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When an oblate droplet translates through a viscous fluid under linear shear, it experiences
a lateral lift force whose direction and magnitude are influenced by the Reynolds
number, the droplet’s viscosity and its aspect ratio. Using a recently developed sharp
interface method, we perform three-dimensional direct numerical simulations to explore
the evolution of lift forces on oblate droplets across a broad range of these parameters.
Our findings reveal that in the low-but-finite Reynolds number regime, the Saffman
mechanism consistently governs the lift force. The lift increases with the droplet’s
viscosity, aligning with the analytical solution derived by Legendre & Magnaudet (Phys.
Fluids, vol. 9, 1997, p. 3572), and also rises with the droplet’s aspect ratio. We propose a
semi-analytical correlation to predict this lift force. In the moderate- to high-Reynolds-
number regime, distinct behaviours emerge: the L- and S-mechanisms, arising from
the vorticity contained in the upstream shear flow and the vorticity produced at the
droplet surface, dominate for weakly and highly viscous droplets, respectively. Both
mechanisms generate counter-rotating streamwise vortices of opposite signs, leading to
observed lift reversals with increasing droplet viscosity. Detailed force decomposition
based on vorticity moments indicates that in the L-mechanism-dominated regime for
weakly to moderately viscous droplets, the streamwise vorticity-induced lift approximates
the total lift. Conversely, in the S-mechanism-dominated regime, for moderately to highly
viscous droplets, the streamwise vorticity-induced lift constitutes only a portion of the
total lift, with the asymmetric advection of azimuthal vorticity at the droplet interface
contributing additional positive lift to counterbalance the S-mechanism’s effects. These
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insights bridge the understanding between inviscid bubbles and rigid particles, enhancing
our comprehension of the lift force experienced by droplets in different flow regimes.

Key words: bubble dynamics, drops, multiphase flow

1. Introduction
Droplet distributions and their effects on flow structures play a critical role in numerous
geophysical and industrial processes. In such scenarios involving droplet flows, a pivotal
factor influencing the evolution of these distributions is the lateral, or lift, force acting
on droplets as they rise in shear flows. Recent advances in experimental techniques
and numerical methods have significantly enhanced our understanding of the lift force
experienced by inviscid bubbles and rigid spheres in shear flows. These entities represent
the two extremes of viscous droplets, corresponding to zero and infinite viscosity
compared with the external fluid.

For an inviscid bubble rising in shear flow, it is well established that a clean, spherical
bubble experiences a positive lift force (Legendre & Magnaudet 1998; Kurose et al.
2001), causing it to preferentially migrate towards the region with higher velocity past it.
However, the mechanisms responsible for lift generation differ between the low-but-finite
and moderate- to high-Reynolds-number regimes. In the low-Reynolds-number regime,
the Saffman mechanism is dominant, arising from the asymmetric convection of azimuthal
vorticities produced at the bubble’s interface in the presence of shear (Saffman 1965; Ervin
& Tryggvason 1997). In contrast, the L-mechanism, based on Lighthill’s seminal work
(Lighthill 1956; Legendre & Magnaudet 1998), involves the tilting of vorticity contained
within the shear flow by the presence of the bubble, generating streamwise vorticities that
produce a positive lift force in the moderate- to high-Reynolds-number regime. Recent
numerical studies by Adoua et al. (2009) have shown that the migration direction of
bubbles in shear flow can reverse when their size and deformation exceed a critical value.
Similar findings regarding bubble shape have been reported in experiments, notably by
Tomiyama and collaborators (Tomiyama et al. 2002; Aoyama et al. 2017; Hayashi et al.
2020, 2021). This intriguing reversal phenomenon contradicts predictions from inviscid
theory, as Naciri (1992) derived that the lift of an oblate bubble should have the same sign
as that of a spherical bubble. Adoua et al. (2009) identified the S-mechanism, responsible
for lift reversal in highly deformed bubbles, where the stretching and tilting of vorticity
produced at the bubble surface are transformed into streamwise vorticities, resulting in
negative lift forces. Despite these findings, qualitative comparisons between numerical
results and experimental observations reveal significant discrepancies. In experiments, lift
reversal occurs at relatively smaller aspect ratios and lower Reynolds numbers compared
with simulations. Two possible explanations have been proposed for these discrepancies.
First, the presence of surfactants in experiments may prevent the shear-free condition at the
gas–liquid interface from being fully satisfied, enhancing the S-mechanism by generating
more vorticity at the bubble surface. Second, the bubble shapes observed in experiments
often deviate from oblate spheroids and become fore-aft asymmetric. More particularly,
they can even exhibit left-right asymmetry (Taylor 1932; Ervin & Tryggvason 1997;
Tomiyama et al. 2002; Magnaudet et al. 2003), a phenomenon termed the A-mechanism
(Zhang et al. 2021; Hidman et al. 2022).

The other extremity corresponds to a rigid particle moving in linear shear flow,
representing a droplet with infinite viscosity compared with the external fluid. For a non-
rotating solid sphere, the Saffman mechanism remains dominant at small but non-zero
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Reynolds numbers. Saffman (Saffman 1965) provided an analytical solution for the lift
force on a rigid sphere in this regime, valid when the inertial effects associated with trans-
lational slip motion become comparable to viscous effects. Subsequent efforts by various
researchers (Asmolov 1990; McLaughlin 1991; Mei 1992; Legendre & Magnaudet 1998)
extended Saffman’s solution to more general conditions within the low-but-finite Reynolds
number regime. However, these solutions were often either semi-empirical, relying on spe-
cific numerical data or semi-analytical, neglecting lift contributions from the sub-Oseen
region. Thus, the applicability of these lift correlations in this regime requires further in-
vestigation. In contrast, at moderate to high Reynolds numbers, the lift coefficient of a solid
sphere does not maintain positive values like that of an inviscid spherical bubble. Instead,
it decreases with increasing Reynolds number, eventually becoming negative and strongly
dependent on the shear rate beyond a certain threshold. This trend has been consistently
observed in direct numerical simulations (Kurose & Komori 1999; Bagchi & Balachandar
2002; Sugioka & Komori 2007; Hölzer & Sommerfeld 2009), although the specific
Reynolds number at which lift reversal occurs varies among studies due to differences
in numerical settings, particularly in terms of the size of the computational domain (Shi &
Rzehak 2019). This lift reversal phenomenon occurs because the attached eddies behind
the sphere, present at high Reynolds numbers, become tilted in the presence of ambient
shear. This tilting generates counter-rotating streamwise vortices that produce negative lift
forces. This mechanism is analogous to the S-mechanism observed on oblate bubbles,
where the symmetry break of azimuthal vorticities results in negative lift forces on a rigid
sphere. However, as far as the authors are aware, no studies have been conducted on the
lift force experienced by an ellipsoidal spheroid, while most studies concern the torques.

Shi and collaborators recently reviewed the behaviour of inviscid spherical bubbles
and rigid spheres translating in linear shear flow (Shi & Rzehak 2019; Shi et al. 2020,
2021). Building on this state-of-the-art research, it is clear that the migration direction of
a body translating in shear flow depends significantly on several factors: the Reynolds
number based on translational slip velocity (i.e. low-but-finite or moderate to high
values), the interfacial condition of the body (i.e. free slip or no-slip) and the body’s
oblateness (i.e. sphere or ellipsoid). However, there remains a gap in understanding how
to bridge the behaviours of inviscid bubbles and rigid spheroids translating in shear
flow. Specifically, droplets can contain fluids with arbitrary viscosities ranging from zero
to infinity compared with the external fluid. This study aims to address the following
questions through three-dimensional (3-D) direct numerical simulations.

(i) Low-but-finite Reynolds number regime. The Saffman mechanism typically
dominates regardless of the interfacial condition. How does the Saffman mechanism
evolve as the viscosity of the droplet varies from zero to infinity compared with the
external fluid?

(ii) Moderate- to high-Reynolds-number regime. The lateral lift force acting on an
inviscid bubble is always positive, while it may become negative for a rigid sphere.
How does this lift reversal depend on the droplet’s viscosity? Furthermore, what
is the relationship between lift reversal and the sign reversal of the streamwise
vorticities?

(iii) Oblateness of the droplet. In both the low-but-finite and moderate- to high-Reynolds-
number regimes, what role does the oblateness of the droplet play in generating a lift
force?

For the first problem, Legendre & Magnaudet (1997) extended Saffman’s (Saffman
1965) and McLaughlin’s (McLaughlin 1991) analyses to a spherical droplet of arbitrary
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viscosity. They found that the lift force on a spherical bubble is (2/3)2 times that of a solid
sphere, where the coefficient 2/3 corresponds to the ratio of the magnitude of the vorticity
at the surface of each body type. However, this analytical solution has not yet been verified
for droplets with arbitrary viscosity and our numerical work aims to confirm its validity.
For the second problem, the influence of surfactants on the lift force of a bubble rising in
shear flow presents a similar issue. Previous studies using numerical simulations (Fukuta
et al. 2008) and experiments (Hayashi & Tomiyama 2018; Chen et al. 2023) have shown
that surfactant contamination can cause the lift on a bubble to reverse to a small negative
value, making it behave more like a rigid sphere. However, the details of how a real droplet
migrates in linear shear flow remain unclear, and results from studies involving surfactants
shed some light for our research. For the final problem, Adoua et al. (2009) and Hidman
et al. (2022) demonstrated that the L- and S-mechanisms compete when the oblateness of
an inviscid bubble is varied. It is still of great interest to determine the role of ellipticity in
the shape of a droplet with arbitrary viscosity.

To address these three problems, we developed an accurate and rigorous numerical
method capable of simulating shear flow past a frozen droplet with arbitrary shape and
viscosity. This method uses a Cartesian grid technique combined with the embedded
boundary method, allowing for the fluid flow to be solved in separate liquid domains
both interior and exterior to the droplet interface. Additionally, this approach imposes
the jump conditions across the interface more flexibly than traditional body-fitted grids, as
the grids are automatically generated to accommodate droplets with varying aspect ratios.
It is important to note that there are also interface tracking methods (e.g. the volume of
fluid, level set and front tracking) for studying such problems (Ervin & Tryggvason 1997;
Zhang et al. 2021; Hidman et al. 2022). These methods allow the bubble or droplet to
rise and deform freely under the influence of buoyancy, providing detailed information
on the kinematics of body motion, rotation and possible shape variations, as well as the
structure of the flow field. However, they do not provide insight into the mechanisms that
disentangle the individual factors contributing to the observed motion. The ‘frozen-body’
system we employ enables us to isolate the mechanisms caused by different influential
factors, such as the viscosity and deformation of the droplet.

The manuscript is structured as follows. In § 2, we describe the physical configuration
and mathematical formulation. The numerical methodology and validation tests are
introduced in § 3. Sections 4 and 5 present the numerical results corresponding to low-
but-finite and moderate- to high-Reynolds-number regimes, respectively, highlighting
the evolution of the lift force experienced by the droplet under varying parameters
and, particularly, the aspect ratio of the droplet is investigated. These findings provide
valuable insights into the production of lift force under different conditions, with in-depth
mechanisms discussed in § 6. Finally, the conclusions are succinctly summarised in § 7,
culminating in a comprehensive synthesis of our research contributions.

2. Statement of the problem
The present study aims to investigate the lift forces experienced by a viscous droplet
translating in an unbounded linear shear flow, where the droplet is assumed to neither
deform, rotate nor drift in the transverse direction. Figure 1 illustrates this problem, noting
that the reference frame moves with the droplet, allowing the droplet to remain stationary
in the numerical simulations while the shear flow passes it and generates the associated
internal flow. The Cartesian coordinate system is also depicted in the figure, with the
incoming flow expressed as U(y) = (U∞ + αy)ex . This indicates that the ambient flow
is along the x-direction and has a shear rate α parallel to the y-axis, resulting in a
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Figure 1. Diagram illustrating the configuration of a linear shear flow past a viscous droplet.

non-zero spanwise vorticity of ω∞ = −αez within the ambient flow. Additionally, polar
coordinates are sometimes used to describe the problem, with the meridian direction θ

and the azimuthal direction φ defined, as shown at the local interfacial point P in the
illustration. Furthermore, figure 1 considers the droplet with a prescribed oblate shape
described by the equation x2/b2 + y2/a2 + z2/a2 = 1, with a � b. This configuration is
chosen so that the principal plane Y O Z always faces the incoming flow.

For a rising bubble, the internal gas flow is negligible due to its much lower viscosity
compared with the external liquid, resulting in almost zero tangential stress at the bubble
interface and yielding a free slip boundary condition. Conversely, a rigid particle, with
its internal viscosity considered infinite compared with the external fluid, has a no-slip
boundary condition prescribed at the interface. However, simulating a viscous liquid
droplet translating in an ambient liquid requires computing both the internal and external
flows. This leads to the following incompressible mass and momentum equations:

∇ · uk = 0, ρk

(
∂uk

∂t
+ uk · ∇uk

)
= −∇ pk + ∇ · 2μkSk, (2.1)

where ρk , μk , uk and pk are the density, viscosity, velocity and pressure of the
corresponding fluid, with k = i and e denoting the internal and external fluids, respectively.
In addition, Sk = [∇uk + ∇uT

k ]/2 is the rate of the strain tensor.
The closed-form solution of the velocity and pressure in (2.1) requires pre-known

interfacial conditions of the droplet, consisting of the no penetration condition, the
continuity of tangential velocities and the continuity of tangential stresses, which are
respectively expressed as follows:

ue · n = ui · n = 0
n × ue = n × ui
n × (μeSe · n) = n × (μiSi · n)

⎫⎬
⎭ at Γ, (2.2)

where Γ is the droplet interface and n denotes the local normal vector of the interface
directed towards the external fluid. The tangential components of the velocity and stresses
are along two principal directions of curvature, denoted as t1 and t2 at the local point P .
As will be discussed later in § 3 and Appendix A, implementing such partial slip boundary
conditions presents significant challenges in developing numerical methods within the
Cartesian system, as Γ does not necessarily coincide with the grid boundaries. In
particular, determining the local t1 and t2 in numerical simulations introduces additional
complexities when dealing with an arbitrarily shaped droplet.
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Several dimensionless parameters can be used to characterise the problem: the Reynolds
number Re, the dimensionless shear rate Sr , the viscosity ratio μ∗, the density ratio ρ∗
and the aspect ratio of the droplet χ . These are defined as follows:

Rek = 2ρkU∞ R

μk
, Sr = 2αR

U∞
, μ∗ = μi

μe
, ρ∗ = ρi

ρe
, χ = a

b
, (2.3)

where the volume-equivalent radius R = (ab2)1/3 is employed as the characteristic length
in this study. Note that some other works (Adoua et al. 2009; Blanco & Magnaudet
1995) use the major axis a of the spheroid to characterise the length, so the problems
are not the same even if our dimensionless parameters appear identical to those in their
studies. Selecting 2R to define Re and Sr , while maintaining the volume of the spheroid
as a constant, facilitates the investigation of the influence of χ on the flow behaviours.
Additionally, there are two Reynolds numbers characterising the internal and external
flows of the droplet, Rei and Ree. Keep in mind that they are not independent but related
by Rei = Reeρiμe/ρeμi . Consequently, there are actually five dimensionless parameters
governing this problem: the external Reynolds number Ree, the Reynolds number ratio
Re∗ = Rei/Ree, the viscosity ratio μ∗, the shear rate Sr and the aspect ratio χ . However,
it is not feasible to explore the influences of all these dimensionless parameters in a single
paper. Therefore, we mainly focus on three of them: Ree, which weights the inertial effect
of the ambient flow; μ∗, which bridges the gap between the inviscid bubble and the rigid
particle; and χ , which describes the oblateness of the droplet. The impacts of the other
two parameters, Sr and Re∗, will be discussed briefly in § 6 and Appendix E, respectively.

In addition, we are particularly interested in obtaining the lift forces acting on the droplet
as these dimensionless parameters vary. Since the shear is maintained in the ey direction,
the lift force produced by the shear is always parallel to ey . This leads us to define the lift
force as follows:

FL = ey ·
∫

Γ

(−pI+ 2μS) · n dΓ. (2.4)

We also provide the dimensionless counterpart of the lift force by dividing by the
corresponding force dimension, π R2ρeU 2∞/2, yielding the lift coefficient CL . Note that
a positive CL indicates that the lift force pushes the droplet towards the side with higher
incoming velocity (positive y) and vice versa. Furthermore, (2.4) implies that the force
coefficients can be split into the pressure (C p) and viscous (Cμ) components. It is
important to note that in some studies (Legendre & Magnaudet 1998; Adoua et al. 2009),
the lift coefficient is calculated as CL ,α = FL/(4

3π R3ρeU∞α) and, thus, these two shear-
lift coefficients are related by CL ,α = 3CL/4Sr . Throughout the present study, we will use
CL as the standard lift coefficient.

In addition, it is important to note that a droplet translating in shear flow also experiences
a drag force parallel to ex (i.e. by replacing ey with ex in (2.4)) and hydrodynamic torques.
However, in this manuscript, we do not intend to present every aspect of the problem, but
focus solely on the evolution of the lift force, thus the drag- and the torque-induced rotation
are not considered. Appendix A demonstrates that the drag forces obtained in this study
are in good agreement with available references, and the observation that the shear rate
has little impact on drag compared with that in homogeneous flow is consistent with many
other studies (Legendre & Magnaudet 1998; Bagchi & Balachandar 2002; Adoua et al.
2009).
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3. Numerical methods and numerical settings

3.1. Numerical methods
The computations presented in this study were performed using our recently developed
numerical method, which was initially described and validated in our previous work on
the flow past bubbles (Fang et al. 2021). Previously, this numerical tool was limited to
handling oblate inviscid bubbles (μ∗ = 0) and rigid spheroids (μ∗ = ∞). However, recent
advancements in the numerical method, as thoroughly described by Wei et al. (2023),
have extended its applicability to droplets with irregular shapes and arbitrary viscosities.
In this section, together with Appendix A, we will briefly introduce the key features of the
method, while more comprehensive details can be found in a separate publication (Wei
et al. 2023).

As described in § 2, the main challenge in solving (2.1) is to accurately impose the
interfacial boundary conditions (2.2) at the droplet interface. The boundary conditions
(2.2) can be reformulated as follows:

ue,n = ui,n = 0

μe

(
∂ue,τ1

∂n − κ1ue,τ1

)
= μi

(
∂ui,τ1

∂n − κ1ui,τ1

)
μe

(
∂ue,τ2

∂n − κ2ue,τ2

)
= μi

(
∂ui,τ2

∂n − κ2ui,τ2

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

at Γ, (3.1)

with n, τ1 and τ2 denoting the normal component and the two principal tangential
components along n, t1 and t2, respectively, while κ1 and κ2 are the corresponding
interface curvatures in these two directions. This set of equations represents the kinematic
jump conditions across the droplet interface. Specifically, when μi = 0, these conditions
simplify to the free-slip boundary condition and when μi = ∞, they simplify to the no-slip
boundary condition.

Moreover, such kinematic jumps can be easily imposed on body-fitted grids, where the
grid boundaries perfectly coincide with the droplet interface. However, while body-fitted
grids can accurately impose these jump conditions on a spherical droplet, they are less
effective for oblate droplets (Legendre et al. 2019; Rachih et al. 2020). To address this
challenge, we have developed a novel numerical methodology within the framework of
Cartesian grids (Wei et al. 2023). This approach is non-trivial because the grid boundaries
do not align with the droplet interface, leading to the partitioning of interfacial grids
into interior and exterior regions of the droplet. Accurately imposing jump conditions
on such meshes is particularly challenging when the droplet has an irregular shape. This
task heavily relies on the precise estimation of local principal curvatures within the
interfacial cells, denoted as κ1 and κ2. The numerical method proposed in our recent
work incorporates two key techniques to address this issue. First, a height function method
is employed to determine the principal curvatures and their directions in the interfacial
cells. Second, the internal and external flows (2.1) are solved simultaneously using an
embedded boundary method, which ensures the correct implementation of the jump
conditions described in (3.1). Detailed descriptions of these techniques can be found from
Wei et al. (2023) and additional information about the numerical algorithms is provided
in Appendix A. For simplicity, we will not elaborate further here.

We implemented this numerical method using the open-source library Basilisk (Popinet
2003, 2015), which employs the finite volume method to discretise the equations,
thereby preserving their conservative properties. In general, Basilisk uses an approximate
projection method to decouple the velocity and pressure equations (2.1). The well-known
Bell–Colella–Glaz scheme (Bell et al. 1989) is employed for discretising the convection
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(a) (b)

Figure 2. Grid distribution within the computational domain for the parameters (Ree, Re∗, μ∗, χ) =
(200, 1.0, 100, 2.0). (a) Global view of the computational grid. (b) Enlarged view near the droplet surface. The
grid resolution reaches a minimum size of Δ = R/80 in the vicinity of the droplet, with 10 layers extending
both inside and outside of the interface.

term, while a fully implicit scheme is used for the viscous term. Additionally, Basilisk
incorporates an adaptive mesh refinement technique to enhance computational efficiency
by refining the mesh in regions close to the interface and those with concentrated vorticity.
Detailed descriptions of these algorithms can be found in the references by Popinet (2003,
2015) and we do not reiterate them here. It is worth noting that the original Basilisk
library was designed to simulate flow past rigid particles with no-slip boundary conditions.
Extending these algorithms to handle droplets with arbitrary viscosity constitutes our
novel contribution in developing the numerical method.

Appendix A includes validation tests, specifically focusing on benchmark problems
involving shear flow past a frozen body. These tests have been conducted to verify
the accuracy and validity of the aforementioned numerical methods for simulating
three-dimensional flows past a viscous droplet.

3.2. Numerical settings
The simulations were conducted in a three-dimensional cubic domain with dimensions
L × L × L . The droplet is positioned at the origin (x, y, z) = (0, 0, 0). The inlet (left
boundary) is located L/3 to the left of the droplet, while the outlet (right boundary) is
situated 2L/3 to the right. The droplet is centred along the other four walls of the domain.
Figure 2 illustrates the non-uniform mesh employed in the simulations for the case with
Ree = Rei = 200, μ∗ = 100, χ = 2.0 and Sr = 0.2. Figure 2(a) provides a global view
of the mesh system, while figure 2(b) shows a close-up view near the droplet. The mesh
features a smallest grid size of Δ = R/80 near the droplet interface, with 10 layers of grids
both interior and exterior to the interface. This configuration allows for accurate resolution
of the flow boundary layer, which has a thickness δ ∝ 2R/

√
Re � R/7. Consequently,

there are at least 11 grid points within the boundary layer. Further, grids with a slightly
larger size of Δ = R/20 extend to the upstream and downstream regions of the droplet,
covering distances of 2R and 5R, respectively. Grids with a size of Δ = R/10 then expand
to a broader range of [−5R, 15R]. This strategy of spatial resolution ensures precise
capture of the shear flow around the droplet and accurate depiction of the wake region.
Additional numerical tests for grid independence, detailed in Appendix A, confirm that
this spatial resolution is sufficient for converging results on the forces experienced by the
droplet.
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Another important consideration is determining the optimal size for the computational
domain. This is crucial when investigating flows around a blunt body, particularly at low
Reynolds numbers, where confinement effects from a smaller computational domain can
significantly influence the results (Legendre & Magnaudet 1998). To address this, a size-
independent study was conducted for two different Reynolds numbers on a bubble: Ree =
0.1 and Ree = 200, representing low- and moderately high-Re regimes, respectively.
The domain size was varied from L = 50R to L = 800R and results from different
domain sizes are detailed in Appendix A. It is evident that a domain size of L =
400R provides convergence for the low-Reynolds-number case, while L = 100R already
achieves convergence for the high-Reynolds-number case. Consequently, L = 400R and
200R were selected for the simulations in these two Re regimes reported in the manuscript.
Note that simulations were not performed at Reynolds numbers lower than 0.1 due to the
excessive domain size requirements. Furthermore, the case with Ree = 0.1 sufficiently
captures the asymptotic behaviour for the low-Reynolds-number limit.

In addition to the interfacial boundary conditions at the droplet, appropriate boundary
conditions must be specified for the computational domain. A straightforward approach
would be to set an inflow velocity U = (U∞ + αy)ex at the left boundary (x = −L/3)
and a parabolic outflow condition at the right boundary (x = 2L/3). However, these
settings can lead to numerical instability for this shear flow problem. Specifically, the
unperturbed velocity Ux = U · ex becomes negative in the region where y < −U∞/α,
resulting in a reversal of the inlet and outlet boundaries in this negative Ux region.
Consequently, the unique inflow (outflow) condition at the left (right) boundary becomes
non-physical, potentially leading to numerical disturbances that compromise the accuracy
of the simulations. To address this issue, Legendre & Magnaudet (1998) proposed a
hybrid boundary condition at the downstream boundary. This method involves imposing
the standard outflow condition for the region within the disk (y2 + z2)1/2 < U∞/α, while
applying the inflow condition (U∞ + αy) for the region outside this disk (y2 + z2)1/2 >

U∞/α. In our study, we tested several boundary condition configurations to minimise
numerical contamination in the flow field. Ultimately, we found that applying periodic
boundary conditions at both the upstream and downstream boundaries yielded the most
reliable results. Validation tests presented in Appendix A also support the effectiveness of
this approach. Additionally, no-slip conditions, U = (U∞ + αy)ex , are applied to the four
lateral walls (top, bottom, front and back) of the domain.

As previously noted, the problem under investigation is characterised by five
dimensionless parameters (Ree, Sr, Re∗, μ∗, χ). However, our focus is not on creating
a comprehensive phase map of flow features based on these parameters. Instead, we
concentrate primarily on the phenomenon of lift reversal as the droplet transitions from
an inviscid oblate bubble to a rigid spheroid. Therefore, in §§ 4 and 5, we focus on the
shear rate of Sr = 0.2, while the effects of varying the shear rate are discussed in § 6.
Throughout this study, we investigate only one Reynolds number ratio, Re∗ = 1. Although
exploring additional values of Re∗ could be insightful, given that some studies (Edelmann
et al. 2017; Rachih 2019; Shi et al. 2024) have identified secondary flow instabilities at
higher Re∗ values, a detailed examination of Re∗ is beyond the scope of the current work.
A brief discussion of such secondary instabilities is provided in Appendix E , while a
more comprehensive discussion of this scenario can be found in the very recent work
by Shi et al. (2024), almost in synchronisation with the present study. For simplicity, we
will use Re throughout the manuscript, as Ree and Rei are equivalent in this study. In
summary, our primary focus is on the lift response of the droplet by varying Re, μ∗ and χ ,
within the ranges Re ∈ [0.1, 300], μ∗ ∈ [0.01, 100] and χ ∈ [1.0, 2.5]. Particularly, cases
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Figure 3. Lift coefficients CL experienced by spherical droplets in the low-but-finite Re regime, with
variations in the Reynolds number and viscosity ratio. (a) CL as a function of μ∗ at different Re.
(b) Comparison between numerical results and analytical correlations for spherical droplets at Re = 0.1; the
solid line represents (4.1), (4.2a) from Mei (1992), and the dashed line is (4.1), (4.2b) from Legendre &
Magnaudet (1998), while for both lines, we use C(R) ∝R2 in (4.1) predicted by Legendre & Magnaudet
(1997). The grey triangles and squares in panel (b) indicate the pressure and viscous components of the lift
coefficients, respectively.

with μ∗ = 0.01 and μ∗ = 100 are used to model an inviscid bubble and a rigid spheroid,
respectively, in the numerical simulations.

4. Low-but-finite Re regime
In this section, we focus on investigating the lift forces experienced by the droplet
within the range of low-but-finite Reynolds numbers (0.1 � Re � 1). Specifically, we
explore how the lift changes as the droplet transitions from an inviscid oblate bubble to
a rigid spheroid, corresponding to the parameter ranges (μ∗, χ) = (0.01, 1.0−2.5) and
(μ∗, χ) = (100, 1.0−2.5), respectively.

4.1. Spherical droplets
To begin with, we focus on spherical droplets. Figure 3(a) presents the lift forces
experienced by these droplets, which have varying Reynolds numbers and viscosity
ratios but a constant shear rate of Sr = 0.2. The results show that the lift coefficient
CL(Re, μ∗, χ = 1.0) increases with μ∗ but decreases with Re. To understand this trend,
it is important to review the state-of-the-art of this problem in the low-but-finite Reynolds
number regime. It was Saffman (1965) who first used the asymptotic method to investigate
the lift force acting on a particle in the low-Reynolds-number regime with a very high shear
rate, under the assumption that the flow in the far field is equivalent to that produced by a
point force (whose magnitude is the Stokes drag on the particle) located at the particle’s
position. This point force, combined with advective effects induced by the ambient shear,
results in a small correction to the far-field flow, which takes the form of a uniform
flow at leading order. This uniform flow is not aligned with the upstream flow, due to
the asymmetry introduced by the shear. The force resulting from this small correction
is a small Stokes drag, whose direction is collinear to the flow correction, i.e. it is not
collinear to the upstream flow. The force component perpendicular to the upstream flow is
the Saffman lift force, also known as the Saffman mechanism. In addition, the origin of the
primary Stokes drag is the azimuthal vorticity at the particle surface: in the Stokes limit,
the force and the vorticity share the same pre-factor. Hence, increasing the magnitude
of the vorticity, by changing the particle shape or the boundary condition, results in an
increase of the drag and vice versa. Advection in the wake is key to obtaining a non-zero
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lift force, as reversibility in the Stokes limit prevents the existence of a lift component
for a sphere (Bretherton 1962). For the wake to produce a lift force, some asymmetry is
required; otherwise, the wake only provides the Oseen drag correction. Clearly, shear is
responsible for this asymmetry and, thus, the Saffman mechanism can also be understood
as stemming from the asymmetric convection of azimuthal vorticities produced at the
particle’s interface in the presence of shear.

Several works have been devoted to extending Saffman’s asymptotic scheme to obtain
the lift force on a spherical object moving in shear flow in the low-Reynolds-number
regime. These efforts, such as those by McLaughlin (1991) and Legendre & Magnaudet
(1997, 1998), refine the asymptotic approach to account for more complex flow conditions.
In summary, the analytical solution for the lift coefficient, to the first order, has the
following formulation:

CL(Re 	 1) = C(R)

π2 εJL(ε) − C ′(2)
L , (4.1)

where ε = (| Sr | /Re)1/2 represents the ratio of the Oseen to the Saffman length scales.
Here, C ′(2)

L is the second-order inertial contribution to lift, originally derived by Saffman
(1965) as 11Sr/8 for rigid sphere, with more recent computations by Candelier et al.
(2023) yielding smaller corrections. The constant C , which will be elaborated in more
detail later, depends on the dimensionless parameter R= (3μ∗ + 2)/(μ∗ + 1) that is the
strength of the Stokeslet in the unbounded solution. The term JL(ε) denotes a three-
dimensional integral that is independent of the droplet’s interfacial condition. In the
limit as ε → ∞, analytical solutions for JL(ε) were obtained by Saffman (1965), with
JL(∞) = 2.254. However, the exact manner in which JL(ε) approaches JL(∞) as ε

increases remains analytically unresolved. To solve this, semi-empirical approximations
for JL(ε) at limited value of ε have been proposed in some studies, given by

JL(ε) = JL(∞)(1 + 0.2ε−2)−3/2 (4.2)
or JL(ε) = 0.6765

[
1 + tanh[2.5(lgε + 0.191)]] [0.667 + tan[6(ε − 0.32)]] ,

where the first correlation was derived through numerical data fitting by Legendre &
Magnaudet (1998) and the second correlation was proposed by Mei (1992) based on earlier
numerical results provided by McLaughlin (1991). Therefore, both of these approximations
for JL(ε) are known to be highly dependent on their respective numerical results.
Additionally, in the low-but-finite Re regime, it is important to note that the numerical
solutions can be significantly affected by the confinement of the computational domain, as
reviewed by Shi & Rzehak (2019).

The value of C(R) warrants further discussion. Saffman (1965) derived an analytical
value of C(μ∗ → ∞) = 18 for a rigid sphere. In contrast, Mei & Klausner (1994) reported
that C(μ∗ → 0) = C(μ∗ → ∞) ·R(μ∗ → 0)/R(μ∗ → ∞) = 12 for an inviscid bubble.
Subsequently, Legendre & Magnaudet (1997) challenged this result and provided a more
rigorous analysis of C for arbitrary values of μ∗ (or R). They argued that C(R) is
proportional to C2

D0 or R2, where CD0 is the drag coefficient experienced by the droplet
in homogeneous flow at the same Reynolds number. Accordingly, for an inviscid bubble,
this implies C(μ∗ → 0) = C(μ∗ → ∞) ·R2(μ∗ → 0)/R2(μ∗ → ∞) = 8. However, the
correlation proposed by Legendre & Magnaudet (1997) for this low-but-finite Reynolds
number regime has not yet been validated for droplets with arbitrary μ∗ or R.

Our initial approach involves comparing the present numerical solutions with the
aforementioned formulae for varying viscosity ratios μ∗, including (4.1), (4.2), and the
proportionality C(R) ∝R2. We keep the Reynolds number fixed at Re = 0.1. Figure 3(b)
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Figure 4. Comparison between numerical results and normalised correlations for CL on spherical droplets at
low-but-finite Re. The numerical data collapse onto a single curve expressed by (4.3) after normalisation.

presents the lift coefficients as a function of the viscosity ratio, while JL(ε) is estimated
using either (4.2a) (Legendre & Magnaudet 1998) or (4.2b) (Mei 1992). The results show
excellent agreement with the theoretical predictions, although they are slightly lower than
those predicted by (4.2a), with a discrepancy of less than 5 %. This deviation is considered
acceptable, as both of the correlations (4.2a) and (4.2b) were derived from numerical data
specific to the referenced studies. Similar findings are reported in the recent work by Shi
et al. (2024) (figure 2 therein), where the ratio of the inner to outer Reynolds number was
5, in contrast to 1 in the present work. Together, these results align with the low-Re analysis
conducted by Magnaudet et al. (2003), which showed that the hydrodynamic force in the
terminal state does not depend on the density ratio (and hence, the Re∗). Furthermore,
figure 3(b) illustrates both the pressure and viscous components of the lift coefficients,
demonstrating that the viscous component is more dominant than the pressure component
in this low-but-finite Reynolds number regime.

Moreover, we try to normalise the lift coefficients with the formulation of C∗
L =

[CL(Re, μ∗) − CL(Re, μ∗ → 0)]/[CL(Re, μ∗ → ∞) − CL(Re, μ∗ → 0)]. If we assume
that the correlation CL(Re → 0, μ∗) ∝ C2

D0(Re → 0, μ∗) (Legendre & Magnaudet 1997)
holds for spherical droplets in the low-but-finite Re regime, and given that the Oseen
formulation can be used to estimate the drag coefficient as CD0(Re → 0, μ∗) � 8R/Re,
we derive the following normalised lift in this regime:

C∗
L = CL(Re, μ∗) − CL(Re, μ∗ → 0)

CL(Re, μ∗ → ∞) − CL(Re, μ∗ → 0)
= C2

D0(Re, μ∗) − C2
D0(Re, μ∗ → 0)

C2
D0(Re, μ∗ → ∞) − C2

D0(Re, μ∗ → 0)

≈
(

8
Re

)2 [R(μ∗)2 − 22]
(

8
Re

)2 [
(32 − 22)

]
≈ (4 + 5μ∗)μ∗

5(1 + μ∗)2 . (4.3)

This normalised lift coefficient, C∗
L , is compared with our numerical results, as shown

in figure 4 for 0.1 � Re � 1. Excellent agreement is observed between the theoretical
correlation and the numerical data. Thus, this normalised correlation (4.3) effectively
predicts the lift force experienced by a spherical droplet in the low-but-finite Re regime. In
summary, our numerical results validate the conclusion by Legendre & Magnaudet (1997)
that, for a spherical droplet in this regime, the lift force is proportional to the square of the
drag force acting on the droplet.

The next step is to explore why the lift force increases with larger μ∗ in the low-but-
finite Re regime. It is known that the Saffman mechanism is dominant in this regime
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μ� = 0.01 μ� = 1 μ� = 10 μ� = 100

(a) (b) (c) (d)

Figure 5. Streamlines internal and external of the droplets at Re = 0.1, with the viscosity ratio varying in
the range of 0.01 �μ∗ � 100. As μ∗ increases, a stronger recirculating zone develops on the side with higher
velocity past the droplet, thereby generating a more pronounced Saffman mechanism.

μ* = 0.01

φ = 0 φ = π
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μ* = 10 μ* = 50 μ* = 100μ* = 0.1 μ* = 1

–π/2 –π/4 π/4 π/20
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Figure 6. Distribution of ωz at the (a) top and (b) bottom surfaces of the droplet. A more viscous droplet
exhibits a larger �ωφ = ωφ(φ = 0) − ωφ(φ = π) at the equator, thereby enhancing the Saffman mechanism.

(Legendre & Magnaudet 1997, 1998). This mechanism is associated with the asymmetric
advection of azimuthal vorticities generated at the droplet in the presence of shear in the
X OY plane. Consequently, it is pertinent to investigate the asymmetric distribution of ωz
(i.e. the projection of ωφ onto the X OY plane) around the spherical droplet as μ∗ varies.
Figure 5 displays the internal and external streamlines on the X OY plane for different
values of μ∗, while maintaining a Reynolds number of Re = 0.1. It is evident that a larger
μ∗ results in a more pronounced recirculating zone on the side with higher velocity past
the droplet. This flow structure is consistent with those reported by Ervin & Tryggvason
(1997) and Hidman et al. (2022), who investigated the rise motion of bubbles in low-Re
shear flows. Under these conditions, the negative ωz observed in the figure is expected
to generate a positive lift force FL · ey , given that FL ∝ U × ω. Additionally, a stronger
recirculation for larger μ∗ leads to a greater lift force. Figure 6 illustrates the distribution of
ωz on the top (φ = 0) and bottom (φ = π) surfaces of the droplet, showing the dependence
of ωφ=0 and ωφ=π on θ . The figure reveals that a more viscous droplet exhibits a larger
�ωφ = ωφ=0 − ωφ=π , confirming that the asymmetric advection of ωφ is responsible for
the lift force experienced by the droplet in this low-but-finite Re regime.

4.2. Oblate droplets
We now shift our focus to oblate droplets in the low-but-finite Re regime (0.1 � Re � 1),
with aspect ratios varying in the range of 1 � χ � 2.5, which encompasses moderate
to high shape deformations. As with spherical droplets discussed in § 4.1, our primary
concerns are to understand how and why the lift force evolves with the changing
parameters. It is well known that deformable drops and bubbles moving in shear flows can
experience lateral migration, even in the zero-Reynolds-number limit, as demonstrated by
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Figure 7. Interpolation scheme for predicting CL on oblate droplets in the low-but-finite Re regime for
(a) Re = 0.1, (b) Re = 0.5 and (c) Re = 1. Points represent numerical results, while the solid lines correspond
to the correlation proposed as (4.4).

Leal (1980). Even in the low-Reynolds-number regime, the problem becomes nonlinear
due to the fact that the matching of velocities and stresses across the droplet surface
must be satisfied on a deformed interface, whose shape is a part of the solution to the
problem. Notable contributions to this phenomenon include the works by Chan & Leal
(1979) and Magnaudet et al. (2003), who analytically solved for the deformation rate of
the droplet and the corresponding deformation-induced lift using the reciprocal theorem.
Their studies focused on deformation caused by the presence of a wall and shear flow.
They found that droplets migrated in a wall-bounded shear flow, with the direction of
deformation-induced migration changing with the viscosity ratio, and the migration was
directed towards the wall when the viscosity ratio was μ∗−O(1). In contrast, for an
almost inviscid bubble rising in a quiescent liquid, the deformation-induced migration was
directed away from the wall, in agreement with experimental results by Takemura et al.
(2002). Sugiyama & Takemura (2010) also analysed the deformation-induced lift when
the bubble was extremely close to the wall. However, the deformation-induced lift force
in these studies was derived for a linear shear flow near a wall, where the deformation is
somewhat asymmetric compared with the case of an unbounded flow. This differs from
the present study, where we assume the deformable droplet maintains an axi-symmetrical
shape. The asymmetric deformation of bubbles has been shown to produce a negative
lift force in unbounded flow, referred to as the A-mechanism (Ervin & Tryggvason 1997;
Hidman et al. 2022), which acts in the opposite direction to the Saffman mechanism. This
effect, however, is beyond the scope of the present study.

Figure 7 illustrates the dependence of CL(Re, μ∗, χ) on μ∗ at Re = 0.1, 0.5 and 1, with
aspect ratios varying as χ = 1.0, χ = 1.5, 2.0 and 2.5 in each panel. The first two pictures
demonstrate that larger aspect ratios correspond to higher lift coefficients, regardless of the
viscosity ratio under consideration. This effect arises because the oblateness of the droplet
influences the curvature of the interface and the vorticities generated at the interface
are positively correlated with the curvature of the equator. For example, ωφ,max ∼ χ8/3

for an inviscid oblate bubble (Magnaudet & Mougin 2007). Consequently, the Saffman
mechanism is more pronounced for more oblate droplets in this Re regime. In contrast,
figure 7(c) shows that at Re = 1, the earlier trend – that larger aspect ratios result in higher
lift coefficients – largely persists. However, an anomalous reversal is observed for μ∗ � 10
at χ = 1.5, where the lift force is smaller than that for χ = 1.0. This is not unexpected, as
at (Re, μ∗) = (5, 100), the lift force was already found to decrease monotonically with χ

(see figure 12c). This phenomenon can be attributed to the dominance of S-mechanism ,
which generates negative lift on highly viscous droplets. Consequently, the S-mechanism
may already be present at Re = 1, partially offsetting the Saffman mechanism. To
substantiate the observation of an intensified Saffman mechanism for oblate droplets, a
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Figure 8. Same plot as in figure 6, with the Reynolds number fixed at Re = 0.1 and the viscosity ratio fixed at
μ∗ = 100, while the aspect ratio of the droplet is varied.

detailed examination of the vorticity distribution around the droplet and its evolution in
the flow field is essential. Figure 8 presents the distribution of �ωφ = (ωφ=0 − ωφ=π)

along the droplet interface for different aspect ratios, with Re fixed at 0.1 and viscosity
ratio maintained at μ∗ = 100. The results confirm that a larger χ enhances the asymmetry
of the vorticity at the top (φ = 0) and bottom (φ = π) of the droplet, thereby intensifying
the Saffman mechanism. Additionally, we aim to develop a semi-empirical correlation to
predict CL(Re, μ∗, χ) in this low-but-finite Reynolds number regime for oblate droplets.
Although no theoretical work is available for inviscid oblate bubbles or rigid spheroids in
this context, we employ an interpolation technique inspired by the correlation established
for spherical droplets in (4.3). The following formula is proposed based on this approach:

CL(Re, μ∗, χ) = aμ∗ + b2

(μ∗ + b)2 CL(Re, μ∗ → 0, χ) + (μ∗)2 + aμ∗

(μ∗ + b)2 CL(Re, μ∗ → ∞, χ),

(4.4)
where a and b are coefficients that can be determined empirically. After fitting the
numerical results, we find that the coefficients are a = −0.1954χ2 + 0.7833χ + 0.2730
and b = −0.1403χ2 + 0.5355χ + 0.5483. The validity of this correlation is confirmed by
the results presented in figure 7. In this figure, the solid lines corresponding to (4.4) align
very well with the numerical data, demonstrating that the proposed correlation effectively
captures the variation of lift force with both the viscosity ratio and aspect ratio for spherical
to oblate droplets in the low-but-finite Reynolds number regime.

Additionally, it is important to note that in real-world scenarios, a deformable droplet
elongates in the extensional direction of the background strain rate and rotates in the
rotational direction of the background vorticity. In the low-Reynolds-number regime, the
level of asymmetric deformation scales with the capillary number Ca (Ca = μU∞/σ ,
with σ the surface tension coefficient). This deformation-induced lift force scales as
CaμRU∞ (Magnaudet et al. 2003). In contrast, the inertial lift force in the presence of
shear scales as (Re Sr)1/2μRU∞ implied by (4.1). For the deformation-induced lift to
be negligible compared with the inertial lift, the condition Ca 	 (Re Sr)1/2 must hold.
Since Sr = 0.2 is fixed for the majority of the present work and Re values down to 0.1 are
considered, the above constraint implies that Ca 	 0.1 is required for the inertial lift to
dominate in real-world scenario.

5. Moderate- to high-Re regime
In this section, we examine the lift forces experienced by droplets within the moderate-
to high-Reynolds-number regime (5 � Re � 300). This investigation encompasses the
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Figure 9. Lift coefficients experienced by spherical droplets in the moderate- to high-Re regime, with
variations in Reynolds number and viscosity ratio: (a) CL versus μ∗ for different Re; (b) CL versus μ∗
with specified Re = 100. In panel (b), the dash-dotted line represents the value predicted by correlation (5.1)
(Legendre & Magnaudet 1998), the dotted line indicates CL = 0, and the grey triangles and squares denote the
pressure and viscous components of the lift coefficients.

transition of the droplet from an inviscid oblate bubble, characterised by (μ∗, χ) =
(0.01, 1.0−2.5), to a rigid spheroid, with parameters (μ∗, χ) = (100, 1.0−2.5). This
regime presents a stark contrast to the low-but-finite Reynolds number regime, as the
inertial effects become significant and the flow dynamics around the droplet are more
complex.

5.1. Spherical droplet
Maintaining the droplet in a spherical shape (χ = 1.0), figure 9(a) illustrates the variation
of lift coefficient CL with viscosity ratio μ∗ across different Reynolds numbers Re. For
highly viscous droplets, the lift coefficient may exhibit unsteady behaviour due to vortex
shedding, therefore, the time-averaged CL is presented in the figure for those unsteady
scenarios. It is observed that CL(Re, μ∗) decreases with increasing μ∗ and can even
turn negative for high-Reynolds-number droplets (Re � 100) at viscosity ratio exceeding
a certain critical value. The same trend has been reported by Shi et al. (2024) (figures 4
and 5 therein), where the critical viscosity ratio depends only weakly on the Reynolds
number ratio. This behaviour suggests a fundamental shift in the lift generation mechanism
between the moderate- to high- and low-but-finite Reynolds number regimes. Focusing on
spherical droplets at Re = 100, figure 9(b) shows the dependence of lift coefficients on
μ∗. A sign reversal in the lift coefficient is noted within the range 10 < μ∗ < 50. The
figure also displays the pressure and viscous components of the lift force. It is evident
that the viscous component is negative across all viscosity ratios, while the positive
pressure component decreases with μ∗ until it becomes smaller than the magnitude of
the negative viscous component. This trend indicates that viscous effects dominate and
lead to a reversal of the net lift force for viscous droplets in the moderate- to high-
Reynolds-number regime. This negative contribution of the viscous component to lift has
been reported previously by Legendre & Magnaudet (1998) and Kurose et al. (2001) for
inviscid bubbles, as well as by Sugioka & Komori (2007) and Bagchi & Balachandar
(2002) for water/rigid spheres. Additionally, Legendre & Magnaudet (1998) proposed an
empirical correlation for predicting the lift coefficient of an inviscid spherical bubble in
this moderate- to high-Reynolds-number regime, given by

CL(Re, μ∗ → 0, χ = 1.0) = 2Sr

3
1 + 16Re−1

1 + 29Re−1 . (5.1)
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According to this correlation, the predicted lift coefficient for Re = 100 and μ∗ → 0
is approximately 0.12, as indicated by the dash-dotted line in figure 9(b). This value is
in excellent agreement with our numerical results at μ∗ = 0.01. Conversely, we have not
included reference data for the case of a rigid sphere (μ∗ = 100) due to the variability in
available direct numerical simulation results for this Reynolds number (Shi & Rzehak
2019). The negative lift coefficient observed for Re = 100 and μ∗ → ∞ is notably
sensitive to the shear rate and the specific numerical settings employed in different
simulations. The reported values in different numerical simulations and the corresponding
numerical settings are summarised in Appendix B, where the information on the parameter
choices, grid resolutions and boundary conditions is provided.

To investigate the mechanism underlying the lift reversal observed in figure 9 and the
dependency of CL on μ∗, we first consider the lift generation mechanisms in inviscid
shear flow. In such a flow, the lift force arises from the advection and stretching of the
basic vorticity, represented by ωz = αez in the unperturbed shear flow. The asymmetric
stretching of ωz , characterised by ωz∂Ux/∂z due to the presence of a spherical droplet,
results in a pair of counter-rotating streamwise vortices in the wake (Lighthill 1956; Auton
1987; Auton et al. 1988). These vortices induce a positive lift force directed towards the
side with the higher velocity, a mechanism known as the L-mechanism (Adoua et al.
2009). This mechanism has been confirmed by Legendre & Magnaudet (1998) and Adoua
et al. (2009) for inviscid bubbles in the moderate- to high-Reynolds-number regime.

Additionally, it is important to consider another source of counter-rotating streamwise
vortices, which arises from the asymmetric advection of the azimuthal vorticity ωφ

generated at the body surface. In the presence of shear, the stretching and tilting of ωφ ,
represented by ωφ∂Ux/∂φ, lead to the formation of counter-rotating streamwise vortices
that produce a negative lift force directed towards the side with the lower velocity. This
mechanism, referred to as the S-mechanism (Adoua et al. 2009), becomes dominant for
highly deformed bubbles where ωφ,max increases proportionally to χ8/3 (Magnaudet &
Mougin 2007), as discussed by Adoua et al. (2009) and Hidman et al. (2022). Furthermore,
increasing the viscosity of the droplet, represented by a higher μ∗, may lead to the
formation of attached eddies in the droplet’s wake due to flow separation. Rachih et al.
(2020) demonstrate that such attached eddies form at Reynolds numbers of approximately
25 for homogeneous flow past a droplet with μ∗ > 10. In the presence of shear, the
inhomogeneous flow disrupts the axisymmetry of these attached eddies, causing them to
tilt and generate counter-rotating streamwise vortices through the stretching and tilting
effects in the vorticity equations. These streamwise vortices contribute to a negative
lift force on the droplet and represent a specific case of the S-mechanism. Thus, in the
following study, we will also attribute such tilting eddy-induced lift to the S-mechanism.

Consequently, the fundamental distinction between the L-mechanism and the
S-mechanism lies in their origins of streamwise vorticity. In the L-mechanism, the
streamwise vorticity is generated from ωz present in the upstream shear flow, while in
the S-mechanism, it originates from ωφ produced at the droplet’s interface. Referring to
figure 9(b), it is evident that an increase in the viscosity ratio μ∗ leads to a significant rise in
ωφ at the interface, thereby making a transition of dominance from the L- to S-mechanism.
This transition results in a decrease in lift, potentially reversing it from positive to negative
values. Additionally, in the scenario dominated by the tilting of the azimuthal vorticity,
the lift force is influenced not only by the counter-rotating streamwise vortices (associated
with the previously mentioned S-mechanism) but also by the asymmetric advection of
azimuthal vorticities. This latter effect is referred to as the ‘extended Saffman mechanism’
in the moderate- to high-Re regime because it shares some similarities with the Saffman
mechanism dominating in the low-Re regime. However, it is important to emphasise
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μ* = 0.01
x

x

yz
z

(a)

μ* = 1

(b)

μ* = 10

(c)

μ* = 100

(d)

Figure 10. Flow patterns past spherical droplets of Re = 100 with varying viscosity ratios: (a) μ∗ = 0.01;
(b) μ∗ = 1; (c) μ∗ = 10; (d) μ∗ = 100. For each viscosity ratio, the left panel displays the iso-surfaces
of streamwise vorticity ωx = ±0.3 in the wake of the droplet, while the right panel illustrates the three-
dimensional streamlines, with colour indicating ωx values ranging from −0.3 (blue) to 0.3 (red). In the right
panels, attached eddies appear and are tilted at μ∗ � 10.

that the Saffman and extended Saffman mechanisms are fundamentally different from a
mathematical perspective. as we point out in § 4.1 that the Saffman mechanism is rooted
in an asymptotic approach, which no longer applies in the moderate- to high-Reynolds-
number regime. In this regime, the radius of the Stokes region becomes small, making it
impossible to distinguish between inner and outer regions. Since these two mechanisms,
arising from azimuthal vorticity, produce opposing effects on the lift – positive lift from
the extended Saffman mechanism and negative lift from the S-mechanism – they tend to
counter balance each other, particularly for highly viscous droplets.

To investigate the transition from the L-mechanism to the S-mechanism as μ∗ increases
in the moderate- to high-Reynolds-number regime, we examine the streamwise vortices
ωx = ±0.3 in the wake of droplets, with the Reynolds number maintained at Re = 100.
The left panels of figure 10 illustrate these vortices. For weakly to moderately viscous
droplets at μ∗ = 0.01 and 1, where the L-mechanism is predominant, the produced
ωx exhibits positive values at z < 0 and negative values at z > 0. Consequently, the
fluid situated between these vortices is entrained inwards (y < 0), generating a positive
counteracting lift on the droplet, consistent with the observations in figure 9(b). In contrast,
for moderately to highly viscous droplets μ∗ = 10 and 100, the signs of ωx reverse
compared with the cases with lower viscosity ratios, indicating a shift to the S-mechanism.
The right panels of figure 10 show that at these higher viscosity ratios, attached eddies form
in the wake of the droplet and become tilted due to the ambient shear. This tilting generates
streamwise vortices consistent with the S-mechanism. Unlike in homogeneous flow, where
the direction of the lift force can be influenced by random disturbances (Johnson & Patel
1999; Thompson et al. 2001), the shear in the present case acts as a controlled disturbance
that consistently tilts the eddies in the y-direction, thus producing a lift in the same
direction. Additionally, Rachih et al. (2020) demonstrated that at Re = 100, the formation
of attached eddies behind the droplet occurs only when the viscosity ratio exceeds μ∗ > 5.
This finding is in agreement with our observations presented in figure 10.

It is noteworthy that although the counter-rotating streamwise vortices at μ∗ = 10 and
100 share the same sign, the corresponding lift forces on the droplets exhibit opposite
signs – specifically, a positive CL for μ∗ = 10 and a negative CL for μ∗ = 100 (see
figure 9b). This observation suggests that the reversal of lift force lags behind the reversal
of streamwise vortices, indicating that the lift in this transitional regime is not solely
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Figure 11. Variation of the lift coefficient CL with Reynolds number ranging from low to moderately high
values for spherical droplets. The solid line represents the correlation CL (Re, Sr) = ([C low Re

L (Re, Sr)]2 +
[Chigh Re

L (Re, Sr)]2)1/2 proposed by Legendre & Magnaudet (1998) for spherical bubbles. The dashed line
denotes the correlation CL (Re, Sr) = 2.518JL (ε)(α/Re)1/2 suggested by McLaughlin (1991) for rigid spheres
at low-but-finite Re, with JL (ε) being estimated by (4.2b).

determined by the sign of the streamwise vorticities. This scenario contrasts with the
well-understood behaviour in homogeneous flow past blunt bodies, where the streamwise
vortices in the wake predominantly dictate the direction of lift, whether for an oblate
bubble (Magnaudet & Mougin 2007; Zhang & Ni 2017) or a rigid sphere (Johnson &
Patel 1999; Thompson et al. 2001). Hence, an additional mechanism must be at play to
account for the positive lift observed at μ∗ = 10. This positive lift could counterbalance
the negative lift induced by the S-mechanism, resulting in a net positive lift. As conjectured
earlier, this ‘positive’ lift may be attributed to the asymmetric advection of azimuthal
vorticities, which is termed the extended Saffman mechanism and becomes significant
at higher viscosity ratios. We will explore this hypothesis further in § 6, employing a
force decomposition method grounded in the theory of vorticity moments to quantitatively
analyse this effect.

Next, we examine the influence of Reynolds number on the lift coefficient across the
entire low- to moderately high-Re regime. Figure 11 illustrates the dependency of CL
on Re. For clarity, the graph is presented on a logarithmic scale, with negative values
of CL not shown but indicated by an inset arrow. The figure includes the correlation
proposed by Legendre & Magnaudet (1998) (black solid line), given by CL(Re, Sr) =
([C low Re

L (Re, Sr)]2 + [Chigh Re
L (Re, Sr)]2)1/2, where C low Re

L (Re, Sr) is predicted using
(4.1) and (4.2a), and Chigh Re

L (Re, Sr) is computed from (5.1). This correlation effectively
predicts CL for inviscid bubbles and shows excellent agreement with the present results
across the full parameter space, from the Saffman mechanism to the regime dominated
by the L-mechanism. Specifically, CL initially decreases with Re until a critical value
of Re ≈ 5, due to the weakening of the Saffman mechanism, and then increases as the
L-mechanism becomes more influential with increasing inertial effects. This trend is
consistent with the numerical findings of Legendre & Magnaudet (1998) and Kurose et al.
(2001), and is also applicable to weakly to moderately viscous droplets with μ∗ � 10.
Additionally, the correlation proposed by McLaughlin (1991) (red dashed line), given by
CL(Re, Sr) = 2.518JL(ε)(α/Re)1/2 where JL(ε) is estimated by (4.2b), is used to model
the lift coefficient for a rigid sphere. This model aligns with our numerical data up to
Re ≈ 5. For moderately to highly viscous droplets (μ∗ � 10), we observe a monotonic
decline in CL with increasing Re, attributed to the dominance of the S-mechanism which
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Figure 12. Evolution of lift coefficients with aspect ratio in the moderate- to high-Reynolds-number regime:
(a) inviscid bubble with μ∗ = 0.01; (b) droplet with μ∗ = 1; (c) rigid spheroid with μ∗ = 100.

reduces and can even reverse the lift. However, Rachih et al. (2020) indicates that attached
eddies form in the wake of the droplet at (Re, μ∗) ≈ (50, 50). Beyond this point, the shear
tends to tilt the eddies, potentially reversing the streamwise vorticities and making negative
lift more probable. Despite this, positive lift is still observed from our data displayed in
figure 11, again suggesting the presence of an additional mechanism contributing extra
positive lift.

5.2. Oblate droplet
We now examine the behaviour of oblate droplets in the moderate- to high-Reynolds-
number regime. Figure 12 presents the lift coefficient CL for oblate droplets with aspect
ratios 1.0 � χ � 2.5, with viscosity ratios μ∗ = 0.01, 1 and 100 depicted in separate
panels. For cases where the lift coefficient is unsteady, such as for oblate bubble at
(Re, μ∗, χ) = (300, 0.01, 2.5) and for rigid sphere at (Re, μ∗, χ) = (300, 100, 1.0), we
still use time-averaged values of CL . For inviscid bubbles (μ∗ = 0.01), figure 12(a) shows
that at Re = 5 and 10, CL decreases monotonically with increasing χ . This trend is
attributed to the fact that the L-mechanism does not dominate at this moderate Reynolds
number and the increase in oblateness strengthens the S-mechanism, thereby reducing
the positive value of the lift. As the Reynolds number increases to Re � 50, CL initially
increases with χ until it reaches a Reynolds-number-dependent threshold, χcr . For Re =
50 and 100, χcr is approximately 1.5, while for Re = 300, χcr is approximately 1.8.
Beyond this critical aspect ratio, CL begins to decrease with increasing χ . To understand
this non-monotonic dependence of CL on χ , we must consider the interplay between
the S-mechanism and the L-mechanism for oblate bubbles. According to Naciri (1992),
for inviscid shear flow around a body, such as a potential flow past an oblate bubble,
CL(Re → ∞, μ∗ → 0, χ) closely mirrors the added mass coefficient and thus increases
with aspect ratio. This theoretical prediction was numerically validated by Adoua et al.
(2009) at very high Reynolds numbers (Re ≈ 4 × 103) and is also supported by our
numerical data presented in Appendix A. However, at moderate to high Reynolds numbers
(Re � 15 × 103), Adoua et al. (2009) also observed that CL(Re, μ∗ → 0, χ) does not
always increase with χ , but can decline after reaching a critical threshold χcr , consistent
with our numerical results. This behaviour arises because the enhanced S-mechanism
grows faster than the L-mechanism when χ > χcr . Figure 12(b) presents results for
droplets with μ∗ = 1, where the variation in CL with χ follows a similar trend to that
observed for μ∗ = 0.01. This suggests that the L- and S-mechanisms exhibit comparable
dominating regimes for droplets with μ∗ = 0.01 and μ∗ = 1. For droplets with higher
viscosity ratios, corresponding to rigid spheroids (μ∗ = 100), figure 12(c) shows that CL
consistently decreases with χ and may even become negative. This outcome indicates that
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Figure 13. Evolution of lift coefficients with viscosity ratio and aspect ratio in the moderate- to
high-Reynolds-number regime: (a) Re = 10; (b) Re = 100; (c) Re = 300.

Re = 300

μ* = 0.01

Re = 50

μ* = 100

χ = 1 χ = 1.5 χ = 2 χ = 2.5(a)

(b)

Figure 14. Counter-rotating streamwise vortices behind the droplet at different aspect ratios, with iso-surfaces
corresponding to ωx = ±0.3: (a) inviscid oblate bubbles with (Re, μ∗) = (300, 0.01); (b) rigid spheroids with
(Re, μ∗) = (50, 100).

the S-mechanism predominates for such highly viscous droplets, leading to a reduction in
CL as the droplet deformation increases.

We now explore the dependency of CL on μ∗ for droplets with different oblateness.
Figure 13 presents the numerical results for different Reynolds numbers: Re = 10, 100
and 300. In figure 13(a), at Re = 10, it is evident that the lift coefficient CL decreases both
with χ and with μ∗. This behaviour is attributed to the enhanced S-mechanism associated
with increasing μ∗, as previously discussed. At higher Reynolds numbers, specifically
Re = 100 and 300, figures 13(b) and 13(c) show that CL consistently declines with μ∗ for a
given aspect ratio, similar to observations for spherical droplets. However, the relationship
between CL and aspect ratio χ varies significantly depending on the viscosity ratio μ∗.
For weakly to moderately viscous droplets (0.01 �μ∗ � 1), the variation of CL with χ is
non-monotonic. In contrast, for moderately to highly viscous droplets (1 �μ∗ � 100), CL
decreases monotonically with χ . The differing impacts of χ in these two viscosity regimes
can be explained by the roles of the L- and S-mechanisms. While the S-mechanism not
only strengthens with increasing μ∗ but also intensifies with χ , the L-mechanism grows
with χ up to a certain threshold for weakly to moderately viscous droplets, but always
decreases with χ for moderately to highly viscous droplets. Consequently, for droplets with
μ∗ � 1, the effect of χ on CL is complex due to the concurrent influences of both L- and S-
mechanisms. Conversely, for droplets with μ∗ > 1, where the S-mechanism predominates,
CL is expected to have a purely negative relationship with χ .

As previously discussed in § 5.1, the L- and S-mechanisms generate opposing
streamwise vortices, resulting in reversed lift forces. To further elucidate these vortex
structures behind oblate droplets in different regimes, we examine the iso-surfaces of
ωx = ±0.3 in the wake of oblate droplets. Figure 14(a) illustrates these iso-surfaces
for bubbles with (Re, μ∗) = (300, 0.01) across varying aspect ratios, 1 � χ � 2.5. For
weakly to moderately deformed bubbles (1 � χ � 1.5), which fall under the regime
dominated by the L-mechanism, a pair of counter-rotating streamwise vortices produces
a positive lift. However, as the aspect ratio increases to χ = 2.0, a second pair of
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vortices with opposite signs begins to emerge on the inner side of the wake. This
additional pair of vortices is associated with the S-mechanism, specifically the tilting
of attached eddies that develop beyond a critical aspect ratio of χ ≈ 1.75 (Blanco
& Magnaudet 1995; Magnaudet & Mougin 2007). As χ increases to 2.5, the S-
mechanism intensifies, leading to negative lift that partially offsets the positive lift
generated by the L-mechanism. This explains the observed decrease in CL for χ >

1.8, as shown in figure 12(a). For rigid spheroids at (Re, μ∗) = (50, 100), with aspect
ratios varying in the range of 1 � χ � 2.5, figure 14(b) depicts the iso-surfaces of
the streamwise vortices. In this case, ωx does not change sign with increasing χ ,
rather, it is consistently produced by the tilting of the attached eddies. Notably,
figure 12(c) reveals that negative CL is observed only for χ � 1.2, while CL remains
positive for χ = 1.0. This discrepancy, again, indicates that the reversal of the lift force lags
behind the reversal of the streamwise vortices. Thus, there must be an additional mecha-
nism contributing to the positive lift that counteracts part of the negative lift induced by
the S-mechanism. We will address this further in § 6, where we demonstrate that the asym-
metric distribution of azimuthal vorticities is responsible for this additional positive lift.

6. Mechanism for the lift reversal
Thus, we obtain a comprehensive understanding of the lift evolution on viscous droplets
based on the numerical results provided above. In the low-but-finite Reynolds number
regime (Re � 1), both the aspect ratio χ and the viscosity ratio μ∗ enhance the Saffman
mechanism, which generates a positive lift force. Consequently, in this regime, the
lift coefficient CL increases with both μ∗ and χ . As we transition to the moderate-
Reynolds-number regime (1 < Re � 10), the Saffman mechanism diminishes while the
S- mechanism gains prominence with increasing μ∗ and χ . This shift results in a decrease
in CL with both χ and μ∗, with the coefficient CL potentially becoming negative for highly
viscous and highly deformed droplets. In the moderate- to high-Reynolds-number regime
(10 < Re � 300), the L- mechanism becomes more significant for weakly to moderately
viscous droplets. In this case, CL increases with χ until it reaches a Reynolds-number-
dependent threshold, χcr . Beyond this critical aspect ratio χcr , or for droplets that are
either highly viscous or highly deformed (χ > χcr ), the S-mechanism prevails, leading to
a reduction or even reversal of the lift force.

In what follows, we provide a more quantitative analysis of lift reversal in the moderate-
to high-Reynolds-number regime. Our focus is on elucidating the relationship between
lift variation and the counter-rotating streamwise vorticities appearing in the shear flow.
Additionally, we explore the influence of the shear rate on lift reversal. It is important
to note again that an in-depth investigation into the effects of the ratio of the Reynolds
number (Re∗) is outside the scope of this study, while a brief discussion on this topic is
provided in Appendix E.

6.1. Lift dependency on the counter-rotating streamwise vortices
From the wake structures presented in figures 10 and 14, we observe that in the moderate-
to high-Reynolds-number regime, the lift force on a droplet in shear flow is closely related
to the signs of the counter-rotating streamwise vortices. These vortices can arise from
either the L- or S- mechanism. However, the reversal of lift, induced by increasing μ∗
or χ , occurs with a delay relative to the sign reversal of these vortices. This discrepancy is
attributed to an undetermined mechanism, which contributes a positive lift that partially
offsets the negative lift generated by the S-mechanism.
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Figure 15. Decomposition of vorticity forces using (6.1), with droplets having fixed parameters of (Re, χ) =
(100, 1.0). (a) Evolution of vorticity forces with respect to the viscosity ratio μ∗. Here, Cω

L ,z is less significant
for weakly to moderately viscous droplets, but becomes more important for moderately to highly viscous
droplets. (b) Integration domain for computing FL ,ωz using (6.1a), and the iso-contours represent −0.3 �
ωz � 0.3, with re = 4R indicating the outer radius of Ωe used in the integration. (c) Integration domain for
computing FL ,ωx using (6.1b), and the iso-surfaces correspond to ωx = ±0.3, with lA = 14R being the distance
from Awake to the droplet centre and rA = 4.4R representing the radius for area integration.

To confirm this, we conduct a quantitative analysis based on the theory of vorticity
dynamics (Saffman 1995; Wu et al. 2007b). This framework indicates that the total force
acting on a body moving through a viscous flow arises from body-induced vorticity
moments. This theoretical approach has been successfully applied to study solid–fluid
interactions (Wu et al. 2005, 2007a; Wang et al. 2019; Tong et al. 2021). More recently,
Hidman et al. (2022) employed this vorticity-based approach to evaluate the lift force on
a freely rising bubble in a shear flow, finding strong agreement with numerical results
from a force-balanced model based on bubble motion dynamics. In this section, we apply
a rigorous force decomposition using vorticity moments to elucidate the precise origins of
the lift experienced by the droplet.

The lift forces FL parallel to ey can be decomposed into two components: one arising
from the z-component azimuthal vorticity ωz and the other from the x-component
streamwise vorticity ωx . The detailed derivations of these vorticity forces, based on the
theory of vorticity moments, are presented in Appendix C. Note that these derivations
are based on the Cartesian coordinate system rather than the cylindrical system, as both
the flow shear and the induced lift force are aligned with the y-direction, making the use
of the Cartesian coordinate system more convenient for these investigations. As depicted
in figure 15(b), the approximate expressions for the lift forces due to ωz and ωx can be
formulated as

Fω
L ,z = −1

2

(
ρlUx

∫
Ωi +Ωe

ωzdΩ +
∫

Se

ωzxu · ndS

)
, (6.1)

Fω
L ,x = 1

2
ρlUx

∫
Awake

ωx zdA.

Here, Ωi represents the volume of the internal fluid occupied by the droplet, Ωe
is the volume of the external fluid surrounding the droplet and Se denotes the outer
boundary of Ωe. The term u · n refers to the normal velocity on Se. Additionally, Ux is
the imposed velocity in the x-direction, and Awake is the cross-sectional area downstream
of the droplet, where ωx d A represents the flux of the streamwise vorticities through the
cross-section. For Fω

L ,z , the combination of the volume and surface integrals ensures that
the formulation remains conservative, making the specific choice of Ωe less critical. In
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contrast, for Fω
L ,x , the selection of Awake downstream of the droplet is crucial. We have

conducted a thorough study to ensure that the results are independent of the choice of
Awake and the details of this study are presented in Appendix C. Note that the formulations
in (6.1) are simplified for steady-flow conditions, so that scenarios involving vortex
shedding are not addressed in this section. In addition, (6.1b) is exactly the formulation
proposed by Zenit & Magnaudet (2009) for lift force estimation on a zig-zagging bubble
in experiments, while

∫
ωx dA denotes the strength of the circulation of the vortex threads.

The first set of numerical cases we investigate is (Re, χ) = (100, 1.0), with the viscosity
ratio varying in the range of 0.01 �μ∗ � 100, as examined in § 5.1 (see figure 9b). We
observe a continuous decrease in CL with increasing μ∗, which eventually reverses at
a viscosity ratio greater than μ∗ = 10. Notably, the counter-rotating streamwise vortices
change signs before reaching μ∗ = 10 (see figure 10). We compute the vorticity forces
based on (6.1), with the results presented in figure 15(a). The lift coefficient CL ,num ,
obtained from pressure and viscous integration (2.4), is shown by black squares. The
components Cω

L ,x (blue circle) and Cω
L ,z (red circle) are computed using the vorticity

moment method, with their combined sum, (Cω
L ,x + Cω

L ,z), indicated by the black circle.
For μ∗ = 0.01, figure 15(b) shows the distribution of −0.3 �ωz � 0.3 on the X OY
plane around the droplet, where re = 4R represents the outer radius of Ωe used for
integration. Figure 15(c) displays the iso-surfaces of ωx = ±0.3 in the droplet’s wake,
with lA = 14R being the distance between Awake and the droplet centre, and rA = 4.4R as
the corresponding radius for area integration. Appendix C confirms that the choices of lA
and rA have already converged.

Figure 15(a) shows that, for any μ∗, the sum of Cω
L ,x and Cω

L ,z , i.e. (Cω
L ,x + Cω

L ,z),
aligns very closely with CL ,num . This agreement validates the credibility of the force
computation based on the vorticity moment in (6.1). It should still be noted that a
slight discrepancy between the values of CL ,num and (Cω

L ,x + Cω
L ,z) is observed at high

μ∗, especially for μ∗ = 100. This discrepancy arises because the formulation in (6.1) is
an approximation using the vorticity moment method, with further details discussed in
Appendix C. Figure 15(a) also reveals that, for weakly to moderately viscous droplets
(μ∗ � 1), Cω

L ,x is almost equal to CL ,num , while Cω
L ,z is positive but negligible. This

strongly suggests that, in this μ∗ regime, nearly all the lift originates from the streamwise
vortices generated by the L-mechanism. However, as μ∗ increases, the vorticity forces
produced by ωz grow sharply, corresponding to positive values, causing Cω

L ,x to deviate
from CL ,num . In particular, at μ∗ = 10, Cω

L ,x is a small negative value of −5 × 10−3,
compared with the positive lift of CL ,num = 3 × 10−2. This deviation occurs because
Cω

L ,z increases to 3.5 × 10−2, contributing more to the total lift. Consequently, the force
decomposition explains why the streamwise vortices change sign at μ∗ = 10, yet the lift
remains positive, addressing the question raised in the description of figure 10. This
demonstrates that, in the moderate- to high-Re regime for a moderately to highly viscous
droplet, where the S-mechanism becomes dominant, even if the S-mechanism generates
streamwise vortices that produce negative lift, the asymmetric distribution of ωz in terms
of the ‘extended Saffman mechanism’ may contribute more to the lift than ωx , allowing
the total lift to remain positive. As the viscosity ratio further increases to μ∗ = 50 and 100,
the streamwise vorticity-induced lift coefficient approaches Cω

L ,x = −5 × 10−2, while the
total lift is CL ,num = −5 × 10−3. This is because the positive lift generated by asymmetric
ωz also rises to Cω

L ,z = 4.5 × 10−2, offsetting most of the negative Cω
L ,x .

Furthermore, the contribution of Cω
L ,z becomes more pronounced at higher values

of μ∗, as the azimuthal vorticity generated around the droplet increases with μ∗. This
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Figure 16. Decomposition of vorticity forces using (6.1), with droplets having fixed parameters of (Re, χ) =
(100, 1.5). (a) Evolution of the vorticity forces with respect to the viscosity ratio μ∗. (b) Iso-surfaces of ωx =
±0.3 for different viscosity ratios μ∗. The results reveal that Cω

L ,z is less significant for weakly to moderately
viscous droplets but becomes more important for moderately to highly viscous droplets. Additionally, focusing
on the case of μ∗ = 6 reveals that the sign reversal of the lift lags behind the sign reversal of ωx .
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Figure 17. Evolution of the vorticity forces as a function of Reynolds number. (a) Results for spherical
bubbles with parameters (μ∗, χ) = (0.01, 1.0). (b) Results for rigid spheres with parameters

(μ,χ) = (100, 1.0).

results in a more intense asymmetric convection of ωz . This observation highlights a key
difference from homogeneous flows past highly viscous droplets or rigid spheres, where
the direction of the lateral lift force is predominantly determined by the counter-rotating
streamwise vortices alone. In contrast, in shear flow, the streamwise vortices cannot solely
dictate the magnitude or direction of the lift force because the azimuthal vortices also
play a significant role. Additionally, figure 16 presents results for oblate droplets with
(Re, χ) = (100, 1.5). A similar trend is observed in the variation of CL with respect
to μ∗. For weakly to moderately viscous droplets (μ∗ � 1), the lift coefficient CL ,num
is predominantly influenced by Cω

L ,x . However, for moderately to highly viscous droplets
(μ∗ � 1), the influence of Cω

L ,z becomes significant. Figure 16(b) illustrates that the sign
reversal of the streamwise vortices occurs at μ∗ = 6, leading to a negative Cω

L ,x . Despite
this, the total lift coefficient CL ,num remains positive at μ∗ = 6, as shown in figure 16(a),
due to the positive contribution of Cω

L ,z .
We further examine how Cω

L ,x and Cω
L ,z vary with the Reynolds number, keeping other

parameters constant. This analysis includes both spherical bubbles and rigid spheres. For
spherical bubbles, with parameters fixed at (μ∗, χ) = (0.01, 1.0), we vary the Reynolds
number in the range of 50 � Re � 300 and the results are presented in figure 17(a). It is
evident that across all Reynolds numbers considered, Cω

L ,x aligns closely with CL ,num ,
while Cω

L ,z remains positive and negligible, decreasing with μ∗. This indicates that the
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Figure 18. Evolution of the vorticity forces with respect to aspect ratio. (a) Results for bubbles with
parameters (Re, μ∗) = (300, 0.01). (b) Results for rigid spheroids with parameters (Re, μ∗) = (50, 100).

streamwise vorticities induced by the L-mechanism are the primary contributors to the
lift force on the spherical bubble in this Reynolds number range. For rigid spheres, we
fix the parameters at (μ∗, χ) = (100, 1.0) and vary the Reynolds number in the range
of 75 � Re � 200. The results, shown in figure 17(b), differ significantly from those
of the inviscid bubbles. Specifically, Cω

L ,x remains negative due to the counter-rotating
streamwise vortices originating from the S-mechanism or the tilting eddies in the wake.
However, CL ,num is not necessarily negative, as Cω

L ,z consistently contributes positively,
though it decreases with μ∗. These findings suggest that, in the moderate- to high-
Reynolds-number regime, the L-mechanism induced streamwise vortices predominantly
dictate the lift force on weakly to moderately viscous droplets. In contrast, for moderately
to highly viscous droplets, the S-mechanism does not solely determine the lift, but rather,
the contribution from the extended Saffman mechanism remains significant.

We also examine the impact of the aspect ratio χ on the interplay between Cω
L ,x and Cω

L ,z
in the moderate- to high-Reynolds-number regime. We begin by considering bubbles with
parameters (Re, μ∗) = (300, 0.01), varying the aspect ratio in the range of 1.0 � χ � 2.2.
Figure 18(a) shows that Cω

L ,x closely matches CL ,num for all aspect ratios studied. The
contribution of Cω

L ,z becomes slightly noticeable only at larger aspect ratios (χ > 2.0), due
to the azimuthal vorticities scaling with the aspect ratio as ωφ,max ∝ χ8/3. Thus, for oblate
bubbles, the lift induced by streamwise vorticities, whether from the L- or S-mechanism,
remains the primary source of the total lift. Conversely, for rigid spheroids with parameters
(Re, μ∗) = (50, 100), figure 18(b) reveals that Cω

L ,x consistently deviates from CL ,num .
The positive values of Cω

L ,z are comparable to the negative values of Cω
L ,x , leading to a

near-cancellation that results in small negative values for CL ,num .
In summary, the decomposition of lift using the vorticity moment theory demonstrates

that, in the moderate- to high-Reynolds-number regime where either the L- or the
S-mechanism may dominate, counter-rotating streamwise vortices are not necessarily
the sole or even the primary source of lift in the presence of shear. For droplets
with moderate to high viscosity, the asymmetric convection of azimuthal vorticities,
termed as the extended Saffman mechanism in the present study, plays a significant
role in determining the lift, meaning that the reversal of lift is not synchronised with
the reversal of ωx . However, it remains challenging to quantify the different effects
using the vorticity moment method. This is because, when using the momentum of the
streamwise vorticity to obtain Fω

L ,x , we end up mixing two contributions, one from the
S-mechanism and other from the L-mechanism. While we can evaluate which mechanism
is dominating based on the sign of Fω

L ,x , we are unable to separate the contributions
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Figure 19. Evolution of the vorticity forces with respect to shear rate. (a) Results for bubbles with parameters
(Re, μ∗, χ) = (300, 0.01, 1.0). (b) Results for more viscous droplets with parameters (Re, μ∗, χ) =
(300, 10, 1.0).

from the S- and the L-mechanisms individually. Similarly, the lift force induced by the
azimuthal vorticities, which involves both the S- and the extended Saffman mechnisms,
cannot be accurately estimated using the current approach. Furthermore, in situations
where axisymmetric standing eddies form in the wake of the droplet, the shear flow
disrupts their axisymmetric structure, generating counter-rotating streamwise vortices.
These tilted eddies also contribute to a negative Fω

L ,x , but this contribution cannot be
clearly distinguished from the S- or L-mechanisms in the present analysis.

6.2. Influences of the shear rate on the lift
To this point, our analysis has been confined to a constant shear rate of Sr = 0.2. However,
previous studies on spherical bubbles (Legendre & Magnaudet 1998) and rigid spheres
(Kurose & Komori 1999) have demonstrated that the lift force experienced by a body
is highly sensitive to variations in the shear rate. Consequently, we will extend our
investigation to explore how the lift force evolves with different shear rates on various
droplets. Additionally, we will continue to apply the force decomposition method (6.1),
based on vorticity moments, to steady problems to elucidate the origin of the lift at these
varying shear rates.

We first investigate the effects of shear rate on lift force by analysing bubbles with
parameters (Re, μ∗, χ) = (300, 0.01, 1.0). The shear rate is varied from 0.01 to 0.3,
and the corresponding lift coefficient CL is depicted in figure 19(a). The data reveal a
positive correlation between CL ,num and the shear rate Sr . Using (6.1), we decompose
the lift into contributions from the streamwise vorticity Cω

L ,x and the azimuthal vorticity
Cω

L ,z . It is evident that Cω
L ,x closely matches CL ,num , still indicating that for bubbles, the

enhancement in lift is primarily due to the L-mechanism-induced streamwise vortices.
For comparison, we consider a more viscous droplet with parameters (Re, μ∗, χ) =
(300, 10, 1.0) and examine how the lift coefficient changes with shear rate in figure 19(b).
As Sr increases, CL ,num transitions from negative to positive values, with the transition
threshold occurring at Sr ≈ 0.2. This shift suggests that, at higher shear rates, the
contribution from azimuthal vorticities (Cω

L ,z) surpasses that from streamwise vorticities
(Cω

L ,x ). Although the negative contribution of Cω
L ,x increases with Sr due to the intensified

S-mechanism and more pronounced tilted standing eddies, the positive contribution from
Cω

L ,z increases even more sharply, leading to an overall positive lift force. This discrepancy
between Cω

L ,x and CL ,num underscores that for highly viscous droplets in shear flow, the
counter-rotating streamwise vortices in the wake contribute only a portion of the total lift
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experienced by the droplet. In addition, we also investigate the influence of the shear rate
on unsteady problems characterised by the vortex shedding in the wake of the droplet, and
these results are presented and discussed in Appendix D.

In summary, increasing the shear rate (Sr ) consistently results in a larger positive lift
force on the droplet. This dependency of the lift coefficient CL on Sr helps explain the
discrepancies observed in the Reynolds number (Re) thresholds for lift reversal on a
rigid sphere in different studies (Kurose & Komori 1999; Bagchi & Balachandar 2002;
Hölzer & Sommerfeld 2009). The mechanisms underlying this lift enhancement vary
between weakly to moderately viscous and moderately to highly viscous droplets. For
weakly to moderately viscous droplets, a higher Sr enhances the L-mechanism, resulting
in increased positive lift. Conversely, for moderately to highly viscous droplets, the lift
enhancement is largely attributed to the intensified asymmetric convection of azimuthal
vorticities, which is the extended Saffman mechanism that contributes significantly to the
positive lift.

7. Conclusions
In this study, we investigate the lateral lift experienced by an oblate droplet translating in
a linear shear flow. We employ three-dimensional numerical simulations using a recently
developed sharp interface method. This numerical approach allows for droplets of arbitrary
shape and viscosity, thus bridging the gap between the well-understood behaviours of
inviscid bubbles and rigid spheres in shear flow. Our primary goal is to explore the effects
of various parameters on the lateral lift over a broad parameter space defined by Reynolds
number (Ree), viscosity ratio (μ∗) and aspect ratio (χ ). The Reynolds number ratio (Re∗)
and shear rate (Sr ) are considered secondary aspects in our investigation.

In the low-but-finite Re regime, our numerical results confirm the validity of the
analytical solution derived by Legendre & Magnaudet (1997) for the lift force on a
spherical droplet of arbitrary viscosity. Specifically, the lift force is proportional to the
square of the drag experienced by the droplet, which can be expressed as FL ∝R2 =
[(3μ∗ + 2)/(μ∗ + 1)]2. Consequently, the ratio of the forces experienced by an inviscid
bubble and a solid sphere is (2/3)2. This is known as the Saffman mechanism, which
arises due to the asymmetric advection of the vorticity produced at the droplet’s interface
in the low but non-vanishing Re regime. For an ellipsoidal droplet, we find that increased
oblateness enhances the positive lift because it increases the curvature of the interface,
leading to more vorticity production. We propose a general semi-empirical solution to
normalise the lift experienced by droplets ranging from spheres to spheroids, and our
correlation aligns well with the numerical results.

In the moderate- to high-Re regime, our numerical findings reveal that for a spherical
droplet, increasing the viscosity ratio μ∗ causes a reduction in the positive lift force, and
a reversal to small negative values is observed beyond a certain threshold of μ∗. This
finding bridges the gap between previous studies on spherical bubbles and rigid spheres,
providing insight into how the lift transitions from positive values in bubbles to negative
values in rigid spheres. Our results show that for weakly to moderately viscous droplets,
the L-mechanism predominates. In this scenario, the shear-contained vorticity is stretched
and tilted by the droplet, generating streamwise vorticities that contribute to a positive lift
force. As μ∗ increases, attached eddies form at the droplet’s rear and the shear flow tilts
these eddies, leading to streamwise vortices that produce a negative lift force – an effect we
refer to as the S-mechanism. Notably, the sign reversal of the lift force lags behind the sign
reversal of the streamwise vorticities. For oblate droplets in this regime, the L-mechanism
becomes increasingly significant for moderately deformed droplets and we observe that
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the lift coefficient CL increases with the aspect ratio χ up to an Re-dependent critical
aspect ratio, χcr , for weakly to moderately viscous droplets. For highly deformed droplets
(χ > χcr ) or moderately to highly viscous droplets, the S-mechanism prevails, leading to
a decrease or even reversal of the lift force. However, the sign reversal of the lift force does
not synchronise with the sign reversal of the streamwise vorticities. This phase difference
suggests that an additional mechanism, likely related to the asymmetric advection of
azimuthal vorticities at the droplet’s interface, plays a significant role in offsetting part
of the negative lift induced by the S-mechanism.

Our study has elucidated how the counter-rotating streamwise vorticities, induced by the
L- and S-mechanisms, interact to influence the lift force on droplets in shear flow. Given
that these vorticities exhibit opposite signs, a natural approach is to compare the total lift
with the lift induced specifically by streamwise vorticities. Using the theory of vorticity
moments, we decompose the lift force into components arising from the z-component
azimuthal vorticity and the x-component streamwise vorticity. Our decomposition results
indicate that, in the moderate- to high-Reynolds-number (Re) regime, the lift induced
by ωx closely approximates the total lift for weakly to moderately viscous droplets. This
finding suggests that the L-mechanism predominantly governs the lift generation in this
regime. Conversely, for moderately to highly viscous droplets, the ωx -induced lift only
accounts for a portion of the total lift, with this proportion being highly dependent on
the parameters (Re, μ∗, χ). The results demonstrate that the S-mechanism alone cannot
solely determine the magnitude or direction of the lift in shear flow. This is due to the
fact that the asymmetric advection of azimuthal vorticities can generate a positive lift, in
terms of the extended Saffman mechanism, that offsets part of the negative lift produced
by the S-mechanism. Under certain conditions, this positive contribution from azimuthal
vorticities can even dominate. Further analysis based on the same theory of vorticity
moments shows that the dominance of the L- and S-mechanisms in producing lift varies
with different shear rates. This underscores that the mechanisms governing lift in shear
flow are complex and depend on multiple factors, including viscosity, aspect ratio and
shear rate.

In summary, our study clarifies the effects of droplet viscosity and aspect ratio on
lift forces in linear shear flow and confirms the origins of lift in various flow regimes.
However, there are opportunities for more systematic investigations in the future. For
example, exploring the impact of the Reynolds number ratio between the interior and
exterior flows of the droplet could provide further insights. We observed that (Appendix E)
when Re∗ exceeds a certain threshold, secondary instabilities can be triggered within the
droplet’s flow. Additionally, the A-mechanism – referring to the asymmetric deformation
of the droplet – merits further attention, particularly in the low- to moderate-Re regime.
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Appendix A. Numerical methods and validations
This appendix presents a description and validation of the numerical methods we
developed for simulating shear flow past a viscous droplet, accounting for both internal
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Figure 20. Sketch of the embedded boundary method used to estimate the interfacial velocity in the t1
direction, given uτ1 |Γ . This figure corresponds to (A1). The shaded region represents the flow field inside
the droplet, while the blank region is the flow field outside the droplet.

and external flows. As introduced in § 3, the method is incorporated into the open-source
library Basilisk, which solves the Navier–Stokes equations with second-order accuracy.
In this section, we focus on the treatment of the interfacial boundary conditions (3.1)
featuring our implemented algorithms. More detailed information can be found in our
companion paper (Wei et al. 2023).

A.1 Key techniques of numerical methods
Focusing on (3.1), the main difficulty in using Cartesian grids is obtaining the normal

derivative of the tangential velocity components at the interface, (
∂uk,τ1,2

∂n )|Γ . This
challenge arises because the mesh boundaries do not align with the droplet interface. The
interface is reconstructed by piecewise linear segments that divide the interfacial meshes
into two parts. In this scenario, the estimation of tangential velocities uτ1,2 |Γ relies on the
local body-fitted system comprising (n, t1, t2). To address this problem, we develop two
key techniques.

The first technique is an embedded boundary method, which estimates the tangential
components of interfacial velocities, i.e. uτ1,2 |Γ = u(x, y, z) · t1,2|Γ . These components
must satisfy the jump conditions described by (3.1b) and (3.1c). Figure 20 illustrates how
to calculate uτ1 |Γ along the tangent direction t1 at point P. The jump condition (3.1b)
leads to the following formulation:

uτ1 |Γ =
[

1
R1

+ de
1 + de

2
de

1de
2

+ μ∗
(

di
1 + di

2

di
1di

2
− 1

R1

)]−1 (
de

2

de
1
(
de

2 − de
1
)ue

1 − de
1

de
2
(
de

2 − de
1
)ue

2

+μ∗ di
2

di
1
(
di

2 − di
1
)ui

1 − μ∗ di
1

di
2
(
di

2 − di
1
)ui

2

)
. (A1)

Here, ui,e
1,2 are the velocities at the intersection points parallel to t1, belonging to the

local body-fitted system, di,e
1,2 are the corresponding distances from the interface and R1 is

the local curvature radius of point P corresponding to τ1. Equation (A1) is a second-order
accurate interpolation scheme, indicating that the interfacial velocity depends on both the
internal and external flow. Similarly, uτ2 |Γ can be estimated via a similar interpolation
scheme, where the curvature radius is now R2.

The next step is to transform the obtained tangential velocities (uτ1,2)|Γ and (un)|Γ = 0
into the Cartesian system, given (u(x, y, z))|Γ , which are required for the solution of
the Navier–Stokes equations (2.1). In the present numerical method, we solve the fluid
flow inside and outside the droplet separately by imposing (u(x, y, z))|Γ as interfacial
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conditions. The mapping of these velocities between the two systems relies heavily on the
estimated directions t1,2 and values R1,2. This is the second technique developed in our
numerical method.

Without loss of generality, we return to spatial analytic geometry (Kühnel 2015),
assuming the parametric surface of the interface is expressed as Γ : p(η, ξ), where (η, ξ)

parametrise the surface. The curvature formulae rely on the associated first and second
fundamental forms, denoted by I(η, ξ) and II(η, ξ), respectively, which have the following
form:

I=
[

pη · pη pη · pξ

pξ · pη pξ · pξ

]
, II=

[
pηη · n pηξ · n
pξη · n pξξ · n

]
= −

[
pη · nη pη · nξ

pξ · nη pξ · nξ

]
, (A2)

where pη = ∂p/∂η, pξ = ∂p/∂ξ and pηη = ∂pη/∂η, pηξ = ∂pη/∂ξ , pξξ = ∂pξ /∂ξ denote
the first and second partial derivatives, respectively. Then, the principal directions and
principal curvatures κ1,2 can be obtained through the eigenvector c(η, ξ) and eigenvalue
λ of the Weingarten matrix W= [II][I−1] by

Wc = λc. (A3)

Here, the principal curvatures κ1 = λ1 and κ2 = λ2 are used to estimate R1 = 1/κ1 and
R2 = 1/κ2 as shown in (A1). Correspondingly, the principal directions of (η, ξ) or (t1, t2)
can be derived as t1 = ( pη, pξ )c1, t2 = ( pη, pξ )c2.

The numerical solution of (A3) depends heavily on evaluating I and II, which require
calculating the derivatives of p. If the interface is given explicitly, such as a spherical or
ellipsoidal shape, these derivatives can be determined analytically (Kempe et al. 2015).
However, for droplets with arbitrary shapes, estimating these derivatives is challenging.
We propose a height function-based approach to estimate the derivatives of p. This
involves using coupled level-set and volume-of-fluid methods to determine the height
functions (h) and their derivatives in the interfacial grids, resulting in

I=
[

1 + h2
x hx hy

hyhx 1 + h2
x

]
II=

[
nzhxx nzhxy
nzhyx nzhyy

]
nz � ny � nx , (A4)

where the estimation of h is detailed in § (3.2) by Wei et al. (2023), while n is the normal
direction, hx,y and hxx,yy,xy are the first and second partial derivatives, respectively. After
obtaining I and II in (A4), (A3) can be solved, providing the corresponding principal
vectors (t1, t2) and principal curvature radii (R1, R2). After that, the interfacial velocity
(uτ1,2)|Γ in the local body-fitted system as well as (u(x, y, z))|Γ in the Cartesian system
can be obtained via (A1), then the remaining step is to solve the velocity–pressure coupling
equations in the framework of the embedded boundary method, which enables the flow
fields to be solved separately in the exterior and the exterior of the droplet.

A.2 Validations of numerical methods
Sections 4 and 5 have already demonstrated that our numerical results compare well
with benchmark solutions, as shown in figures 3, 9 and 11. These figures highlight the
excellent agreement observed across the low- to moderately high-Reynolds-number (Re)
regime. This appendix provides additional validation tests, including grid and domain size
independence studies, as well as proof of numerical accuracy.

The first validation test examines grid independence in our simulations. For this, we
considered a rigid sphere with parameters (Re, μ∗, χ, Sr) = (200, 100, 1.0, 0.2), which
corresponds to a boundary layer thickness of δ ≈ R/7. For comparison, the numerical
result reported by Kurose & Komori (1999) is also included. Figure 21(a) shows the
time evolution of the lift coefficient CL as the grid size surrounding the droplet is
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Figure 21. Grid independence test results for a droplet with parameters (Re, μ∗, χ, Sr) = (200, 100, 1.0, 0.2).
(a) Time evolution of the lift coefficient CL as a function of grid size, while the numerical result reported
by Kurose & Komori (1999) is also included. (b) Mesh distributions around the droplet for different spatial
resolutions.

Domain size (L) 50R 100R 200R 400R 800R Reference

CL (Re = 0.1) 0.926 1.525 1.987 2.239 2.249 2.2406
CL (Re = 200) 0.1289 0.1266 0.1264 0.1263 0.1263 0.1258

Table 1. Lift coefficients for different domain sizes L at Reynolds numbers Re = 0.1 and Re = 200 on
an inviscid spherical bubble. Reference values are estimated by using (4.1), (4.2a), and (5.1) (Legendre &
Magnaudet 1998) for comparison.

decreased from Δ = R/10 to Δ = R/80. The results indicate that as the mesh is refined,
CL converges to approximately −0.44, closely matching the result from Kurose & Komori
(1999). Figure 21(b) displays the mesh distributions around the droplet at different spatial
resolutions. Based on this convergence study, a spatial resolution of Δ = R/80 is used
throughout the present study.

A second series of tests was conducted to determine the optimal size L of the
computational domain. Simulations were performed for six domains extending up to
L = 50R, 100R, 200R, 400R and 800R. These tests were conducted on bubbles (μ∗ =
0.01) at both low (Re = 0.1) and high Reynolds numbers (Re = 200) for a non-
dimensional shear rate Sr = 0.2. The lift coefficients obtained from these simulations are
reported in table 1, with reference data provided by the correlations in (4.1),(4.2a) and
(5.1) (Legendre & Magnaudet 1998), respectively. At high Reynolds numbers, a domain
extending up to 50R is sufficient, as no significant changes are observed in the drag
or lift forces when the domain size is increased. However, for low Reynolds numbers,
confinement effects significantly influence the lift force. A domain extending up to 400R
is necessary to capture all the inertial effects contributing to the lift accurately. Based on
these tests, the computational domain for most simulations is set to L = 200R for Re > 1,
while it is increased to L = 400R for Re � 1.

A third series of tests was conducted to verify the accuracy of the numerical algorithm.
While figure 21 and table 1 demonstrate validity in simulating shear flow past a rigid
sphere and an inviscid bubble, we further tested flow past oblate bubbles and spherical
droplets to investigate the influences of the aspect ratio and viscosity ratio, respectively.
For an oblate bubble with an aspect ratio of χ = 1.5, figure 22(a) shows the dimensionless
value of χCL/(SrCD) against various Re. Numerical and analytical solutions provided

1007 A78-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

15
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.159


Journal of Fluid Mechanics

μ*

10–2 10–1
10–1

100

101

102

100 101 102102 103

Re

0.2

0.4

CD 0.6

0.8

1.0

1.2

Feng et al. (2001)

Adoua et al. (2007)
Present

Present result

χ
C

L/
Sr

C
D

χ = 1.5
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1/CD = Reχ1/3/48G(χ)

Figure 22. (a) Dimensionless parameter χCL/(SrCD) for an oblate bubble with χ = 1.5 across various
Reynolds numbers. (b) Drag coefficients for spherical droplets at Re = 100 and Sr = 0.2 with varying viscosity
ratios μ∗. In panel (a), the numerical and analytical solutions are provided by Adoua (2007); and in panel (b),
the semi-analytical correlation is established by Feng & Michaelides (2001) for homogeneous flow past a
spherical droplet.

Reference Domain size
(L/R)

Sr Numerical method CL

Kurose & Komori (1999) 10 0.2 Marker-and-cell method −0.016
Bagchi & Balachandar (2002) 30 0.2 Fourier–Chebyshe scheme −0.015
Hölzer & Sommerfeld (2009) 12.4 0.04 Lattice Boltzmann method −0.01
Homann et al. (2013) 256 0.2 Pseudo-Fourier-spectral method −0.002
Kim (2006) 100 0.1 Alternating-direction-implicit method −0.008
Lee & Wilczak (2000) 16 0.2 Finite element method −0.012
Present study 200 0.2 Cartesian grid technique −0.008

Table 2. Reported lift coefficients for a rigid particle translating in the shear flow at Re = 100.

by Adoua (2007) are used for comparison. Our results show excellent agreement with
reference data across a wide range of Reynolds numbers, from Re = 50 to Re = 1000. For
the case of shear flow past spherical droplets, simulations were performed at Re = 100 and
Sr = 0.2, with viscosity ratios varying from μ∗ = 0.01 to μ∗ = 100. The drag coefficients
are presented in figure 22(b), alongside the semi-analytical correlation established by
Feng & Michaelides (2001) for homogeneous flow past a spherical droplet (see (36),
(37) in their paper). Once again, our numerical results show good consistency with the
correlation, indicating that such moderate shear rates have negligible influence on drag, as
also identified by previous studies (Legendre & Magnaudet 1998; Bagchi & Balachandar
2002; Adoua et al. 2009). The results presented in figure 22 confirm the accuracy and
reliability of our numerical method, particularly its capability to solve viscous flow past
oblate droplets.

Appendix B. Lift coefficient for a rigid particle of Re = 100 in different numerical
studies
The transition Reynolds number (Re) for the sign reversal of the lift force on a rigid sphere
is known to vary across different numerical studies, as reviewed by Shi & Rzehak (2019).
This discrepancy arises due to differences in numerical settings, including computational
domain size, boundary conditions and grid resolution. In this appendix, we further review
the lift force experienced by a rigid sphere at a fixed Reynolds number of Re = 100, with
results summarised in table 2. The table also outlines the numerical methods used in the
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respective studies. Interestingly, the reported lift coefficients (CL ) show notable variability,
with Homann et al. (2013) accounting for the rotation of the sphere in their analysis.
Their findings highlight that the computational domain size significantly affects CL in
this Reynolds number regime, likely because the lift coefficient is relatively small and
hence more sensitive to numerical details. For example, Homann et al. (2013) observed
a decreasing trend in CL as the computational domain size was increased from 256R to
512R, emphasising the importance of domain size in accurately capturing the lift force.
This observation suggests that future numerical studies should rigorously quantify the
influence of computational domain size and boundary conditions on CL , particularly
near the transition Reynolds number. Such studies would provide deeper insights into the
sensitivity of lift force predictions and improve the reliability of numerical simulations in
this regime.

Appendix C. Force decomposition by using vorticity moment

C.1 Force estimation formula
Vorticity moments can be applied to estimate the total force F acting on a body translating
steadily in a viscous fluid. Still using figure 15(b) for illustration, the force is given by the
following formulation (Wu et al. 2007b):

F = − d

dt

(
1
2

∫
Ωi +Ωe

r × ωdΩ

)
+ ρ

∫
Se

T · ndS, (C1)

where Ωi is the internal volume occupied by the body, Ωe is the volume of the liquid
surrounding the body, Se is the external boundary of the domain Ωe and n is the outward
unit normal vector of Se. Here, T is a second-order tensor, defined as

T= −1
2

u′(r × ω) + 1
2
|u′|2I− u′u′ + 1

2
ω(r × u′)

+1
2
ν
[
(r · ∇2u′)I− r∇2u′]+ 2νS′, (C2)

with u′ is the velocity disturbance field induced by the presence of the moving object. Note
that (C1) is derived from the full Navier–Stokes equations where the only assumption is
that the object moves steadily. Then, the viscous contribution appears explicitly in the
surface integral over Se. However, thanks to the decaying property of |u′| ∼ r−3 (with
r = |r|) in a high-Re flow characterised by the moving velocity of the object, we would
expect all terms appearing in (C2) to vanish if the integral boundary of the selected domain
is far from the body, provided that Se contains all the flow disturbance. In contrast, for low-
Reynolds-number flows, omitting the contributions from Se is infeasible. In this regime,
|u′| scales as r−1 and the viscosity-related terms in T scale as νr−2. As a result, the surface
integral over Se does not necessarily converge when the domain size approaches infinity.
Therefore, estimating F in this limit requires accounting for the contribution from Se,
which is rather tedious. For the moderate- to high-Re cases considered in the manuscript,
with Re > 50, if we select Se to be sufficiently far away from the moving object, (C1) can
be simplified to the following formula (Saffman 1995):

F = − d

dt

(
1
2

∫
Ωi +Ωe

r × ωdΩ

)
. (C3)
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The x-component of the force refers to the drag, while the y-component is the lift, which
is the primary focus of this study. The lift force, Fy or FL , can be further expressed as

FL = − d

dt

(
1
2

∫
Ωi +Ωl

(ωzx − ωx z)dΩ

)
. (C4)

Equation (C4) can be decomposed into two contributions, from the azimuthal vorticity
(ωz on the X OY plane) and the streamwise vorticity respectively

Fω
L ,z = − d

dt

(
1
2

∫
Ωi +Ωl

ωzxdΩ

)
, Fω

L ,x = d

dt

(
1
2

∫
Ωi +Ωl

ωx zdΩ

)
. (C5)

Equation (C5) provides a clear method for estimating the lift forces arising from
different components of the vorticity moment. Then, these contributions can be further
approximated as follows:

Fω
L ,z = −1

2

(
ρlU

∫
Ωi +Ωe

ωzdΩ +
∫

Se

ωz xu · ndSe

)
,

Fω
L ,x = 1

2
ρlU

∫
Awake

ωx zdA. (C6)

These expressions correspond to (6.1) and offer a detailed breakdown of the lift force
into its constituent vorticity components, providing deeper insights into the flow dynamics
involved. However, still note that due to the approximation we made from (C1) to (C3), the
vorticity induced lift estimated from (6.1) (or (C6)) may have a slight discrepancy from
the numerical value provided by (2.4).

C.2 lA and rA independence study
As discussed in the calculation of the streamwise vorticity-induced lift force
(see figure 15b), it is crucial to select appropriate values of lA and rA, which define the
selection of Awake used in the integration formula (6.1). This is essentially ascribed to
two reasons: one is because the values of

∫
Se
T · nd Se appearing in (C1) cannot fully

vanish if lA is not far enough and the other is due to the fact that Awake cannot contain
all the streamwise voticities if rA is not large enough. Therefore, independence studies
of lA and rA were conducted through two series of tests. The first tests are the same as
those presented in figure 15, with constant parameters (Re, χ, Sr) = (100, 1.0, 0.2) and
varying viscosity ratios 0.01 �μ∗ � 100. Before presenting the results of the tests, it is
important to note that during this post-processing phase, the grid size of Δ = R/20 was
expanded to cover a broader range of (x, z) ∈ ([−5R, 16R], [−7R, 7R]), compared with
the simulation range of (x, z) ∈ ([−2R, 5R], [−2R, 2R]). This adjustment was made to
capture the vorticity magnitude with greater precision, thereby ensuring that the effects of
lA and rA on the computed lift force were accurately assessed.

Figure 23 shows how C L ,ωx varies with different values of lA and rA. Here, C
ω

L ,x is
the value of Cω

L ,x normalised by that at (lA, rA) = (16R, 4.6R) to enhance readability.
The results converge to 1 as lA and rA increase, indicating that the chosen values of
(lA, rA) = (14R, 4.4R) for surface integration are sufficient to obtain converging results.
Additionally, a series of numerical tests were performed on an inviscid bubble with
parameters (Re, μ∗, χ) = (300, 0.01, 1.0), with the shear rate varying in the range of
0.01 � Sr � 0.3. These tests are also presented in figure 19(a). The lA and rA independence
study, shown in figure 24, confirms that (lA, rA) = (14R, 4.4R) is sufficient to ensure con-
vergence in Cω

L ,x . Then, (lA, rA) = (14R, 4.4R) are chosen throughout the present study.
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Figure 23. Normalised values of C
ω

L ,x for varying lA and rA, with constant parameters (Re, χ, Sr) =
(100, 1.0, 0.2). The results show convergence towards 1 as lA and rA increase to (lA, rA) = (14R, 4.4R). C

ω

L ,x
is the value of Cω

L ,x normalised by that at (lA, rA) = (16R, 4.6R).
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Figure 24. Independence study of lA and rA for C
ω

L ,x showing sufficient convergence at (lA, rA) =
(14R, 4.4R).

Appendix D. Influences of the shear rate on the lift force for unsteady problems
We also investigate how the shear rate influences the lift force in an unsteady
problem, which is characterised by vortex shedding in the wake of the droplet.
Initially, we analyse a rigid sphere with parameters (Re, μ∗, χ) = (300, 100, 1.0). The
effect of shear rate on lift forces is illustrated in figure 25(a), which shows only
the oscillatory period. At low to moderate shear rates (0 � Sr � 0.2), we observe
persistent unsteady oscillations, with only minor changes in oscillatory frequency
and amplitude. For instance, CL(Re = 300, μ∗ = 100, χ = 1.0, Sr � 0.02) ≈ CL ,bi
(Re = 300, μ∗ = 100, χ = 1.0, Sr = 0). Quantitative analysis using fast Fourier transform
reveals a slight increase in the dominant oscillatory frequency with Sr , as shown in
figure 25(b). This result is consistent with findings by Sakamoto & Haniu (1995) and
Kurose & Komori (1999), who first reported and confirmed the effect of shear rate on the
oscillatory frequency in rigid spheres. At Sr = 0.5, the flow becomes nearly steady, though
the lift force remains negative. Beyond Sr = 0.5, numerical instabilities arise at Re = 300
on a rigid sphere, preventing further computation of the lift force. However, as indicated
by figure 19(b), the lift may revert to positive values if Sr is sufficiently large. Figure 25(c)
illustrates the iso-surfaces of ωx = ±0.3, showing how vortices transition from unsteady
shedding to a steady counter-rotating structure with increasing Sr .
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Figure 25. Influences of shear rate on the unsteady behaviours of a rigid sphere with parameters (Re, μ∗, χ) =
(300, 100, 1.0). (a) Time histories of the lift coefficient CL versus shear rate Sr . (b) Fast Fourier transform
analysis of the curves shown in panel (a). (c) Iso-surfaces of ωx = ±0.3 for different shear rates.
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Figure 26. Influences of shear rate on the unsteady behaviours of an oblate bubble with param-
eters (Re, μ∗, χ) = (300, 0.01, 2.5). (a) Time histories of the lift coefficient CL versus shear rate
Sr . (b) Iso-surfaces of ωx = ±0.3 for various shear rates.

Next, we investigate the impact of shear rate on an oblate bubble with parameters
(Re, μ∗, χ) = (300, 0.01, 2.5). Figure 26(a) presents the time evolution of CL for
various Sr values. For small to moderate shear rates (0.005 � Sr � 0.2), the droplet
exhibits unsteady behaviour, with CL transitioning from negative to positive values.
This observation suggests that higher shear rates not only suppress vortex shedding but
also enhance the L-mechanism, leading to a reversal in the lift direction. Furthermore,
increasing the shear rate further raises the positive value of CL from 0.05 at Sr = 0.2
to 0.22 at Sr = 0.5. Figure 26(b) shows the iso-surfaces of ωx = ±0.3 for different
shear rates. Shear rates below Sr � 0.1 exhibit periodic shedding, while Sr � 0.2 reveals
two pairs of counter-rotating vortex structures respectively corresponding to the S- and
L-mechanisms, similar to those discussed in figure 14. These vortex structures further
support the conclusion that increasing Sr enhances the L-mechanism in weakly to
moderately viscous droplets.
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Figure 27. Lift coefficients for droplets with varying Reynolds number ratios (Re∗ = 1 and Re∗ = 5) at
different external Reynolds numbers: Ree = 10 and Ree = 200. (a) Variation of CL against μ∗. (b) Velocity
streamlines on X OY plane at different viscosity ratios and Reynolds number ratios, while the external Reynolds
number is maintained at Ree = 200.

Appendix E. Influences of the Reynolds number ratio on the lift
Throughout this study, we have maintained the Reynolds number ratio at a constant value
of Re∗ = 1. In this section, we explore the influence of the Reynolds number ratio, Re∗, on
lift forces. The Reynolds number for a given fluid is defined as Rek = ρkU D/μk , where
the variation of Re∗ in this study is achieved by adjusting the density ratio ρ∗ = ρi/ρe,
as μ∗ may vary across cases. We focus on two groups of droplets characterised by
(Ree, χ, Sr) = (10, 1.0, 0.2) and (Ree, χ, Sr) = (200, 1.0, 0.2), with a viscosity ratio
in the range of 0.01 �μ∗ � 100. Figure 27(a) shows the lift coefficients experienced
by droplets with Reynolds number ratios of Re∗ = 1 and Re∗ = 5. For droplets at
Ree = 10, the lift coefficients as a function of μ∗ are nearly independent of Re∗. In
contrast, for droplets at Ree = 200, an abnormal increase in CL is observed in the regime
0.05 �μ∗ � 10 when comparing Re∗ = 5 and Re∗ = 1, while CL remains almost the
same outside this regime.

These results strongly indicate that for moderately high Reynolds numbers (Ree = 200),
increasing the internal Reynolds number of the droplet can lead to flow bifurcation. This
phenomenon was also reported by Edelmann et al. (2017) for droplets translating in a
homogeneous flow, where at low Rei , the internal flow field resembled the well-
known Hill’s vortex solution, while higher Rei led to quasi-steady internal circulation.
Additionally, Edelmann et al. (2017) identified that flow bifurcation affected drag only
when μ∗ was within a moderate range, consistent with our observations in figure 27(a).
However, they did not explore the lateral forces acting on the droplet in shear flow during
internal flow bifurcation. For droplets at Ree = 200, figure 27(b) compares the flow fields
in the X OY plane for Re∗ = 1 (top panel) and Re∗ = 5 (bottom panel). Evidently, for an
inviscid bubble (μ∗ = 0.01) and a rigid sphere (μ∗ = 100), the external flow fields are n-
early identical between the two Re∗, resulting in the same values of CL . However, for mod-
erately viscous droplets (μ∗ = 0.1 and 0.2), internal flow bifurcation occurs, leading to a
more unstable external flow, which manifests as an increase in the lift acting on the droplet.

Furthermore, we maintained droplet parameters at (Ree, μ∗, χ, Sr) =
(200, 0.2, 1.0, 0.2) and varied the Reynolds number ratio in the range of 0.5 � Re∗ � 5.
Figure 28(a) displays the time histories of the lift coefficients. We observe that at
Re∗ = 0.5 and 1, the lift coefficients are nearly equal, with CL � 0.12, indicating similar
internal flow patterns. At Re∗ = 2, a slight increase in CL is observed around t � 50,
indicating the onset of flow bifurcation. At Re∗ = 5, the lift coefficient increases sharply
at t � 30 and eventually stabilises at CL � 0.18, with slight oscillations. These results
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Figure 28. Lift variations for droplets with varying Reynolds number ratios (0.5 � Re∗ � 5) and fixed
droplet parameters (Ree, μ∗, χ, Sr) = (200, 0.2, 1.0, 0.2). (a) Time histories of lift coefficients. (b) Velocity
streamlines on X OY plane at different Reynolds number ratios.

suggest that the internal Reynolds number significantly impacts droplet behaviour in shear
flow, influencing the lift experienced by the droplet. However, a thorough investigation of
this issue requires additional work, which would be suitable for a separate publication.
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