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Abstract The principal results in this paper are concerned with the description of domains of infinitesi-
mal generators of strongly continuous groups of isometries in non-commutative operator spaces E(M, τ),
which are induced by R-flows on M. In particular, we are concerned with the description of operator
functions which leave the domain of such generators invariant in all symmetric operator spaces, associ-
ated with a semi-finite von Neumann algebra M and a separable function space E on (0, ∞). Further-
more, we apply our results to the study of operator functions for which [D, x] ∈ E(M, τ) implies that
[D, f(x)] ∈ E(M, τ), where D is an unbounded self-adjoint operator. Our methods are partly based on
the recently developed theory of double operator integrals in symmetric operator spaces and the theory
of adjoint C0-semigroups.
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1. Introduction

The central theme of this paper is the investigation of the class of what could be called
quantum differentiable functions. The principal aim is to determine which C1-functions f

remain differentiable with respect to a (partially defined) symmetric derivation δ gen-
erated by an R-flow on a semi-finite W ∗-algebra (that is, x = x∗ ∈ Dom(δ) implies
f(x) ∈ Dom(δ)). In the theory of Banach algebras and related parts of mathematical
physics, especially quantum physics, the notion of a derivation of a Banach algebra A
into an A-bimodule X is important. The extensive development of this theory in the
situation when X = A and the algebra A is a C∗- or W ∗-algebra, and various applica-
tions to quantum physics, is presented in [8,32]. Since the time evolution of a quantum
mechanical system in the C∗-algebraic formulation is modelled by a strongly continuous
one-parameter group γ = {γt}t∈R of ∗-automorphisms of the C∗-algebra A, attention has
been naturally focused on that part of the theory which studies unbounded derivations
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δ : Dom(δ) → A, where δ is the closed densely defined infinitesimal generator of the
group γ. The basic question in the study of derivations of this type is as follows.

For which scalar functions f on R is f(x) ∈ Dom(δ) whenever x = x∗ ∈ Dom(δ)?

The answer to this question is important, because it allows the use of spectral theory
to construct ‘good’ elements in the domain of the generator δ. Moreover, this ques-
tion is non-trivial and contains a number of subtle difficulties. For example, it was
stated by Powers [31] that if δ is a closed symmetric derivation of a C∗-algebra A
with dense domain Dom(δ), then f(x) belongs to Dom(δ) for any C1-function f and
‖δ(f(x))‖ � ‖f ′‖∞‖δ(x)‖, whenever x = x∗ ∈ Dom(δ). An explicit counterexample
due to McIntosh [26] shows that this statement does not hold in general, although an
amended version under the stronger assumption that f ∈ C2 has been given in both [8]
and [32]. However, the proof given in [26, Theorem 4] contains a gap, recently noted
and rectified in [37]. Methods employed in [37] include the theory of so-called sun-dual
semigroups and their generators, which goes back to the classical works of Phillips and
will also be used in part here.

In this paper, we study the question above in the setting in which X is a bimodule
of A that does not equal A. Specifically, we consider here the situation in which A is
represented as a semi-finite von Neumann algebra M (equipped with a semi-finite faithful
normal trace τ) on a Hilbert space H, and X is a symmetric operator space E(M, τ)
associated with M. This setting is in a certain sense classical, but relatively less studied
than the case X = M.

Suppose that (M, τ) is a semi-finite von Neumann algebra and let γ = {γt}t∈R be an
R-flow in M (as defined at the beginning of § 4). Let E(M, τ) be the non-commutative
symmetric space (consisting of, in general unbounded, τ -measurable operators) associated
with the separable Banach function space E on (0,∞) and M (see § 2). As is shown in
Corollary 4.1, γ induces a strongly continuous group γE of isometries in the Banach space
E(M, τ). The infinitesimal generator of this group is denoted by δE . The restriction of δE

to Dom(δE) ∩ M is indeed a derivation with values in E(M, τ) (see Proposition 4.5). In
the special case that M is the commutative von Neumann algebra L∞(R) of all bounded
Lebesgue measurable functions, equipped with integration as trace τ and acting via
multiplication on the Hilbert space H = L2(R), let the R-flow γ in M be given by forward
translations. If, for example, E = Lp(0,∞) with 1 � p < ∞, then E(M, τ) = Lp(R)
and the corresponding group γE is the group of forward translations in E. Hence, in
this case the domain of the infinitesimal generator δE is equal to the Sobolev space
W 1,p(R). Therefore, in the general setting, the domains Dom(δE) could be considered as
non-commutative extensions of Sobolev spaces.

In Theorem 5.7 a large class of functions f : R → C is exhibited with the property that
f(x) ∈ Dom(δE) whenever x = x∗ ∈ Dom(δE). Our main technical tool in the proof of
this result is the theory of double operator integrals in the setting of symmetric operator
spaces, recently developed in [12,13], and strongly inspired by the corresponding theory
in the setting of symmetrically normed ideals of compact operators, which was devel-
oped by Birman and Solomyak in [3–5]. In the latter setting, classes of operator-smooth
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functions have been recently studied by Kissin and Shulman [22–24]. We briefly recall
a few notions from this theory in § 5, below. In §§ 6 and 7 we consider R-flows γ that
are of the form γt(x) = eitDxe−itD, where D is a self-adjoint operator in the underlying
Hilbert space H. As one would expect, the infinitesimal generator δE of the group γE

in E(M, τ) has the form δE(x) = i[D, x] (as usual, by [· , ·] we denote the commutator).
However, since generally both operators D and x are unbounded, there is some difficulty
in defining this commutator. If the operator D is assumed to be τ -measurable, then [D, x]
is well defined in the ∗-algebra M̃ of all τ -measurable operators. For this case a complete
description of the domain of δE is given in Theorem 6.8. In the situation where D is
a general self-adjoint operator that induces an R-flow in M, we are able to obtain the
equality δE(x) = i[D, x] for a restricted class of x ∈ Dom(δE) in Theorem 7.3. Finally,
combining Theorems 6.8 and 7.3 with the result of Theorem 5.7, we obtain commutator
estimates of the form ‖[D, f(x)]‖E(M,τ) � Cf‖[D, x]‖E(M,τ) (see Corollaries 6.9 and 7.5).

We start with some preliminary information concerning the theory of non-commutative
integration in § 2 and some additional results on convergence of measurable operators
in § 3, which will be needed in the remainder of the paper.

2. Preliminaries on non-commutative integration

In this section we introduce some notation and collect some results concerning the
theory of non-commutative integration and symmetric operator spaces which will be
used throughout the paper. Throughout this paper, we assume that M is a semi-finite
von Neumann algebra on a Hilbert space H, with a fixed faithful normal semi-finite trace τ

and unit element 1.
Given a self-adjoint operator a : Dom(a) → H in the Hilbert space H, the spectral

measure of a is denoted by ea. We write ea
λ = ea((−∞, λ]) for all λ ∈ R. A linear operator

x : Dom(x) → H, with domain Dom(x) ⊆ H, is said to be affiliated with M if ux = xu

for all unitary operators u in the commutant M′ of M (for the theory of von Neumann
algebras see [14,20,21,33–35]). A self-adjoint operator a in H is affiliated with M if and
only if ea(B) ∈ M for all Borel sets B ⊆ R or, equivalently, ea

λ ∈ M for all λ ∈ R (see,
for example, [33, E.9.10, E.9.25]). If x is a closed and densely defined linear operator in
H with polar decomposition x = v|x|, then x is affiliated with M if and only if v ∈ M
and |x| is affiliated with M (see, for example, [33, § 9.29]; [35, § IX.2].

A closed and densely defined linear operator x, affiliated with M, is called τ -measurable
if there exists λ > 0 such that τ(e|x|(λ, ∞)) < ∞. The set M̃ of all τ -measurable operators
is a ∗-algebra with the sum and product defined as the closure of the algebraic sum and
product, respectively. For ε, δ > 0 we denote by N(ε, δ) the set of all x ∈ M̃ for which
there exists an orthogonal projection p ∈ M such that p(H) ⊆ Dom(x), ‖xp‖ � ε and
τ(1 − p) � δ. The sets {N(ε, δ) : ε, δ > 0} are a base at 0 for a metrizable Hausdorff
vector space topology in M̃, which is called the measure topology. Convergence with
respect to this topology is referred to as convergence in measure. Equipped with the
measure topology, M̃ is a complete topological ∗-algebra in which M is dense. In fact,
if 0 � x ∈ M̃, then {xex

λ}λ�0, which is contained in M, converges in measure to x as
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λ → ∞. Furthermore, if {xn}∞
n=1 is a sequence in M̃, then

xn → 0 in measure ⇐⇒ τ(e|xn|(λ, ∞)) → 0 as n → ∞ for all λ > 0. (2.1)

The proofs of these facts can be found in [18,27,36] (see also [35]).
Given x ∈ M̃, the generalized singular-value function µ(x) : [0,∞) → [0,∞] of x is

defined by
µt(x) = inf{λ � 0 : τ(e|x|(λ, ∞)) � t}

for all t � 0. Note that µt(x) < ∞ for all t > 0 and that µ0(x) < ∞ if and only if
x ∈ M, in which case µ0(x) = ‖x‖. A detailed study of the properties of these generalized
singular-value functions can be found in [18].

Furthermore, we define

M̃0 = {x ∈ M̃ : µt(x) → 0 as t → ∞}.

If x ∈ M̃, then x ∈ M̃0 if and only if τ(e|x|(λ, ∞)) < ∞ for all λ > 0.
For the general theory of rearrangement invariant Banach function spaces we refer

the reader to [2,25]. We consider these spaces on the interval (0,∞) equipped with the
Lebesgue measure dt. The space of all (equivalence classes of) real-valued measurable
functions on (0,∞) is denoted by S(0,∞). For f ∈ S(0,∞) we denote by f∗ the decreasing
rearrangement of the function |f |. Recall that a Banach space E, equipped with a norm
‖ · ‖E , is called a rearrangement invariant (r.i.) Banach function space (BFS) on (0,∞)
if {0} 
= E ⊆ S(0,∞) and, if f ∈ E, g ∈ S(0,∞), g∗ � f∗, then g ∈ E and ‖g‖E � ‖f‖E .
Special examples of such BFSs are the spaces Lp(0,∞), 1 � p � ∞, equipped with their
usual norm ‖ · ‖p. All these spaces E satisfy L1 ∩ L∞(0,∞) ⊆ E ⊆ (L1 + L∞)(0,∞),
with continuous embeddings. We recall that the norm in E is said to be order continuous
if fn ↓ 0 in E implies that ‖fn‖E ↓ 0. Order continuity of the norm is equivalent to
separability of the Banach space E. An r.i. BFS E is called symmetric if f, g ∈ E and
g ≺≺ f imply that ‖g‖E � ‖f‖E (it is called fully symmetric if it has the additional
property that f ∈ E, g ∈ S(0, 1) and g ≺≺ f imply that g ∈ E). Here g ≺≺ f means
that the function g is submajorized by f , that is,∫ t

0
g∗(s) ds �

∫ t

0
f∗(s) ds

for all t � 0. A separable r.i. BFS E is necessarily fully symmetric [25, Theorems II 4.3
and II 4.10].

For any symmetric BFS E on (0,∞) the corresponding non-commutative space
E(M, τ) associated with (M, τ) is defined by

E(M, τ) = {x ∈ M̃ : µ(x) ∈ E},

equipped with the norm given by ‖x‖E(M,τ) = ‖µ(x)‖E for all x ∈ E(M, τ). It can be
shown that (E(M, τ), ‖ · ‖E(M,τ)) is indeed a Banach space (see [15] for the details),
which is called a non-commutative symmetric space (or a symmetric operator space). In
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particular, if E = Lp(0,∞), 1 � p � ∞, then E(M, τ) = Lp(M, τ) is the corresponding
non-commutative Lp-space. The norm in Lp(M, τ) is usually denoted by ‖ · ‖p. Further-
more, we note that L∞(M, τ) = M and for this reason the norm in M is also denoted
by ‖ · ‖∞. Observe that every non-commutative symmetric space E(M, τ) satisfies

L1 ∩ L∞(M, τ) ⊆ E(M, τ) ⊆ (L1 + L∞)(M, τ),

with continuous embeddings. The trace τ on M+ extends uniquely to an additive, pos-
itively homogeneous, unitarily invariant and normal functional τ̃ : M̃+ → [0,∞], which
is given by

τ̃(a) =
∫ ∞

0
µt(a) dt for all a ∈ M̃+

(for the details see, for example, [16, § 3]). For convenience, we denote this extension τ̃

again by τ . An operator x ∈ M̃ belongs to L1(M, τ) if and only if τ(|x|) < ∞. The
restriction of τ to L1(M, τ)+ induces a bounded linear functional on the space L1(M, τ),
which will also be denoted by τ . The norm on L1(M, τ) is given by ‖x‖1 = τ(|x|) for all
x ∈ L1(M, τ).

For any non-commutative symmetric space E(M, τ), the Köthe dual space is defined
by

E(M, τ)× = {y ∈ M̃ : xy ∈ L1(M, τ) for all x ∈ E(M, τ)},

which is equipped with the norm given by

‖y‖E(M,τ)× = sup{|τ(xy)| : x ∈ E(M, τ), ‖x‖E(M,τ) � 1}

for all y ∈ E(M, τ)×. The Banach space (E(M, τ)×, ‖ · ‖E(M,τ)×) is a non-commutative
symmetric space. Actually,

E(M, τ)× = E×(M, τ) = {y ∈ M̃ : µ(y) ∈ E×} (2.2)

and ‖y‖E(M,τ)× = ‖µ(y)‖E× for all y ∈ E(M, τ)× [16, Theorem 5.6]. As in the commu-
tative situation, E(M, τ)× may be identified with a closed subspace of the Banach space
dual E(M, τ)∗ via the duality pairing given by

〈x, y〉 = τ(xy) = τ(yx) (2.3)

for all x ∈ E(M, τ) and y ∈ E(M, τ)×. For the details concerning the non-commutative
duality we refer the reader to [16]. In particular, we recall that if E has order-continuous
norm, then E(M, τ) has order-continuous norm as well (that is, xα ↓ 0 in E(M, τ)
implies that ‖xα‖E ↓ 0), which implies that E(M, τ)∗ = E(M, τ)× (see [16, Proposition
3.6 and Theorem 5.11] and [10]). Furthermore, in this case, the subspace L1 ∩L∞(M, τ)
is dense in E(M, τ) (see [16, Proposition 2.8]) and E(M, τ) ⊆ M̃0.
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3. Some additional results concerning measurable operators

The real subspace of M consisting of all self-adjoint elements is denoted by Mh. Similarly,
M̃h denotes the real subspace of all self-adjoint elements in M̃. If a ∈ M̃h and f : R → C

is a Borel function, then the normal operator f(a) is defined via the functional calculus
by

f(a) =
∫

R

f(λ) dea(λ).

Recall that the spectral measure ef(a)of f(a) is given by

ef(a)(B) = ea(f−1(B)), B ∈ Bor(C), (3.1)

where Bor(C) denotes the σ-algebra of all Borel subsets of C. Since ea takes its values in
the projections of M, it is clear from (3.1) that ef(a)(B) ∈ M for all B ∈ Bor(C), and
so f(a) is affiliated with M. The next lemma gives sufficient conditions on the function
f to guarantee that f(a) is τ -measurable.

Lemma 3.1. If a ∈ M̃h and if f : R → C is a Borel function which is bounded on
bounded subsets of R, then f(a) ∈ M̃.

Proof. We must show that τ(e|f(a)|(s,∞)) < ∞ for some s > 0. Note that it follows
from (3.1) that

e|f(a)|(s,∞) = ea({λ ∈ R : |f(λ)| > s}) (3.2)

for all s > 0. Since a ∈ M̃h, there exists t > 0 such that τ(e|a|(t, ∞)) < ∞ and, since f

is bounded on the interval [−t, t], there exists a constant C > 0 such that |f(λ)| � C for
all λ ∈ [−t, t]. This implies that

{λ ∈ R : |f(λ)| > C} ⊆ {λ ∈ R : |λ| > t}

and so it follows from (3.2) that

e|f(a)|(C,∞) = ea({λ ∈ R : |f(λ)| > C})

� ea({λ ∈ R : |λ| > t})

= e|a|(t, ∞).

Hence, τ(e|f(a)|(C,∞)) � τ(e|a|(t, ∞)) < ∞. �

Proposition 3.2. Suppose that a ∈ M̃h and that f, fn : R → C (n=1,2,. . . ) are Borel
functions that are bounded on bounded subsets of R. Assume that fn → f as n → ∞
uniformly on bounded subsets of R. Then fn(a) → f(a) in measure as n → ∞.

Proof. Replacing fn by fn − f , it is sufficient to show that fn(a) → 0 as n → ∞ in
measure whenever fn → 0 uniformly on bounded subsets of R. As observed in (2.1), we
have to show that τ(e|fn(a)|(λ, ∞)) → 0 as n → ∞ for all λ > 0. Fix λ > 0 and let ε > 0
be given. Since a is τ -measurable, we know that

lim
t→∞

τ(e|a|(t, ∞)) = 0.
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Hence, there exists R > 0 such that τ(e|a|(R, ∞)) < ε. Note that

e|a|(R, ∞) = ea({µ ∈ R : |µ| > R}).

Since fn → 0 uniformly on [−R, R], there exists N ∈ N such that |fn(µ)| < λ for all
µ ∈ [−R, R] and all n � N . This implies that

{µ ∈ R : |fn(µ)| > λ} ⊆ {µ ∈ R : |µ| > R}

for all n � N . Hence, for all n � N , we find that

e|fn(a)|(λ, ∞) = ea({µ ∈ R : |fn(µ)| > λ})

� ea({µ ∈ R : |µ| > R})

= e|a|(R, ∞).

This implies that
τ(e|fn(a)|(λ, ∞)) � τ(e|a|(R, ∞)) < ε

for all n � N . �

Note the following consequence of the above proposition. Suppose that a ∈ M̃h and
that f : R → C is a Borel function that is bounded on bounded subsets of R. For n ∈ N

we define fn = fχ{|f |�n}. Evidently, fn → f uniformly on bounded subsets of R and,
consequently, fn(a) → f(a) in measure as n → ∞. Note that each fn is bounded and so
fn(a) ∈ M for all n.

Suppose that α : M → M is a ∗-automorphism. If a is a self-adjoint operator on H,
affiliated with M, then the measure α(ea), defined by α(ea)(B) = α(ea(B)) for all B ∈
Bor(R), is a spectral measure taking its values in M. If f : R → C is a bounded Borel
function, then f(a) ∈ M. We claim that

α(f(a)) =
∫

R

f(λ) dα(ea). (3.3)

Indeed, equality (3.3) is easily verified if f is a simple function. The general case now
follows via uniform approximation of f by simple functions. In particular, if a ∈ Mh,
then the spectral measure ea is supported on any closed interval [−R, R] containing the
spectrum of a. Applying (3.3) to the function f given by f(λ) = λχ[−R,R](λ), we find
that

α(a) =
∫

R

λ dα(ea). (3.4)

By the uniqueness of the spectral measure, this implies that eα(a) = α(ea). Consequently,

f(α(a)) =
∫

R

f(λ) dα(ea) = α(f(a)) (3.5)

for all bounded Borel functions f : R → C.
Now we assume that α : M → M is a ∗-automorphism which is in addition trace

preserving, that is, τ(α(a)) = τ(a) for all 0 � a ∈ M. The next proposition shows that
such an automorphism extends to a ∗-automorphism of M̃.
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Proposition 3.3. If α is a τ -preserving ∗-automorphism of M, then α extends
uniquely to a ∗-automorphism α̃ : M̃ → M̃, which is continuous with respect to the
measure topology. Moreover,

(i) if f : R → C is a Borel function, which is bounded on bounded subsets of R, and
if a ∈ M̃h, then α̃(f(a)) = f(α̃(a));

(ii) α̃ is rearrangement preserving, that is, µ(α̃(x)) = µ(x) for all x ∈ M̃;

(iii) α̃ is trace preserving, that is, τ(α̃(a)) = τ(a) for all 0 � a ∈ M̃;

(iv) if z ∈ L1(M, τ), then α̃(z) ∈ L1(M, τ) and τ(α̃(z)) = τ(z).

Proof. As observed above (see (3.4)), for any 0 � a ∈ M the spectral measure of α(a)
is given by eα(a) = α(ea) and consequently, it follows from the definition of the generalized
singular-value function that µt(α(a)) = µt(a) for all t � 0. Since |α(x)| = α(|x|) for all
x ∈ M, we conclude that µ(α(x)) = µ(x) for all x ∈ M. A sequence {xn}∞

n=1 in M
converges to 0 in measure if and only if µt(xn) → 0 as n → ∞ for all t > 0 and so we
infer that α is continuous with respect to this topology. Since M̃ is complete and M is
dense in M̃ with respect to the measure topology, α has a unique continuous extension
α̃ : M̃ → M̃, which is a ∗-automorphism.

For the proof of (i), define the self-adjoint operator b in H by

b =
∫

R

λ dα(ea)(λ).

Since the spectral measure α(ea) takes its values in M, it is clear that b is affiliated with
M and eb = α(ea). Actually, b ∈ M̃h. Indeed, since a is τ -measurable, there exists s > 0
such that τ(e|a|(s,∞)) < ∞. Furthermore,

e|b|(s,∞) = eb({λ ∈ R : |λ| > s})

= α(ea({λ ∈ R : |λ| > s}))

= α(e|a|(s,∞))

and so τ(e|b|(s,∞)) = τ(α(e|a|(s,∞))) = τ(e|a|(s,∞)) < ∞. Hence, b is τ -measurable.
Now assume that f : R → C is a Borel function, which is bounded on bounded subsets of
R. Let {fn}∞

n=1 be a sequence of bounded Borel functions such that fn → f uniformly on
compact subsets of R as n → ∞. It follows from (3.3) that α̃(fn(a)) = α(fn(a)) = fn(b)
for all n. Moreover, by Proposition 3.2, fn(a) → f(a) and fn(b) → f(b) in measure
as n → ∞. From the continuity of α̃ with respect to the measure topology, it follows
that α̃(fn(a)) → α̃(f(a)) as n → ∞. Therefore, we may conclude that α̃(f(a)) = f(b).
Applying this equality in particular to the function f(λ) = λ, we see that b = α̃(a), and
hence, α̃(f(a)) = f(α̃(a)). This proves (i).

It follows in particular from (i) that eα̃(a) = α(ea) for all a ∈ M̃h. Since α is trace
preserving, this implies that µ(α̃(a)) = µ(a) for all 0 � a ∈ M̃. Consequently,

µ(α̃(x)) = µ(|α̃(x)|) = µ(α̃(|x|)) = µ(|x|) = µ(x)
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for all x ∈ M̃, and this shows that (ii) holds. Since

τ(a) =
∫ ∞

0
µt(a) dt for all 0 � a ∈ M̃,

(iii) is an immediate consequence of (ii). Finally, since every z ∈ L1(M, τ) is a linear
combination of four positive elements of L1(M, τ), statement (iv) is now evident. �

4. R-flows on symmetric operator spaces

An R-flow on (M, τ) is an ultra-weakly continuous (equivalently, σ(M, L1)-continuous)
representation γ = {γt}t∈R of R on M by trace preserving ∗-automorphisms of M. It
follows from Proposition 3.3 that γ has a canonical extension to a group γ̃ = {γ̃t}t∈R of
∗-automorphisms on M̃. Furthermore, each γ̃t is rearrangement preserving, which allows
us to define, for any symmetric BFS E on (0,∞), the group γE = {γE

t }t∈R of isometries
in the corresponding non-commutative space E(M, τ), where

γE
t = (γ̃t)|E(M,τ)

for all t ∈ R. Similarly, the group γE×
is defined on the Köthe dual E(M, τ)× of E(M, τ).

Since γ̃ is trace preserving, it follows that

τ(γE
t (x)y) = τ(γ̃t(x)y) = τ(γ̃−t(γ̃t(x)y))

= τ(x(γ̃−ty)) = τ(x(γE×

−t y)) (4.1)

for all x ∈ E(M, τ) and y ∈ E(M, τ)×. In other words,

((γE
t )∗)|E(M,τ)× = γE×

−t (4.2)

for all t ∈ R, where we consider E(M, τ)× ⊆ E(M, τ)∗ via trace duality (2.3). If E =
Lp(0,∞), with 1 � p � ∞, then we denote the group γLp on Lp(M, τ) simply by γp. In
general, the group γE is not strongly continuous in the Banach space E(M, τ). However,
the next proposition shows that separability of the BFS E implies strong continuity.

Proposition 4.1. If γ is an R-flow (M, τ) and E is a separable BFS on (0,∞), then
γE is a strongly continuous group on the symmetric operator space E(M, τ).

Proof. By [11, Proposition 1.23], it suffices to prove that γE is σ(E(M, τ), E(M, τ)∗)-
continuous. Since E has order-continuous norm, E(M, τ)∗ = E(M, τ)×, as observed at
the end of § 2. Hence, it is sufficient to show that the function t �→ τ(γE

t (x)y) is continuous
for all x ∈ E(M, τ) and y ∈ E(M, τ)×.

First we consider the special situation that x ∈ L1(M, τ) ∩ M. Take y ∈ E(M, τ)×

and write y = y1 + y∞ with y1 ∈ L1(M, τ) and y∞ ∈ M. For t ∈ R we have

τ(γE
t (x)y) = τ(γ∞

t (x)y1) + τ(γ1
t (x)y∞)

= τ(γ∞
t (x)y1) + τ(xγ∞

−t(y∞)).
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By hypothesis, the functions t �→ τ(γ∞
t (x)y1) and t �→ τ(xγ∞

−t(y∞)) are continuous, and
so the function t �→ τ(γL1∩L∞

t (x)y) is continuous.
Next we consider the general case. Fix y ∈ E(M, τ)×. For x ∈ E(M, τ), define the

function fx : R → C by fx(t) = τ(γE
t (x)y) for all t ∈ R. We have to show that fx is

continuous. Fix x ∈ E(M, τ). Since E(M, τ) has order-continuous norm, L1(M, τ) ∩ M
is dense in E(M, τ) and so, for each n ∈ N, there exists zn ∈ L1(M, τ) ∩ M such that
‖x − zn‖E(M,τ) � 1/n. For all t ∈ R we have

|fx(t) − fzn(t)| = |τ(γE
t (x)y) − τ(γE

t (zn)y)| = |τ((x − zn)γE×

−t (y))|

� ‖x − zn‖E(M,τ)‖γE×

−t (y)‖E(M,τ)×

= ‖x − zn‖E(M,τ)‖y‖E(M,τ)×

� 1
n

‖y‖E(M,τ)× .

From the first part of the proof we know that the functions fzn are continuous. Conse-
quently, fx is a uniform limit of continuous functions and hence, fx itself is continuous.
This completes the proof. �

Let γ be an R-flow on (M, τ) and E be a separable r.i. BFS. By Corollary 4.1, the
induced group γE in E(M, τ) is strongly continuous. In other words, γE is a C0-group of
isometries in E(M, τ). The infinitesimal generator of γE is denoted by δE (and if E = Lp,
we denote δE simply by δp). Recall that this generator δE : Dom(δE) → E(M, τ) is given
by

δE(x) = lim
t→0

γE
t (x) − x

t
, x ∈ Dom(δE),

where Dom(δE) consists of those elements x ∈ E(M, τ) for which this limit exists with
respect to the norm in E(M, τ). The operator δE is closed and Dom(δE) is norm dense in
E(M, τ) (see, for example, [11]). Since γE is a bounded group, the spectrum σ(δE) of δE

is contained in iR. For λ ∈ C with Re λ > 0, the resolvent operator R(λ, δE) = (λ − δE)−1

is given by

R(λ, δE)x =
∫ ∞

0
e−λtγE

t (x) dt, x ∈ E(M, τ), (4.3)

as a norm convergent Bochner integral in E(M, τ). For λ ∈ C with Re λ < 0 we have

R(λ, δE)x = −R(−λ, −δE)x = −
∫ ∞

0
eλtγE

−t(x) dt, x ∈ E(M, τ). (4.4)

Next we shall show that Dom(δE) ∩ M is sufficiently large to determine the generator δE .
For this purpose we first prove the following lemma.

Lemma 4.2. If x ∈ E(M, τ) ∩ M and 0 < λ ∈ R, then R(λ, δE)x ∈ Dom(δE) ∩ M
and δE(R(λ, δE)x) ∈ E(M, τ) ∩ M.

https://doi.org/10.1017/S0013091505000957 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000957


Commutator estimates and R-flows in non-commutative operator spaces 303

Proof. Let 0 < λ ∈ R be given. It is clear that R(λ, δE)x ∈ Dom(δE) for all x ∈
E(M, τ) ∩ M. To show that R(λ, δE)x ∈ M, take y ∈ L1(M, τ) ∩ M. Using (4.3), (4.2)
and (4.4) we find via trace duality that

〈R(λ, δE)x, y〉 =
∫ ∞

0
e−λt〈γE

t (x), y〉 dt

=
∫ ∞

0
e−λt〈x, γ1

−t(y)〉 dt

=
〈

x,

∫ ∞

0
e−λtγ1

−t(y) dt

〉
= 〈x, R(λ, −δ1)y〉
= 〈R(λ, −δ1)∗x, y〉.

Since L1(M, τ) ∩ M separates the points of L1(M, τ) + M, we may conclude that
R(λ, δE)x = R(λ, −δ1)∗x ∈ M, as R(λ, −δ1)∗ is a bounded linear operator from M into
itself. This shows that R(λ, δE)x ∈ Dom(δE) ∩ M whenever x ∈ E(M, τ) ∩ M. Finally,
for all x ∈ E(M, τ) ∩ M we have δE(R(λ, δE)x) = λR(λ, δE)x − x ∈ E(M, τ) ∩ M. �

Recall that a linear subspace D of Dom(δE) is called a core for the operator δE if δE

is the closure of the restriction of δE to D (equivalently, for every x ∈ Dom(δE) there
exists a sequence {xn}∞

n=1 in D such that xn → x and δE(xn) → δE(x) as n → ∞). If D
is a linear subspace of Dom(δE) that is dense in E(M, τ) and invariant for the group γE ,
then D is a core for δE (see, for example, [11, Theorem 1.9]).

Theorem 4.3. Let γ be an R-flow on (M, τ) and let E be a separable r.i. BFS on
(0,∞). If we define

F = {x ∈ Dom(δE) ∩ M : δE(x) ∈ M}, (4.5)

then F is a core for the generator δE of γE .

Proof. If x ∈ Dom(δE) ∩ M and δE(x) ∈ M, then γE
t (x) ∈ Dom(δE) (see, for exam-

ple, [11, Lemma 1.1]) and γE
t (x) = γt(x) ∈ M. Moreover, δE(γE

t (x)) = γE
t (δE(x)) =

γt(δE(x)) ∈ M for all t ∈ R. This shows that F is invariant for γE . It remains to show
that F is dense in E(M, τ). Since E has order-continuous norm, L1(M, τ) ∩ M is dense
in E(M, τ) and hence E(M, τ) ∩ M is dense in E(M, τ). Therefore, it is sufficient to
show that F is dense in E(M, τ) ∩ M. Let x ∈ E(M, τ) ∩ M be given. It follows from
Lemma 4.2 that R(λ, δE)x ∈ F for all 0 < λ ∈ R. Furthermore, it is well known (see, for
example, [29, Lemma 1.3.2]) that lim0<λ→∞ λR(λ, δE)x = x with respect to the norm
in E(M, τ). Hence, F is dense in E(M, τ) ∩ M. Consequently, F is dense in E(M, τ)
and invariant for γE , and so, by [11, Theorem 1.9], we may conclude that F is a core
for δE . �

Note that it follows in particular from the above theorem that Dom(δE) ∩ M is a
core for the generator δE . The next proposition shows that δE acts as a derivation on
Dom(δE) ∩ M. In the proof we will use the following result.
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Lemma 4.4. Let E be a separable r.i. BFS on (0,∞). If {xn}∞
n=1 is a sequence

in E(M, τ) ∩ M such that ‖xn‖E(M,τ) → 0 as n → ∞ and supn ‖xn‖∞ < ∞, then
‖xnyn‖E(M,τ) → 0 as n → ∞ for any norm convergent sequence {yn}∞

n=1 in E(M, τ).

Proof. Let C = supn ‖xn‖∞ and let y ∈ E be such that ‖yn − y‖E(M,τ) → 0 as
n → ∞. Write xnyn = xn(yn − y) + xny. Since

‖xn(yn − y)‖E(M,τ) � ‖xn‖∞‖yn − y‖E(M,τ) � C‖yn − y‖E(M,τ)

for all n, it is clear that ‖xn(yn − y)‖E(M,τ) → 0 as n → ∞. Furthermore, µ(xny) �
‖xn‖∞µ(y) � Cµ(y) for all n (see [18, Lemma 2.5]) and xny → 0 in measure (since
the inclusion of E(M, τ) into M̃ is continuous; see, for example, [15, Lemma 4.4]). This
implies that µs(xny) → 0 for all s > 0 as n → ∞. Defining fn(s) = supk�n µs(xky), we
have Cµs(y) � fn(s) ↓n 0 for all s > 0. The order continuity of the norm in E implies
that ‖fn‖ ↓ 0. Since ‖xny‖E(M,τ) = ‖µ(xny)‖E � ‖fn‖E for all n, we may conclude that
‖xny‖E(M,τ) → 0 as n → ∞. This completes the proof of the lemma. �

Proposition 4.5. Under the same assumptions as in Theorem 4.3, the subspace
Dom(δE) ∩ M is a subalgebra of M and δE(xy) = xδE(y) + δE(x)y for all x, y ∈
Dom(δE) ∩ M.

Proof. Given x, y ∈ Dom(δE) ∩ M, it is clear that xy ∈ E(M, τ) ∩ M. We write

γE
t (xy) − xy

t
=

γE
t (x)γE

t (y) − xy

t

= (γE
t (x) − x)

γE
t (y) − y

t
+ x

γE
t (y) − y

t
+

γE
t (x) − x

t
y.

Since

lim
t→0

γE
t (y) − y

t
= δE(y)

with respect to the norm in E(M, τ) and x ∈ M, it follows that

lim
t→0

x
γE

t (y) − y

t
= xδE(y)

with respect to the norm in E(M, τ). Similarly, we see that

lim
t→0

(γE
t (x) − x)y

t
= δE(x)y.

Moreover, since ‖γE
t (x) − x‖∞ � 2‖x‖∞ for all t ∈ R, it is an immediate consequence of

Lemma 4.4 that

lim
t→0

(γE
t (x) − x)

γE
t (y) − y

t
= 0

with respect to ‖ · ‖E(M,τ). Hence, we may conclude that xy ∈ Dom(δE) ∩ M and
δE(xy) = xδE(y) + δE(x)y. �
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5. Double operator integrals and Dom(δE)

We assume that γ = {γt}t∈R is an R-flow in (M, τ) and that E is a separable r.i. BFS on
(0,∞). As in the previous section, δE denotes the infinitesimal generator of the induced
C0-group γE = {γE

t }t∈R on the corresponding symmetric operator space E(M, τ). In
this section we are particularly interested in the following question.

For which functions f : R → C is f(x) ∈ Dom(δE) whenever x∗ = x ∈ Dom(δE)?

Some additional conditions on the function f are inevitable. In particular, to guarantee
that f(x) ∈ E(M, τ) whenever x∗ = x ∈ E(M, τ), we shall assume that |f(λ)| � A|λ|
for all λ ∈ R and some constant 0 � A ∈ R. Indeed, under this assumption we have
|f(x)| � A|x| for all x∗ = x ∈ E(M, τ), and so f(x) ∈ E(M, τ). In this situation, it
follows from Proposition 3.3 (i) that

γE
t (f(x)) = f(γE

t (x)), t ∈ R. (5.1)

Assuming, moreover, that f is continuously differentiable and that x ∈ Dom(δE), formal
differentiation of (5.1) yields f(x) ∈ Dom(δE) and

δE(f(x)) = f ′(x)δE(x). (5.2)

In some special situations, e.g. if δE is bounded and the elements x and δE(x) commute,
(5.2) can indeed be justified (see, for example, [28, pp. 598, 599] or [8, p. 236]). However,
as we will see is this section, in the general setting considered in this paper an appropriate
modified version of (5.2) is valid, where the right-hand side of this equality uses the double
operator integral theory, recently developed in this setting in [12,13] (see also [1,3–5]
in the setting of symmetrically normed ideals of compact operators). To formulate and
prove our results, we first recall the necessary definitions and theorems concerning double
operator integrals. For the details we refer the reader to [12,13].

In [13] the theory of double operator integrals has been developed in general non-com-
mutative symmetric spaces. In the present paper we will only consider non-commutative
spaces E(M, τ), where E is a separable r.i. BFS on (0,∞), so E(M, τ) has order-
continuous norm. In this situation a simpler and less technical version of the general
theory can be used (see also [12]). Suppose that a and b are self-adjoint operators in H
affiliated with M. For every B ∈ Bor(R), define the projections

P a
E(B), Qb

E(B) : E(M, τ) → E(M, τ)

by
P a

E(B)x = ea(B)x, Qb
E(B)x = xeb(B), x ∈ E(M, τ).

Evidently, P a
E , Qb

E : Bor(R) → L(E(M, τ)) are two commuting (countably additive)
spectral measures (in the sense of [17, Chapter X]) satisfying

‖P a
E(B)‖L(E(M,τ)) � 1 and ‖Qb

E(B)‖L(E(M,τ)) � 1 for all B ∈ Bor(R).
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We denote by A the algebra of subsets of R
2 which is generated by all Borel rectangles

A × B with A, B ∈ Bor(R). Let P a
E ⊗ Qb

E : A → L(E) be the product measure, that is,

P a
E ⊗ Qb

E(A × B) = P a
E(A)Qb

E(B)

for all A, B ∈ Bor(R). It is easily verified that P a
E ⊗ Qb

E is a (finitely additive) spectral
measure. First consider the case that E = L2(0,∞), that is, E(M, τ) = L2(M, τ). In
this situation P a

L2
and Qb

L2
take their values in the orthogonal projections of the Hilbert

space L2(M, τ). As is well known (see, for example, [6, Theorem V.2.6]), the product
measure P a

L2
⊗ Qb

L2
extends uniquely to a countably additive spectral measure on the

Borel sets Bor(R2), taking its values in the orthogonal projections of L2(M, τ). This
extension is also denoted by P a

L2
⊗ Qb

L2
, so

P a
L2

⊗ Qb
L2

: Bor(R2) → L(L2(M, τ)).

For every bounded Borel function ϕ ∈ B(R2), the spectral integral

T a,b
ϕ,2 =

∫
R2

ϕ d(P a
L2

⊗ Qb
L2

)

is a bounded linear operator on L2(M, τ) and the map ϕ �→ T a,b
ϕ,2 is an algebra homo-

morphism from the algebra B(R2) of all complex-valued bounded Borel functions into
L(L2(M, τ)).

Now we return to the situation that E is an arbitrary separable r.i. BFS on (0,∞).
Note that in this case E(M, τ) ∩ L2(M, τ) is a dense subspace of E(M, τ).

Definition 5.1. A function ϕ ∈ B(R2) is said to be P a
E ⊗ Qb

E-integrable if

T a,b
ϕ,2(E(M, τ) ∩ L2(M, τ)) ⊆ E(M, τ) ∩ L2(M, τ)

and the restriction of T a,b
ϕ,2 to E(M, τ)∩L2(M, τ) is continuous with respect to ‖ · ‖E(M,τ).

If this is the case, then the restriction (T a,b
ϕ,2)|E(M,τ)∩L2(M,τ) has a unique extension to a

bounded linear operator on E(M, τ), which is denoted by

T a,b
ϕ,E =

∫
R2

ϕ d(P a
E ⊗ Qb

E).

The collection of all P a
E ⊗ Qb

E-integrable functions is denoted by JE(P a
E ⊗ Qb

E).

The set JE(P a
E ⊗ Qb

E) is a subalgebra of B(R2) and the map ϕ �→ T a,b
ϕ,E is an algebra

homomorphism from JE(P a
E ⊗ Qb

E) into L(E(M, τ)). If F is another separable r.i. BFS
on (0,∞), then E(M, τ) ∩ F (M, τ) ∩ L2(M, τ) is dense in both E(M, τ) and F (M, τ).
Moreover, if

ϕ ∈ JE(P a
E ⊗ Qb

E) ∩ JF (P a
F ⊗ Qb

F ),

then T a,b
ϕ,E and T a,b

ϕ,F agree on E(M, τ) ∩ F (M, τ) ∩ L2(M, τ), and hence on E(M, τ) ∩
F (M, τ). Therefore, there is no danger of confusion if we denote the operator T a,b

ϕ,E simply
by T a,b

ϕ , as we will do from now on.
Next we will exhibit a large class of functions in B(R2) which is contained in JE(P a

E ⊗
Qb

E) for any separable r.i. BFS E.
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Definition 5.2. We denote by A0 the collection of all functions ϕ ∈ B(R2) for
which there exist a σ-finite measure space (S, Σ, ν) and two complex-valued measur-
able functions α and β on the product measurable space (R × S, Bor(R) ⊗ Σ), satisfying
α(· , s), β(· , s) ∈ B(R) for all s ∈ S and

Cα,β =
∫

S

‖α(· , s)‖∞‖β(· , s)‖∞ dν(s) < ∞,

such that

ϕ(λ, µ) =
∫

S

α(λ, s)β(µ, s) dν(s), (λ, µ) ∈ R
2. (5.3)

For every ϕ ∈ A0 we define ‖ϕ‖A0 = inf Cα,β , where the infimum is taken over all possible
representations (5.3) of ϕ. Furthermore, we denote by C0 the collection of all ϕ ∈ A0 for
which the functions α and β in (5.3) can be chosen such that α(· , s), β(· , s) ∈ Cb(R)
(where Cb(R) denotes the algebra of all bounded continuous complex-valued functions
on R).

For the convenience of the reader, we collect in the next proposition some of the results
of [12] which will be used in the present section.

Proposition 5.3. In the above setting the following statements hold.

(i) (A0, ‖ · ‖A0) is a Banach algebra and ‖ϕ‖∞ � ‖ϕ‖A0 for all ϕ ∈ A0. Moreover, C0

is a closed subalgebra of A0 consisting of continuous functions [12, Lemma 4.6].

(ii) If a and b are self-adjoint operators, affiliated with M, then A0 ⊆ JE(P a
E ⊗ Qb

E)
and the map ϕ �→ T a,b

ϕ is an algebra homomorphism from A0 into L(E) satisfying
‖T a,b

ϕ ‖L(E) � ‖ϕ‖A0 [12, Proposition 4.7].

(iii) If {an}∞
n=1 and {bn}∞

n=1 converge in M̃h in measure to a, b ∈ M̃h, respectively,
then ‖T an,bn

ϕ x − T a,b
ϕ x‖E(M,τ) → 0 as n → ∞ for all x ∈ E(M, τ) and ϕ ∈ C0 [12,

Lemma 5.14].

Suppose that F is a symmetric (not necessarily separable) BFS on (0,∞). The natural
embedding of the space F (M, τ) in its Köthe bidual F (M, τ)×× is contractive but not
isometric, in general. In the next lemma we need the condition that this embedding is
an isometry. This condition is equivalent to the lower semi-continuity of the norm in
F (M, τ), that is, 0 � xα ↑ x in F (M, τ) implies that ‖x‖F (M,τ) = supα ‖xα‖F (M,τ)

(see [16, Proposition 5.14]). If the norm in the BFS F is lower semi-continuous (also
called a Fatou norm), then so is the norm in the non-commutative space F (M, τ) (as
follows easily from [16, Lemma 1.6]). Note furthermore that if F has an order-continuous
norm (equivalently, is separable), then the norm in F is lower semi-continuous.

Lemma 5.4. Suppose that F is a symmetric BFS with lower semi-continuous
norm. If a and b are self-adjoint operators affiliated with M and if ϕ ∈ A0, then
‖T a,b

ϕ (x)‖F (M,τ) � ‖ϕ‖A0‖x‖F for all x ∈ L1(M, τ) ∩ M.
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Proof. In the proof of [12, Proposition 4.7], it is shown that T a,b
ϕ (x) ∈ L1(M, τ) ∩ M

whenever x ∈ L1(M, τ) ∩ M. We use a similar argument to prove the statement of the
present lemma. Represent the function ϕ as in (5.3). For s ∈ S, define the operator
Ts ∈ L(L2(M, τ)) by

Ts(x) = α(a, s)xβ(b, s), x ∈ L2(M, τ). (5.4)

Note that (5.4) also defines a bounded linear operator on F (M, τ), satisfying

‖Ts(x)‖F (M,τ) � ‖α(· , s)‖∞‖β(· , s)‖∞‖x‖F (M,τ), x ∈ F (M, τ). (5.5)

In the proof of [12, Proposition 4.7], it is shown that

〈T a,b
ϕ x, y〉 =

∫
S

〈Tsx, y〉 dν(s), x, y ∈ L2(M, τ) (5.6)

(here 〈· , ·〉 is the duality pairing given by (2.3)). Fix x ∈ L1(M, τ) ∩ M and take
y ∈ L1(M, τ)∩M with ‖y‖F (M,τ)× � 1. Let T a,b

ϕ (x)y = u|T a,b
ϕ (x)y| be the polar decom-

position of T a,b
ϕ (x)y. Using (5.5) and (5.6) it follows that

τ(|T a,b
ϕ (x)y|) = τ(T a,b

ϕ (x)yu∗)

=
∫

S

〈Tsx, yu∗〉 dν(s)

�
( ∫

S

‖α(· , s)‖∞‖β(· , s)‖∞ dν(s)
)

‖x‖F (M,τ)‖y‖F (M,τ)×

� Cα,β‖x‖F (M,τ).

Via [16, Proposition 5.3], and by the assumption on the norm of F , we may conclude
that ‖T a,b

ϕ (x)‖F (M,τ) = ‖T a,b
ϕ (x)‖F (M,τ)×× � Cα,β‖x‖F (M,τ). The result of the lemma is

now clear from the definition of the norm in A0. �

Given a symmetric BFS E, the space E ∩L∞(0,∞), equipped with the norm given by

‖f‖E∩L∞(0,∞) = max(‖f‖E , ‖f‖L∞(0,∞)),

is also a symmetric BFS (but E ∩ L∞(0,∞) is not separable, even if E is). Moreover, it
is easy to see that

E(M, τ) ∩ L∞(M, τ) = (E ∩ L∞)(M, τ).

Lemma 5.5. Let E be a separable r.i. BFS and suppose that a and b are self-
adjoint operators affiliated with (M, τ). If ϕ ∈ A0, then T a,b

ϕ (x) ∈ E(M, τ) ∩ M and
‖T a,b

ϕ (x)‖E(M,τ)∩M � ‖ϕ‖A0‖x‖E(M,τ)∩M for all x ∈ E(M, τ) ∩ M.

Proof. Since E has order-continuous norm, it is clear that the norm of E ∩ L∞ is
lower semi-continuous. Therefore, applying Lemma 5.4 to F = E ∩ L∞, it follows that

‖T a,b
ϕ (x)‖E(M,τ)∩M � ‖ϕ‖A0‖x‖E(M,τ)∩M, x ∈ L1(M, τ) ∩ M. (5.7)
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We claim that L1(M, τ) ∩ M is dense in E(M, τ) ∩ M with respect to ‖ · ‖E(M,τ)∩M.
Indeed, let 0 � a ∈ E(M, τ) ∩ M be given and define an = aea(1/n, ∞) for all n ∈ N.
It is evident that an ∈ M and, since E(M, τ) has order-continuous norm, we also have
τ(ea(1/n, ∞)) < ∞ (see the comments at the end of § 2), and so an ∈ L1(M, τ). More-
over, 0 � a − an = aea[0, 1/n], which implies that 0 � a − an � (1/n)1 and so a − an ↓ 0
in E(M, τ) and ‖a − an‖∞ � 1/n. This implies that ‖a − an‖E(M,τ)∩M ↓ 0 as n → ∞
and the claim is proved.

Let x ∈ E(M, τ) ∩ M be given and take a sequence {xn}∞
n=1 in L1(M, τ) ∩ M such

that ‖x − xn‖E(M,τ)∩M → 0 as n → ∞. It follows from (5.7) that {T a,b
ϕ (xn)}∞

n=1 is
a Cauchy sequence in E(M, τ) ∩ M, and so there exists y ∈ E(M, τ) ∩ M such that
‖T a,b

ϕ (xn) − y‖E(M,τ)∩M → 0 as n → ∞. Moreover, since T a,b
ϕ is a bounded linear oper-

ator in E(M, τ), we also have ‖T a,b
ϕ (xn) − T a,b

ϕ (x)‖E(M,τ) → 0 as n → ∞. Consequently,
T a,b

ϕ (x) = y ∈ E(M, τ) ∩ M and, from (5.7), applied to xn and taking the limit as
n → ∞, it follows that ‖T a,b

ϕ (x)‖E(M,τ)∩M � ‖ϕ‖A0‖x‖E(M,τ)∩M. �

For a Borel function f : R → C we denote by ψf any Borel function ψf : R
2 → C that

satisfies

ψf (λ, µ) =
f(λ) − f(µ)

λ − µ
(5.8)

for all (λ, µ) ∈ R
2 with λ 
= µ. Observe that ψf ∈ B(R2) if and only if f is a Lipschitz

function on R. Moreover, there exists at most one continuous function ψf satisfying (5.8),
which is the case if and only if f ∈ C1(R) (that is, f is continuously differentiable). By
the statement ψf ∈ A0 (or C0) we mean that there exists a function ψf ∈ A0 (or C0) satis-
fying (5.8) for all λ 
= µ. Furthermore, we denote by Ψ−1(A0) the linear space of all Borel
functions f : R → C such that ψf ∈ A0. The space Ψ−1(C0) is defined similarly. Note
that all functions f ∈ Ψ−1(C0) are continuously differentiable with a bounded derivative.
Furthermore, observe that every f ∈ Ψ−1(A0) with f(0) = 0 satisfies |f(λ)| � A|λ| for
all λ ∈ R and some constant 0 � A ∈ R. We will need the following result (which is a
special case of [12, Proposition 5.2]).

Proposition 5.6. Let E be a separable r.i. BFS on (0,∞). If f ∈ Ψ−1(C0) and
a, b ∈ M̃h such that a−b ∈ E(M, τ), then f(a)−f(b) ∈ E and f(a) − f(b) = T a,b

ψf
(a − b).

Now we are in a position to prove the main result of this section.

Theorem 5.7. Let γ = {γt}t∈R be an R-flow in (M, τ) and let E be a separable
r.i. BFS on (0,∞). If a∗ = a ∈ Dom(δE) and f ∈ Ψ−1(C0) with f(0) = 0, then
f(a) ∈ Dom(δE) and

δE(f(a)) = T a,a
ψf

(δE(a)). (5.9)

Proof. Let a∗ = a ∈ Dom(δE) be given and let {tn}∞
n=1 be a sequence in R such

that tn 
= 0 for all n and tn → 0 as n → ∞. Writing γtn(a) = a + tnδE(a) + Rn, we
have ‖t−1

n Rn‖E(M,τ) → 0 as n → ∞. For convenience, we also write an = γtn(a). Using
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Propositions 3.3 (i) and 5.6 we find that

γtn(f(a)) − f(a)
tn

=
f(γtn(a)) − f(a)

tn

=
f(a + tnδE(a) + Rn) − f(a)

tn

=
1
tn

T an,a
ψf

(tnδE(a) + Rn)

= T an,a
ψf

(δE(a)) + T an,a
ψf

(
Rn

tn

)

for all n. It follows from Proposition 5.3 (ii) that∥∥∥∥T an,a
ψf

(
Rn

tn

)∥∥∥∥
E(M,τ)

� ‖T an,a
ψf

‖L(E(M,τ))‖t−1
n Rn‖E(M,τ)

� ‖ψf‖A0‖t−1
n Rn‖E(M,τ).

This shows that ‖T an,a
ψf

(t−1
n Rn)‖E(M,τ) → 0 as n → ∞. Moreover, since an = γtn(a) → a

in E(M, τ), and, hence, in measure, Proposition 5.3 (iii) implies that

T an,a
ψf

(δE(a)) → T a,a
ψf

(δE(a)) ∈ E(M, τ) as n → ∞.

Therefore, it follows that

lim
n→∞

γtn(f(a)) − f(a)
tn

= T a,a
ψf

(δE(a))

with respect to the norm of E(M, τ). Since this holds for any such sequence {tn}∞
n=1, we

may conclude that f(a) ∈ Dom(δE) and δE(f(a)) = T a,a
ψf

(δE(a)). �

Remark 5.8. The proof of the preceding proposition is similar to that of [1, Theorem
5.1] in the setting of symmetrically normed ideals of compact operators. However, the
technical ingredients used in the proofs of Propositions 5.3 and 5.6 in the present general
setting are distinct from the theory of Birman and Solomyak [5] employed in [1].

It was shown by Peller [30] that the Besov space B1
∞,1(R) is contained in Ψ−1(C0). In

the next corollary we point out two interesting consequences of this result in combination
with Theorem 5.7. For the relevant details we refer the reader to [12, § 7]. We denote
by S ′(R) the space of tempered distributions on R and, for f ∈ S ′(R), we denote its
Fourier transform by Ff . The space of all bounded Borel measures of R is denoted by
Mb(R). Furthermore, given ε > 0, C1+ε(R) is the space of all continuously differentiable
functions on R, with bounded derivative f ′ which satisfies |f ′(λ) − f ′(µ)| � C|λ − µ|ε for
all λ, µ ∈ R and some constant 0 � C ∈ R.

Corollary 5.9. The assertion of Theorem 5.7 holds for any function f ∈ S ′(R) with
f(0) = 0, satisfying one of the following conditions:

(i) Ff ′ ∈ Mb(R); or

(ii) f ∈ C1+ε(R) for some ε > 0.
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6. R-flows induced by τ -measurable operators

In this section we consider R-flows γ = {γt}t∈R on (M, τ) of the special form

γt(x) = eitaxe−ita, x ∈ M, (6.1)

where a is a self-adjoint τ -measurable operator. First we observe that (6.1) defines an
R-flow on M for any a ∈ M̃h. Indeed, {eita}t∈R is a strongly continuous unitary group on
H which is contained in M. Hence, each γt is a trace preserving ∗-automorphism in M.
Furthermore, eita → 0 as t → 0 with respect to the strong operator topology, and hence,
since multiplication on norm-bounded subsets of L(H) is strongly continuous (see [14,
p. 33]), it follows that eitaxe−ita → 0 strongly as t → 0 for all x ∈ M. Moreover, on norm-
bounded subset of L(H) the strong and ultra-strong topology coincide (see [14, p. 37]),
and so eitaxe−ita → 0 ultra-strongly, and hence ultra-weakly, as t → 0 for all x ∈ M. This
shows that {γt}t∈R is an R-flow on M. It is easily verified that the extension γ̃ = {γ̃t}t∈R

to M̃ (see 3.3 and the discussion at the beginning of § 4) is also given by γ̃t(x) = eitaxe−ita

for all x ∈ M̃. Our objective in this section is to obtain a complete description of the
infinitesimal generator δE of γE (see Theorem 6.8). The proof of this result is divided
into several lemmas. As usual, for x, y ∈ M̃ we denote by [x, y] the commutator, that is,
[x, y] = xy − yx.

Lemma 6.1. Let a ∈ M̃h and γ̃t : M̃ → M̃ be defined by γ̃t(x) = eitaxe−ita for all
x ∈ M̃ and all t ∈ R. Then

lim
t→0

γ̃t(x) − x

t
= i[a, x]

with respect to the measure topology for all x ∈ M̃.

Proof. Given x ∈ M̃, we write

γ̃t(x) − x

t
=

eita − 1
t

xe−ita + x
e−ita − 1

t

for all t ∈ R \ {0}. Since (eitξ − 1)/t → iξ uniformly on bounded subsets of R as t → 0,
it follows from Proposition 3.2 that

eita − 1
t

→ ia as t → 0

in measure. Similarly, e−itξ → 1 uniformly on bounded subsets of R as t → 0, and so
e−ita → 1 as t → 0 in measure. Therefore, since M̃ is a topological algebra, we find that

lim
t→0

γ̃t(x) − x

t
= (ia)x + x(−ia) = i[a, x].

�

Observe that in the next lemma we do not assume that the space E has order-con-
tinuous norm, so the group γE need not be strongly continuous in general.
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Lemma 6.2. Let E be a symmetric BFS on (0,∞). Given a ∈ M̃h, define the group
γE = {γE

t }t∈R by γE
t (x) = eitaxe−ita for all x ∈ E(M, τ). If x ∈ E is such that

lim
t→0

γE
t (x) − x

t

exists with respect to the norm in E(M, τ), then [a, x] ∈ E(M, τ) and

lim
t→0

γE
t (x) − x

t
= i[a, x].

Proof. Since the embedding of E(M, τ) into M̃ is continuous with respect to the
norm topology in E(M, τ) and the measure topology in M̃ (see [15, Lemma 4.4]), this
is an immediate consequence of Lemma 6.1. �

Corollary 6.3. Suppose that E is a separable r.i. BFS and let δE be the infinites-
imal generator of the strongly continuous group {γE

t }t∈R in E(M, τ) corresponding to
a ∈ M̃h. If x ∈ Dom(δE), then [a, x] ∈ E(M, τ) and δE(x) = i[a, x].

In the proof of Lemma 6.5 we will use following result (see [13, Lemma 5.1]).

Lemma 6.4. Let E be a separable r.i. BFS. If {qn}∞
n=1 is a sequence of projections

in M such that qn ↓ 0, then ‖qnx‖E(M,τ) → 0 and ‖xqn‖E(M,τ) → 0 as n → ∞ for all
x ∈ E(M, τ).

Recall that the duality pairing between a non-commutative symmetric space E(M, τ)
and its Köthe dual space E(M, τ)× is given by 〈x, y〉 = τ(xy) for all x ∈ E(M, τ) and
y ∈ E(M, τ)× (see (2.3)).

Lemma 6.5. Let E be a separable r.i. BFS. If a ∈ M̃h, x ∈ E(M, τ) and y ∈
E(M, τ)× are such that [a, x] ∈ E(M, τ) and [a, y] ∈ E(M, τ)×, then

〈[a, x], y〉 = −〈x, [a, y]〉. (6.2)

Proof. First we consider the special case that a ∈ Mh. Then ax, xa ∈ E(M, τ) and
ay, ya ∈ E(M, τ)×. Hence,

〈[a, x], y〉 = τ(axy − xay) = τ(axy) − τ(xay),

since axy, xay ∈ L1(M, τ). Moreover, τ(axy) = τ(xya), and so

〈[a, x], y〉 = τ(xya) − τ(xay) = τ(x(ya − ay)) = −〈x, [a, y]〉.

Now let a ∈ M̃h be arbitrary. For n ∈ N, define the spectral projections pn = ea([−n, n])
and define an = pna = apn. Since pn ↑ 1, it follows from Lemma 6.4 that

‖pn[a, x]pn − [a, x]‖E(M,τ) → 0

as n → ∞. This implies in particular that τ(pn[a, x]pny) → τ([a, x]y) as n → ∞. On the
other hand, for all n ∈ N, we have pn[a, x]pn = [an, pnxpn] and hence, applying the first
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part of the proof to the elements an ∈ Mh, pnxpn ∈ E(M, τ) and y ∈ E(M, τ)×, we
find that

τ(pn[a, x]pny) = τ([an, pnxpn]y) = −τ(pnxpn[an, y])

= −τ(xpn[an, y]pn) = −τ(xpn[a, y]pn)

= −τ(pnxpn[a, y]).

By Lemma 6.4 we know that ‖pnxpn −x‖E(M,τ) → 0, and so τ(pnxpn[a, y]) → τ(x[a, y])
as n → ∞. Hence, we may conclude that τ([a, x]y) = −τ(x[a, y]) and the proof is
complete. �

Next we will use some results from the duality theory of strongly continuous
(semi-)groups. For the convenience of the reader we recall the relevant facts (for the
details we refer the reader to [19, Chapter XIV]). Suppose that {T (t)}t�0 is a strongly
continuous semi-group of linear operators in the Banach space X, with infinitesimal gen-
erator A : Dom(A) → X. The adjoints of the operators T (t) form a semi-group {T ∗(t)}t�0

in the dual space X∗. In general, {T ∗(t)}t�0 is not strongly continuous on X∗. The sun-
dual space X� (with respect to {T (t)}t�0) is defined by

X� = {x∗ ∈ X∗ : ‖T ∗(t)x∗ − x∗‖X∗ → 0 as t ↓ 0},

which is a closed linear subspace of X∗. Moreover, X� separates the points of X and
X� = Dom(A∗). Defining T�(t) = T ∗(t)|X� for all t � 0, it is clear that {T�(t)}t�0 is a
strongly continuous semi-group in X�. The generator of {T�(t)}t�0 is denoted by A�,
which is the part of A∗ in X�, that is

Dom(A�) = {x∗ ∈ Dom(A∗) : A∗x∗ ∈ X�}

and A�x∗ = A∗x∗ for all x∗ ∈ Dom(A�). Since Dom(A�) is norm dense in X�, it follows
in particular that Dom(A�) separates the points of X. We shall furthermore need the
following observation.

Lemma 6.6. Let {T (t)}t�0 be a strongly continuous semi-group in the Banach space
X, with generator A. If x, z ∈ X are such that 〈x, A�y〉 = 〈z, y〉 for all y ∈ Dom(A�),
then x ∈ Dom(A) and Ax = z.

Proof. Fix y ∈ Dom(A�) and define F (t) = 〈T (t)x, y〉 for t � 0. For all 0 � t ∈ R

and h > 0 we have

F (t + h) − F (t)
h

=
1
h

〈T (t + h)x − T (t)x, y〉

=
〈

x,
T ∗(t + h)y − T ∗(t)y

h

〉
.

Since T ∗(t)y = T�(t)y ∈ Dom(A�), it follows from the assumption on x and z that

lim
h↓0

F (t + h) − F (t)
h

= 〈x, A�T ∗(t)y〉 = 〈z, T ∗(t)y〉 = 〈T (t)z, y〉.
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The function t �→ T (t)z is continuous and F (0) = 〈x, y〉, so we may conclude that

F (t) = 〈x, y〉 +
∫ t

0
〈T (s)z, y〉 ds =

〈
x +

∫ t

0
T (s)z ds, y

〉

for all t � 0. Since this holds for all y ∈ Dom(A�) and Dom(A�) separates the points of
X, it follows that

T (t)x = x +
∫ t

0
T (s)z ds

for all t � 0. Using again the fact that s �→ T (s)z is continuous, this implies that

lim
t↓0

T (t)x − x

t
= z.

Hence, x ∈ Dom(A) and Ax = z. �

Now we return to the situation where E is a separable r.i. BFS and where the R-flow
γ = {γt}t∈R on (M, τ) is given by (6.1) for some a ∈ M̃h. As observed in (4.2), we have
(γE

t )∗ = γE×

−t for all t ∈ R.

Lemma 6.7. If y ∈ Dom((δE)�), then [a, y] ∈ E(M, τ)× and (δE)�(y) = −i[a, y].

Proof. Let y ∈ Dom((δE)�) be given. By definition we have

(δE)�y = lim
t→0

(γE
t )∗(y) − y

y
= lim

t→0

γE×

−t (y) − y

t
.

An application of Lemma 6.2 to the symmetric operator space E(M, τ)× and the group
{γE×

−t }t∈R yields [−a, y] ∈ E(M, τ)× and (δE)�(y) = −i[a, y]. �

Now we are in a position to prove the main result in this section.

Theorem 6.8. Let E be a separable r.i. BFS on (0,∞). Suppose that a ∈ M̃h and let
γE = {γE

t }t∈R be the strongly continuous group in E(M, τ) defined by γt(x) = eitaxe−ita

for all x ∈ E(M, τ). Then the infinitesimal generator δE of γE is given by

Dom(δE) = {x ∈ E(M, τ) : [a, x] ∈ E(M, τ)}

and δE(x) = i[a, x] for all x ∈ Dom(δE).

Proof. From Corollary 6.3 we know that Dom(δE) is contained in {x ∈ E(M, τ) :
[a, x] ∈ E(M, τ)} and that δE(x) = i[a, x] for all x ∈ Dom(δE). Now assume that
x ∈ E(M, τ) is such that [a, x] ∈ E(M, τ). Given y ∈ Dom((δE)�), it follows from
Lemma 6.7 that (δE)�(y) = −i[a, y]. Using the result of Lemma 6.5 we find that

〈x, (δE)�(y)〉 = −i〈x, [a, y]〉 = i〈[a, x], y〉.

Since this holds for all y ∈ Dom((δE)�), it follows from Lemma 6.6 that x ∈ Dom(δE)
and δE(x) = i[a, x]. The proof is complete. �
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The next corollary follows from a combination of Theorems 5.7 and 6.8.

Corollary 6.9. Suppose that E is a separable r.i. BFS and that a ∈ M̃h. If x∗ =
x ∈ E(M, τ) such that [a, x] ∈ E(M, τ), then [a, f(x)] ∈ E(M, τ) for all f ∈ Ψ−1(C0)
and there exists a constant Cf > 0, only depending on the function f , such that
‖[a, f(x)]‖E(M,τ) � Cf‖[a, x]‖E(M,τ).

Proof. Replacing the function f(λ) by f(λ) − f(0), we may assume, without loss of
generality, that f(0) = 0. Then the result of Theorem 5.7 is applicable to the R-flow γE

given by (6.1). Suppose that x∗ = x ∈ E(M, τ) with [a, x] ∈ E(M, τ). By Theorem 6.8,
this implies that x ∈ Dom(δE) and from Theorem 5.7 it follows that f(x) ∈ Dom(δE).
Using Theorem 6.8 once more, it follows that [a, f(x)] ∈ E(M, τ). Moreover, (5.9) and
Proposition 5.3 (ii) imply that

‖[a, f(x)]‖E(M,τ) = ‖δE(f(x))‖E(M,τ) = ‖T x,x
ψf

(δE(x))‖E(M,τ)

� ‖T x,x
ψf

‖L(E(M,τ))‖δE(x)‖E(M,τ)

� ‖ψf‖A0‖[a, x]‖E(M,τ),

so we may take Cf = ‖ψf‖A0 . �

7. R-flows induced by self-adjoint operators

In this section we shall assume that D : Dom(D) → H is a self-adjoint operator. We
shall furthermore assume that

(a) eitDxe−itD ∈ M for all x ∈ M and all t ∈ R,

(b) τ(eitDxe−itD) = τ(x) for all 0 � x ∈ M and all t ∈ R.

Note that any self-adjoint operator D that is affiliated with M automatically satisfies
these two conditions. Defining

γt(x) = eitDxe−itD, x ∈ M, t ∈ R, (7.1)

the argument used at the beginning of § 6 shows that γ = {γt}t∈R is an R-flow in (M, τ).
For any separable r.i. BFS E on (0,∞) we consider the corresponding strongly continuous
group γE = {γE

t }t∈R of isometries in E(M, τ) (see Corollary 4.1), with infinitesimal
generator δE . In this general setting, it is harder to obtain a description of Dom(δE)
than in the previous section (where D is assumed to be τ -measurable). However, it turns
out to be possible to give an analogous description of a core of δE .

Example 7.1. A simple but important illustration of the situation described above
is the following classical commutative example. Let H = L2(R), with respect to
Lebesgue measure in R, and D be the operator d(i−1)/dt in H with domain the Sobolev
space W 1,2(R). The unitary group {eitD}t∈R in H is the translation group given by
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eitDg(s) = g(s + t) for all g ∈ H and s, t ∈ R. Let M = L∞(R), acting on H via multi-
plication. Defining the trace τ by

τ(f) =
∫

R

f(s) ds for all 0 � f ∈ M,

it is well known that (M, τ) is a semi-finite von Neumann algebra on H. The operator
D is not affiliated with M. A simple computation shows that (eitDfe−itD)(s) = f(s + t)
for all f ∈ M = L∞(R) and s, t ∈ R. Hence, conditions (a) and (b) are both satisfied
and the corresponding R-flow {γt}t∈R in M is the translation group in L∞(R).

In the proof of the main result of this section it will be convenient to have the following
technical observation available. Suppose that f : [0, 1] → M is a strongly continuous
function, that is, for each ξ ∈ H the function t �→ f(t)ξ is continuous from [0, 1] into H.
The range of f is norm bounded in M. For each ξ ∈ H, the (H-valued) Riemann integral∫ 1

0
f(t)ξ dt

is a well-defined element of H. The linear and bounded map

ξ �→
∫ 1

0
f(t)ξ dt

is denoted by

(so) −
∫ 1

0
f(t) dt.

Since M is strongly closed, it is evident that

(so) −
∫ 1

0
f(t) dt ∈ M.

If E is a symmetric BFS and if f : [0, 1] → E(M, τ) is a function which is continuous
with respect to the norm in E(M, τ), then the E(M, τ)-valued Riemann integral

(E) −
∫ 1

0
f(t) dt

exists in E(M, τ). In this situation the following lemma holds.

Lemma 7.2. If f : [0, 1] → E(M, τ) ∩ M is a strongly continuous function which is
also continuous with respect to the norm in E(M, τ), then

(so) −
∫ 1

0
f(t) dt = (E) −

∫ 1

0
f(t) dt.

Proof. Put

x = (so) −
∫ 1

0
f(t) dt and y = (E) −

∫ 1

0
f(t) dt.
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For n = 1, 2, . . . we define the Riemann sums

zn =
1
n

n∑
k=1

f

(
k

n

)
.

By the definition of the integrals we have zn → x strongly and ‖zn − y‖E(M,τ) → 0
as n → ∞. Since ‖zn‖∞ � max0�t�1 ‖f(t)‖∞, and since the strong topology coincides
with the ultra-strong topology on norm-bounded subsets of L(H), it follows that zn → x

ultra-strongly, and so ultra-weakly, as n → ∞. Hence, zn → x with respect to σ(M, L1).
Furthermore, norm convergence of {zn}∞

n=1 to y in E(M, τ) implies that zn → y as
n → ∞ with respect to σ(E, E×). Consequently, zn → x and zn → y with respect to
σ(L1 +L∞, L1 ∩L∞) as n → ∞. Since L1(M, τ)∩M separates the points of L1(M, τ)+
M, we may conclude that x = y. �

Given the separable r.i. BFS E, let γE be the strongly continuous group in E(M, τ)
induced by the R-flow given by (7.1). If x ∈ L(H) with the property that x(Dom(D)) ⊆
Dom(D), then we define

[D, x](ξ) = Dx(ξ) − xD(ξ), ξ ∈ Dom(D). (7.2)

If the operator [D, x] is closable, then we denote its closure, with some abuse of notation,
also by [D, x]. In particular, a statement like [D, x] ∈ M has to be interpreted as saying
that the operator [D, x], defined by (7.2), is closable and its closure belongs to M. Recall
that the subspace F , defined in (4.5), is given by

F = {x ∈ Dom(δE) ∩ M : δE(x) ∈ M}

and is a core of the generator δE (see Theorem 4.3). In this situation the following
theorem holds.

Theorem 7.3. The subspace F of E(M, τ) ∩ M, defined by (4.5), is also given by

F = {x ∈ E(M, τ) ∩ M : x(Dom(D)) ⊆ Dom(D), [D, x] ∈ E(M, τ) ∩ M}

and δE(x) = i[D, x] for all x ∈ F .

Proof. First suppose that x ∈ E(M, τ) ∩ M satisfies x(Dom(D)) ⊆ Dom(D) and
[D, x] ∈ E(M, τ) ∩ M. Take ξ ∈ Dom(D) and define u(t) = γE

t (x)ξ for all t ∈ R. A
simple computation shows that

u(t + h) − u(t)
h

= ei(t+h)Dx
e−ihD(e−itDξ) − e−itDξ

h
+ eitD eihDxe−itDξ − xe−itDξ

h

for all h 
= 0 and t ∈ R. Since ξ ∈ Dom(D) implies that e−itDξ ∈ Dom(D) and xe−itDξ ∈
Dom(D), we find that

u′(t) = lim
h→0

u(t + h) − u(t)
h

= eitDx(−iDe−itDξ) + eitD(iD)(xe−itDξ)

= ieitD[D, x]e−itDξ
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for all t ∈ R. Since [D, x] ∈ L(H), the function t �→ ieitD[D, x]e−itDξ is continuous from
R into H, the fundamental theorem of calculus implies that

γE
t (x)ξ − x(ξ) = u(t) − u(0) = i

∫ t

0
eisD[D, x]e−isDξ ds (7.3)

for all t ∈ R and all ξ ∈ Dom(D). Since [D, x] ∈ L(H), the function t �→ ieitD[D, x]e−itD

is strongly continuous, and so

(so) − i
∫ t

0
eisD[D, x]e−isD ds ∈ L(H)

and it follows from (7.3) that this operator coincides with γE
t (x) − x on the dense set

Dom(D). Hence,

γE
t (x) − x = (so) − i

∫ t

0
eisD[D, x]e−isD ds.

Furthermore, since [D, x] ∈ E(M, τ), the function t �→ ieitD[D, x]e−itD is continuous
with respect to the norm in E(M, τ) (see Corollary 4.1) and so, by Lemma 7.2, we may
conclude that

(so) − i
∫ t

0
eisD[D, x]e−isD ds = (E) − i

∫ t

0
eisD[D, x]e−isD ds.

Hence,

γE
t (x) − x = (E) − i

∫ t

0
eisD[D, x]e−isD ds.

From this equality it follows immediately that x ∈ Dom(δE) and that δE(x) = i[D, x] ∈
M. In particular, x ∈ F .

For the proof of the converse inclusion, assume that x ∈ Dom(δE)∩M and δE(x) ∈ M.
Then we know that

γE
t (x) − x = (E) − i

∫ t

0
γE

s (δE(x)) ds

for all t ∈ R. Since δE(x) ∈ L(H), the function t �→ γE
s (δE(x)) = eitDδE(x)e−tD is

strongly continuous, and so it follows from Lemma 7.2 that

(E) − i
∫ t

0
γE

s (δE(x)) ds = (so) − i
∫ t

0
γE

s (δE(x)) ds.

Hence,

γE
t (x)ξ − xξ = i

∫ t

0
eitDδE(x)e−tDξ ds

for all ξ ∈ H. This implies that

lim
t→0

γE
t (x)ξ − xξ

t
= δE(x)ξ
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for all ξ ∈ H (where the limit is taken with respect to the norm of H). Take ξ ∈ Dom(D).
Writing

eitDxξ − xξ

t
=

eitDxe−tDξ − xξ

t
− eitDx

e−itDξ − ξ

t
,

we see that

lim
t→0

eitDxξ − xξ

t
= δE(x)ξ + ixDξ.

Hence, xξ ∈ Dom(D) and iD(xξ) = δE(x)ξ + ixDξ. This also shows that i[D, x]ξ =
δE(x)ξ for all ξ ∈ Dom(D), and so [D, x] is closable and its closure is given by
−iδE(x) ∈ E(M, τ) ∩ M, that is, [D, x] ∈ E(M, τ) ∩ M. The proof is complete. �

Remark 7.4. The same situation as in Theorem 7.3. If x ∈ Dom(δE) ∩ M, then in
general the commutator [D, x] cannot be defined via (7.2). To see this we use the commu-
tative situation explained in Example 7.1. For the BFS E we take L1(0,∞). The space
L1(M, τ) may be identified with L1(R), acting on H = L2(R) as (unbounded) multi-
plication operators. The group γE is the translation group in L1(R). The infinitesimal
generator δE of this group has as domain the Sobolev space W 1,1(R) and is given by
δE(f) = f ′, the weak derivative of f . As is well known, W 1,1(R) ⊆ C0(R), where C0(R)
is the space of all continuous complex-valued functions on R vanishing at infinity (for
elementary properties of Sobolev spaces we refer the reader to, for example, [9]). Hence,
Dom(δE) ∩ M = Dom(δE) = W 1,1(R). Take f ∈ W 1,1(R) and g ∈ Dom(D) = W 1,2(R).
Since f is bounded, it is evident that fg ∈ L2(R). Moreover, (fg)′ = f ′g + fg′. Since
g′ ∈ L2(R) and f is bounded, it is also clear that fg′ ∈ L2(R). Consequently, the condition
that fg ∈ Dom(D) is equivalent to f ′g ∈ L2(R). However, it is not difficult to construct
a function f ∈ W 1,1(R) with the property that f ′g /∈ L2(R) for all 0 
= g ∈ W 1,2(R).

This example shows that it is possible that x ∈ Dom(δE) ∩ M is such that xξ ∈
Dom(D), with ξ ∈ Dom(D), only holds for ξ = 0. Therefore, it is essential to include the
condition that δE(x) ∈ M in the definition (4.5) of the set F .

Using the result of the above theorem in combination with Theorem 5.7, we are able to
obtain certain commutator estimates, similar to the results obtained in [7] in the setting
of symmetrically normed ideals of compact operators (that is, for the case that M is a
type-I factor). In the formulation of the next result we use the function space Ψ−1(C0),
as introduced before Proposition 5.6.

Corollary 7.5. Let E be a separable r.i. BFS and suppose that D is a self-adjoint
operator in H, satisfying conditions (a) and (b) at the beginning of this section. If
x∗ = x ∈ E(M, τ) ∩ M is such that [D, x] ∈ E(M, τ)∩M, then [D, f(x)] ∈ E(M, τ)∩M
for all f ∈ Ψ−1(C0) and there exists a constant Cf > 0, depending only on the function f ,
such that

‖[D, f(x)]‖E(M,τ)∩M � Cf‖[D, x]‖E(M,τ)∩M,

‖[D, f(x)]‖E(M,τ)(M, τ) � Cf‖[D, x]‖E(M,τ).
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Proof. As in the proof of Corollary 6.9, we may assume, without loss of generality,
that f(0) = 0. Given x∗ = x ∈ E(M, τ) ∩ M with [D, x] ∈ E(M, τ) ∩ M, it follows
from Theorem 7.3 that x ∈ Dom(δE) ∩ M and [D, x] = δE(x) ∈ M. Using Theorem 5.7,
this implies that f(x) ∈ Dom(δE) and δE(f(x)) = T x,x

ψf
(δE(x)). Since x ∈ M and f is

bounded on bounded subsets of R, it is clear that f(x) ∈ M. Furthermore, it follows
from Lemma 5.5 that T x,x

ψf
(δE(x)) ∈ E(M, τ) ∩ M and

‖T x,x
ψf

(δE(x))‖E(M,τ)∩M � ‖ψf‖A0‖δE(x)‖E(M,τ)∩M.

Applying Theorem 7.3 once more, we may conclude that f(x)(Dom(D)) ⊆ Dom(D), that
[D, f(x)] = δE(f(x)) ∈ E(M, τ) ∩ M and that

‖[D, f(x)]‖E(M,τ)∩M � ‖ψf‖A0‖[D, x]‖E(M,τ)∩M.

Moreover, from Proposition 5.3 (ii) we know that ‖T x,x
ψf

‖L(E(M,τ)) � ‖ψf‖A0 , from which
it follows that ‖[D, f(x)]‖E(M,τ) � Cf‖[D, x]‖E(M,τ). �

We end the paper with an interesting application of Corollary 7.5. We assume that A

and B are two self-adjoint operators in H satisfying the following two conditions:

(i) for all x ∈ M and t ∈ R we have eitAxe−itA, eitBxe−itB , eitAxeitB ∈ M;

(ii) τ(eitAxe−itA) = τ(eitBxe−itB) = τ(x) for all 0 � x ∈ M and all t ∈ R.

Furthermore, we assume that E is a separable r.i. BFS. If x ∈ L(H) satisfies
x(Dom(B)) ⊆ Dom(A), then the operator Ax + xB is well defined on Dom(B). If this
operator is closable, then we denote its closure also by Ax + xB. Under these conditions
the following result holds.

Proposition 7.6. Suppose that f ∈ Ψ−1(C0) is odd. If x ∈ E(M, τ)∩M is such that
x(Dom(B)) ⊆ Dom(A) and Ax + xB ∈ E(M, τ) ∩ M, then f(x)(Dom(B)) ⊆ Dom(A)
and Af(x)+f(x)B ∈ E(M, τ)∩M. Moreover, there exists a constant Cf > 0, depending
only on f , such that

‖Af(x) + f(x)B‖E(M,τ)∩M � Cf‖Ax + xB‖E(M,τ)∩M;

‖Af(x) + f(x)B‖E(M,τ) � Cf‖Ax + xB‖E(M,τ).

}
(7.4)

Proof. On the Hilbert space H⊕H we consider the semi-finite von Neumann algebra
M2 = M ⊗ M2(C) = M2(M), equipped with the trace τ2 given by

τ2([xjk]) = τ(x11) + τ(x22), 0 � [xjk] ∈ M2.

Define the self-adjoint operator D in H ⊕ H by Dom(D) = Dom(A) ⊕ Dom(B) and
D(ξ, η) = (Aξ,−Bη) for all (ξ, η) ∈ Dom(D). Note that eitD(ξ, η) = (eitAξ, e−itBη) for
all (ξ, η) ∈ H ⊕ H. Consequently, if [xjk] ∈ M2, then

eitD

[
x11 x12

x21 x22

]
e−itD =

[
eitAx11e−itA eitAx12eitB

e−itBx21e−itA e−itBx22eitB

]
.
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Conditions (i) and (ii) above imply that

(i) eitD[xjk]e−itD ∈ M2 for all [xjk] ∈ M2 and all t ∈ R,

(ii) if 0 � [xjk] ∈ M2, then

τ2(eitD[xjk]e−itD) = τ(eitAx11e−itA) + τ(e−itBx22eitB)

= τ(x11) + τ(x22)

= τ2([xjk]).

Hence, conditions (a) and (b) at the beginning of this section are satisfied. Now suppose
that x ∈ E(M, τ) ∩ M is given such that x(Dom(B)) ⊆ Dom(A) and Ax + xB ∈
E(M, τ) ∩ M. We claim that x(Dom(A)) ⊆ Dom(B) and Bx + xA ∈ E(M, τ) ∩ M.
Indeed, take ξ ∈ Dom(A). For η ∈ Dom(B) we find that

〈xξ, Bη〉 = 〈ξ, xBη〉
= 〈ξ, Axη + xBη〉 − 〈ξ, Axη〉
= 〈(Ax + xB)∗ξ, η〉 − 〈xAξ, η〉.

Since B is self-adjoint, this implies that xξ ∈ Dom(B) and

Bxξ = (Ax + xB)∗ξ − xAξ.

Moreover, this shows that Bxξ+xAξ = (Ax+xB)∗ξ for all ξ ∈ Dom(A) and so Bx+xA

is closable and its closure is (Ax + xB)∗. We may conclude that

Bx + xA = (Ax + xB)∗ ∈ E(M, τ) ∩ M,

which proves our claim.
Defining the operator X on H ⊕ H by

X =

[
0 x

x 0

]
,

it may easily be verified that X ∈ E(M2, τ2) ∩ M2. If (ξ, η) ∈ Dom(D), then X(ξ, η) =
(xη, xξ) and from the above observations it follows that X(ξ, η) ∈ Dom(D). Furthermore,
for (ξ, η) ∈ Dom(D) we find that

(DX − XD)

[
ξ

η

]
=

[
(Ax + xB)η

(−Bx − xA)ξ

]
.

Therefore, DX − XD is closable with closure

[D, X] = DX − XD =

[
0 Ax + xB

−Bx − xA 0

]
.
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Since Ax + xB and −Bx − xA both belong to E(M, τ) ∩ M, it follows that [D, X] ∈
E(M2, τ2) ∩ M2. We are now in a position to apply the result of Corollary 7.5 and we
may conclude that f(X)(Dom(D)) ⊆ Dom(D) and [D, f(X)] ∈ E(M2, τ2) ∩ M2, with
the corresponding norm estimates. A simple computation (using, however, the fact that
the function f is odd) shows that

f(X) =

[
0 f(x)

f(x) 0

]
. (7.5)

Since f(X) leaves Dom(D) invariant, it follows that f(x)(Dom(B)) ⊆ Dom(A) and
f(x)(Dom(A)) ⊆ Dom(B). Moreover, for all (ξ, η) ∈ Dom(D) we find that

[D, f(X)]

[
ξ

η

]
=

[
(Af(x) + f(x)B)η

(−Bf(x) − f(x)A)ξ

]
.

Since [D, f(X)] is a bounded operator on H ⊕ H, this implies that Af(x) + f(x)B and
−Bf(x) − f(x)A are both closable, with bounded closures, and

[D, f(X)] =

[
0 Af(x) + f(x)B

−Bf(x) − f(x)A 0

]
.

Now it is easy to see that Af(x) + f(x)B ∈ E(M, τ) ∩ M. The norm estimates (7.4)
follow from the corresponding estimates for [D, f(X)] given in Corollary 7.5 (but, with
a possibly larger constant). �

Remark 7.7. If we assume in the above proposition that the function f ∈ Ψ−1(C0)
is even (instead of being odd), then (7.5) becomes

f(X) =

[
f(x) 0

0 f(x)

]
.

Via the same argument we may conclude that

f(x)(Dom(A)) ⊆ Dom(A), f(x)(Dom(B)) ⊆ Dom(B)

and that [A, f(x)], [B, f(x)] ∈ E(M, τ), with similar norm estimates.
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