fredrickson
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Description Unit Range Description Unit Range

R Particle radius μm 0.1–1 N No. monomers in chain — 102–103

k Membrane permeance nm 10−6–10−3 Γ Graft density nm−2 0.01–0.5
a Monomer size nm 0.1–1 V0 Permeation velocity μm s−1 1–100

Table 1. Model parameters and characteristic values.

& Pincus 1991), while increasing α always tends to decrease Fh, as discussed in § 3.
Consequently, for a given V̂0, the δeq curves for α = 10−3 lie above the corresponding
ones for α → 0. While for Λ � 1 the effect of α /= 0 is seen only at small δeq, as the brush
becomes denser the membrane permeance affects the equilibrium over a wider range.
Physically, this is because thickening the brush enhances the resistance to the flow within
the thin gap, and therefore the force extends over a longer distance. In the case α > 0, the
decrease in Fh then affects a wider range of δ.

5. Concluding remarks

In this work we examined the effect of a polymer brush coating, applied to a membrane
surface, on the hydrodynamic force, Fh, acting on a particle at close approach. Asymptotic
solutions were derived, providing insight on trends in Fh as both the membrane and/or
brush permeances, α and Λ, respectively, are varied. Based on the balance between Fh
and the steric repulsion force, exerted by the brush as it is compressed by the particle,
the equilibrium position of the particle, δeq, was calculated as a function of the scaled
permeation velocity through the membrane, V̂0.

Equilibrium calculations illustrate the extent to which increasing V̂0 brings the particle
closer to the membrane. The results also show that, beyond a certain brush density, one
has δeq → 1, whereby any further decrease to Λ will only increase the resistance to the
flow and result in an increased energy input required to maintain the same permeation
rate through the membrane. At close approach (δeq � 1), analytic approximations were
derived, showing the extent to which a dense brush (Λ � 1) protects the surface compared
with a dilute brush (Λ � 1) – trending as δeq ∝ V̂−4/3

0 and V̂−4
0 , respectively. Overall,

these results provide insight into the capability of polymer brush coatings to prevent
foulant particles from depositing on a membrane surface.
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