
THE HILBERT TRANSFORM ON 
REARRANGEMENT-INVARIANT SPACES 

D. W. BOYD 

Introduction. The purpose of this paper is to investigate conditions under 
which the Hilbert transform defines a bounded linear operator from a given 
function space into itself. The spaces with which we deal have the property 
of rearrangement-invariance which is defined in §1. This class of spaces includes 
the Lebesgue, Orlicz, and Lorentz spaces. 

L e t / be a locally integrable function on R = (— °°, °°), and let H denote 
the Hilbert transform: 

_i(P) rm.dL 
TV J _ œ X — t 

If X is a Banach space, let [X] denote the space of bounded linear operators 
from X into itself. A classical result of M. Riesz states that H Ç [Lp] if and 
only if 1 < p < oo. Our main result generalizes this as follows. 

THEOREM 3.7. Let X be a rearrangement-invariant space. Define the operator 
Es for 0 < s < oo by (Esf)(x) = f(sx), f € X. Denote the norm of Es as a 
member of [X] by h(s; X). Then, H £ [X] if and only if 

sh (s; X) —* 0 as s —» 0 + , and h (s; X) —» 0 as s —» oo. 

In §4, we apply this theorem to the spaces of Lorentz, by explicit calculation 
of h(s\ X). Using this result, we can give examples showing that reflexivity of 
X is both unnecessary and insufficient in order that H Ç [X]. This may be 
somewhat surprising, since the condition for LP to be reflexive (i.e. 1 < p < oo ) 
is the same as the condition for H € [Lp]. However, 1 < p < oo also ensures 
that LP is uniformly convex, so the following result is welcome: 

Let X be the Lorentz space A(</>, p), 1 < p < oo. Then H G [X] if and only if 
X is uniformly convex. 

This result is non-trivial since there are spaces of the form A(<£, p) which 
are reflexive but not uniformly convex. 
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600 D. W. BOYD 

In §5, we apply the main theorem to the Orlicz spaces and obtain the 
following: 

Let X be an Orlicz space. Then H G [X] if and only if X is reflexive. 

Some generalizations of Theorem 3.7 to operators other than H are mentioned 
in §6. In fact, if T is of weak type (p, p) for all p G (1, oo ) and if H G [X], then 
T G [x]. 

1. Rearrangement-invariant Banach spaces. Suppose that (2, g, /x) is 
a totally o--finite measure space. Let 2)? (2) denote the class of complex-valued 
measurable functions on 2, and ^3(2) denote the subclass of SDî(S) consisting 
of non-negative functions. 

Definition 1.1. A function p from ^3(2) to [0, oo ] is called a length function 
if it satisfies the following conditions for each/, g G $ ( 2 ) : 

(i) p(/) = 0 <=»/(*) = 0 a.e. on 2, 

p(J+g) <p(/)+pfe), 
p (a/) = ap (/) for any constant a > 0. 

(ii) I f / n g $ ( 2 ) for n = 1, 2 , . . . , and ^ Î / a . e . , then p(/B) Î p( / ) . 
(iii) If £ G 5» M CE) < °°J a n d X# is its characteristic function, then 

P(XE) < °°. 
(iv) If E G £Ç, /*(£) < °° , then there exists a constant AE < oo , such that, 

for every / G p(2), 

f /<*/*< 4 * P(/). 

Given a length function p, the associate of p, denoted p', is defined for each 
g e ? ( 2 ) b y 

P (g) = sup ffgdp (J € $ ( 2 ) , p(/) < 1). 

Let X denote the set of/ G 9W(2) for which p( | / | ) < °°. Then, identifying 
functions which differ at most on a set of measure zero, X is a Banach space 
with norm | | / | | = p( | / | ) , for e a c h / G -X". The space so defined by p' is called 
the associate of X and is denoted X'. Luxemburg, who gave the above defini­
tion of length function, has shown that p" = p, so that X" = X; see (9, 
p. 10). 

We wish to place a further restriction on the function p. To do this, we need 
the idea of the non-increasing rearrangement of a function in 2)1(2) onto the 
half-line R+ = [0, oo). Given / G 2W(2), define a function /* from R+ to 
[0, oo], by 

My) = M { * : / | ( * ) | > y } , y > o . 
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/* is non-increasing. Denote the left-continuous inverse of /* by /*. Then, f* 
is called the non-increasing rearrangement of/ onto R+; see (2, or 10) for more 
details. 

By definition, if m denotes Lebesgue measure on i?+, 

m{t:f(t) >y} = »{x: \f{x)\ > y). 

The following results are fundamental: 

(1) f \fg\ du < f ° > g * dm, f, g € 3R(2). 

(2) If F is non-negative, non-decreasing, and continuous on the left, then 

f ^(1/1)**= V FT)dm. 

The integral mean of/* is defined by 

and /**(0) = / * ( 0 + ) . If / , g, A € 2W(2), with / = g + A, then 

(3) f**(t) <g**(t) +h**(t). 

Another definition of /** is possible if S is non-atomic, namely 

(4) tf*(t) = sup f l/l d» (E € 5, M CE) < 0-

Definition 1.2. Suppose that a* is a length function on $(i?+) , and that, for 
each** 6 ^( i?+) , 

(v) <r{u) = cr(^*). 

Then a will be called a rearrangement-invariant length function on $(i?+), or 
an r-function on ^)3(JR+). 

If o- is an r-function on ^(R+), and if p is a length function on $ ( 2 ) defined by 

(vi) p(/) = *(/*), for each/G $ ( 2 ) , 

then we call p an r-function on ^J(S). 
The space corresponding to p will be denoted by -XT(2), and will be called a 

rearrangement-invariant space. 

The proof of sections (a), (b), and (c) of the following lemma is essentially 
given in (8). Sections (d) and (e) follow immediately in case the measure space 
(2, g, M) is the real line R, with Lebesgue measure. For the general situation, 
the reader is referred to (1 ). 
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LEMMA 1.3. Let a be an r-f unction on ty(R+), and p be defined as in (vi). Let 
v' and p denote the associates of a and p respectively. Then, 

(a) a'is an r-f unction on ^(R+). 
(b) Ifu€ ^C#+) , then 

<r(u) = sup V u*v*dm (v G $CR+), a'(v) < 1). 
V Jo 

(c) Ifu,v€ ^ ( i^ + ) , and if u** < *;**, then <r(u) < a(v). 
(d) p is a length function on ^J(S). 
(e) % a n n f ? ( 2 ) , p'(g) = a'(g*). 

Remark. Because of section (e) of the above, we denote the associate of 
X ( 2 ) by X ' ( 2 ) , rather than (X(2)) ' , since the determination of the associate 
of X ( 2 ) is independent of the nature of 2. This is in contrast to the conjugate 
of X ( 2 ) (the space of bounded linear functionals on X ( 2 ) ) , since there are 
many examples from the theory of Orlicz spaces for which X'(R) ^ (X(R))*, 
while X'([0,1]) = (X([0,1]))*. 

2. The Hilbert transform and related operators. Suppose that 
/ G $Jl(R), and t h a t / is locally integrable. The Hilbert transform of/ is defined 
by the principal-value integral given in the Introduction, whenever the 
defining limit exists a.e. In this section, we shall obtain a relationship between 
H and two operators P and Pf defined as follows: 

If u G y$(R+), then, for t > 0, 

( p w ) ( j ) = I ( u(s)ds and (P'u)(t) = f°°«(s) — , 
t Jo Jt S 

whenever the required integrals exist a.e. 
The notation [X, Y] will denote the space of bounded linear operators from 

X into Y. Also, if / , g G $ ( 2 ) , then we write 

<f,g) = fjgdti. 

THEOREM 2.1. If X and Y are rearrangement-invariant spaces, then 
H G [X{R), Y(R)} if and only if both P and P' are in [X(R+), Y(R+)]. 

LEMMA 2.2. Suppose that X and Y are as in the theorem, and that the operator S 
is defined by 

(Su) (t) = fœ f^- ds, u e m(R+), t > o, 
Jo t -\- s 

whenever this integral exists a.e. Then, H G [X(R), Y(R)] implies 

S € [X(R+), Y(R+)]. 

Proof. Let X(R+) have the r-f unction a, and Y(R+) have the r-f unction r. 
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Given u Ç X(R+), with u non-increasing, define/ on R by 

0, x > 0, 
( 1 ) / W \u(-x), x<0, 

so that f*(t) = u(t), t > 0. Then, for any x > 0, 

(2) *(#/ ) (*) = (5M) (x). 

Hence, if we define g G 9ft (P) by 

{n(Hf){x), x > 0 
( 3 ) £ ( X ) = 1 0, x < 0, 

it follows that g*(/) = (Sit)(t), t > 0, and that 

(4) \g(x)\ <T\(Hf)(pc)\, x£R. 

Thus, 

(5) \\Su\\Y(R+) = T(SU) = r(g*) = ||g||rc«) < *\\Hf\\YiR) 

< *c\\f\\x(R) = *c\\u\\xiB+) 

where c = ||if|| < °°. 
If u £ X(P + ) , but is not necessarily non-increasing, then (Su) (t) < (5^*) (/), 

by (1) of §1. Hence, since <r(u) = <r(u*), (5) implies that S 6 [X(R+), Y(R+)]. 

LEMMA 2.3. (10). Suppose that f £ 9ft (P) arcd / t o 

P / ^ O s i n r T 1 ^ < oo. 

ITzew (Hf)(x) exists a.e., and for each t > 0, 

(6) ^^^X^XVfS?)^ 
By an obvious inequality, (6) can be rewritten as 

(7) (Hf)**(t) < A • [(P + P')/**](0, 

where A = 4/7r. 
Also, the condition 5 Ç [X(P+) , F(P + ) ] , which is the conclusion of Lemma 

2.2, is easily seen to be equivalent to the condition that both P and Pr be in 
\X(R+), YÇR+)]. Finally, we observe that, for / Ç 3)(P) Pi £)(P'), 

p p y = (P + P ' ) / = p ' p / . 

(5)(P) denotes the domain of the operator T). 

LEMMA 2.4. Suppose that £)(P') D X(P+), and / t o P Ç [X, F]. Then, for all 
f e X(R), 

/* (5) sintfx - ds < 00. 
0 s 
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Proof. Since 35 (P') D X(R+), [if £ X(R), then (P'f*)(t) < °° for almost 
all t > 0. But (P'f*) is non-increasing, so 

(8) r > ( 5 ) ^ = (P'/*)(ix co. 
Since P 6 [X, F], and since 35 (P) D F(P+), by condition (iv) on the 

length function, we have 35 (P2) D X(R+). Hence, 

(9) f log]-f*(s)ds = (P2/*)(D< ». 

Combining (8) and (9), we obtain the lemma. 

Proof of Theorem 2.1. Suppose H G [X(P), F(P)] . Then, by Lemma 2.2, 
and the remarks following Lemma 2.3, P and P ' are in [X(R+), F(P+)]. 

Conversely, if P and P' are in fX(P+), F(P+)], then by Lemma 2.4, each 
/ 6 X(P) satisfies the conditions of Lemma 2.3. Thus, 35(77) D X(R), and 

(1) (Hf)**(t) <A-[(P + P')/**K0» * > 0. 

But, by remarks following Lemma 2.3, 

(2) (P + P')f* = (P + POP/* = ((P + P')/*)**. 

Hence, by Lemma 1.3(c), (1) and (2) imply that 

(3) \\(Hfr\\Y(R+) <A.\\(P + P')f*\\YiR+) < B\\f*\\x(B+h 

where B = A(\\P\\ + \\P'\\). 
Since X and F are rearrangement-invariant spaces, (3) shows that 

77 6 [X(P), F(P)] . 

3. Positive integral operators associated with H. Our goal in this 
section is to prove Theorem 3.7, which was stated in the introduction. We begin 
by considering operators T, with 35(7") C 9J?(P+), of the form 

(1) ( P / ) ( 0 = ^ a(s)f(st) ds, t>0, 

where 

®(T) = | / G 9TO(P+): fœ\a(s)\-\f(st)\ds < °° a.e. j . 

Note that P and P ' are of this form, namely 

(Pf){t) = f /(**)& and (P'/)(0 = f°°/(rf)-. 
• ' 0 %J \ S 

Define the dilation operator Es, with 35 (Es) = 2Jf(P+), by 

(E,f)(t) =f(st), se (0, «>). 

Let h(s\X, Y) denote the norm of E as a member of [X(R+), Y(R+)]. 
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From now on, whenever it is clear which 2 is meant, we shall write [X, Y] 
for [Z(S), 7 (2 ) ] . 

THEOREM 3.1. Suppose that X and Y are rearrangement-invariant spaces, and 
that T is defined by (1). Suppose that 

{œ \a(s)\h(s;X, Y) ds = 
Jo 

Then, T 6 [X, Y], with \\T\\ < c. 

Proof, (cf. 5, p. 230). 
Let g e Y', with \\g\\Y, < 1. Then 

J»oo /»co /»oo 

\g{t)\dt \a(s)\-\f(st)\ds= |o(5)|.<|E,/|,|g|><fc 
0 «'O */0 

< r\a(s)\-h(s;X,Y)\\f\\x\\g\\r,<c\\f\\x. 
J 0 

Taking the supremum in (2) over all g £ Y', \\g\\Y' < 1, noting that, for all 
such g, the left member of (2) is larger than \(Tf, g)\, we obtain | |7J | |F < c | | / | |x . 

LEMMA 3.2. 

(a) sh(s;X, Y) = h(l/s; Yf,Xf), 
(b) h{s;X, Y) is non-increasing in s, and sh(s; X, Y) is non-decreasing in s, 
(c) Ifh{s) = h(s;X, Y), then 

A (1)-min (1/5, 1) < h (s) < h(l)-max(l/s, 1). 

Proof, (a) follows from s(Esf, g) = (/, E1/8 g). 
(b) Since (£,/)* = Esf, 

h(s) = s u p | | E , / | | = sup| |E,/*| | (ll/ll < ! ) • 

But, Esf* is non-increasing in s, so that h is non-increasing. Using (a), it follows 
directly that sh(s) is non-decreasing in s. 

(c) follows directly from (b). 

LEMMA 3.3. 

(a) Suppose that T is defined as in Lemma 3.1, with a(s) > 0 for s Ç [0, oo ) 
and that T G [X, F]. Define 

A(x) = I a(s)ds. 
Jo 

Then, 

h(s;X, F) < | |r | |A4(s) / o r O 0. 

(b) If (1(5) > 0 o w a set of positive measure and T G [X, Y], then X Ç F. 
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Proof, (a) Since T 6 [X, F], with norm c for every / , g non-negative and 
non-increasing, we have 

(1 ) (Tf, g) = P g (t) dt f" a (s)f(st) ds 
•Jo t/o 

= P a ( s ) ( E ^ , g>ds<c | [ f iU | |g | | r , . Jo 

(Esf, g) is non-increasing in s, so that, if x G (0, o° ), 

(2) <E,/,g) f a ( 5 M 5 < f a(s)(E,f,g)ds 
* / 0 t / 0 

< r a ( s ) < £ , / , g ) d s < C | | / | | x | | g | | r ' . 

Taking the supremum in (2) over all g £ F ' , \\g\\Y' < 1, then over a l l / £ ^ , 
H/llx < 1> we obtain 

(3) A(x;-Y, Y) <c/A(pc). 

(b) Since a(s) > 0 on a set of positive measure, A (x0) > 0, for some 
Xo > 0. Hence, by (a), 

\\E10f\\r<c\\f\\x/A(x0). 
Thus, 

ll/Hr = | | E 1 / ï 0 E , 0 / | | r < A(lAo; Y, Y)\\Exof\\Y 

< max(io, l ) -c | | / | |xM(^o) = ^I'IL/IIX-

By the way in which X and F are defined, X Ç. Y. 
The next theorem, combined with Theorem 2.1, is practically Theorem 3.6. 

Note that we abbreviate h(s;X, X) to h(s\ X). I t is obvious that h (I ; X) = 1. 

THEOREM 3.4. Suppose that X is a rearrangement-invariant space and that 
| |P | | , | |P ' | | denote the norms of P and P' respectively, as members of [X] (i.e. 
| |P | | = œ, if P g [X]). Then, 

\\P\\< f h(s',X)ds<2V2\\P\\ 
t / 0 

and 

| | P ' | | < f ° / K s ; X ) - < 2 V 2 | | P ' | | . 

Proof. We observe that we need only prove one of the statements. For, if 
f,g 6 ?5(P+), we have <P/, g> = (/, P'g), so that | | P | | m = H P f e . And, by 
Lemma 3.2, 

f h(s;X)ds = P°/Ks;X') —. 
t /0 t / l 5 

We shall prove the second of the statements. 
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The left-hand inequality is Theorem 3.1. The right-hand inequality is 
trivial if P ' g [X]. Thus, assuming P ' Ç [X], we have (P')2 = Q £ [X], with 
\\Q\\ < c2, if c = | |P ' | | . By a simple calculation, 

(Qf)(t)= r fist)-\og s^t 
so that, by Lemma 3.3(a), we have 

(1) h(s;X) < 2||<2||/(logs)2 < 2c2/(logs)2, s > 1. 

However, h(s; X) < 1, for 5 > 1, so that 

(2) h(s;X) <min{l ,2c 2 / ( logs) 2}. 

Thus, if log a = \/2 c, then 

(3) I Hs,x)7< J 7 + J ^ 7 7 
= log a + 2c /log a = 2 A / 2 c 

This completes our proof. 

One obvious fact about h{s) we have not used is that 

h(st) < h(s)h(t), s, t > 0. 

This means that logh(s) is a subadditive function of log s, so a theorem of 
Hille and Phillips (6, p. 244) may be applied to establish the following result. 

LEMMA 3.5. Let 

a= inf —log h(s)/log s, 0 = sup —log h(s)/log 5. 
0<s<l K K c o 

Then, 0 < 0 < a < 1 and 

a = lim —log h (s) /log s, /3 = lim —log h (s) /log 5. 

I t is now easy to establish the following result: 

LEMMA 3.6. 

(a) The following conditions on h(s) are equivalent: 

(i) fh(s) ds < co. 
o 

(ii) sh(s) —> 0 as 5 —> 0 + . 
(iii) There exists an s0 £ (0, 1) swc/z //̂ a£ ^(s0) < lAo-
(iv) 77£ere a i ^ constants K > 0 awd 0 < 7 < 1 swc& ^a£ &(s) < i^s-? /or 

0 < 5 < 1. 
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(b) The following are equivalent: 

/»oo 

a) J *c s) — < oo. 
5 

(ii) h (s) —> 0 as s —» œ . 

(iii) TT^re exw/s an s0 (z (1, °° ) swc/̂  £ t o A($o) < 1. 
(iv) TTzere a w / constants K > 0 awd 0 < 7 < 1 swc& ^ a / A (5) < i£s~7 /o r 

1 < 5 < 00. 

Proof, (a) Let a be as in Lemma 3.5, and for each e > 0, let <r(e) be such 
t ha t 5 G (0, o-(e)) implies 

a < — log h(s)/log s < a + 2 , 

so t ha t 

<ra < A (5) < 5 - a " s for 5 6 (0, a(e)) . 

(i) implies (iii) trivially. 
(iii) implies (iv) ; for if (iii) holds, then a < 1, so for some e > 0 , a + e < 1, 

and (iv) holds with 7 = a + e and K = [a(e)]~a~e. 
(iv) implies (ii) trivially, 
(ii) implies (i) ; for if (ii) holds then a < 1, and with e as above, 

J»(r(c) /»<r(e) 

h(s) ds < I 5~ a _ c ds < 00 , 
0 «^ 0 so t h a t (i) holds. 

T h e proof of (b) is entirely similar. 

T H E O R E M 3.7. Let X be a rearrangement-invariant space. Then H Ç [X(R)] if 
and only if 

(i) sh(s; X) —> 0 as s —> 0 + awd 
(ii) /z. (5 ; X) —» 0 as 5 —> 00 . 

Proo/. By Theorem 2.1 , I f G [ X ( P ) ] if and only if P and P ' are both in 
[X(R+)]. By Theorem 3.4, this is equivalent to 

/»1 />oo 

I h(s)ds < 00 and I A(5) 
ds 
— < 0 0 . 

By Lemma 3.6, this last is equivalent to sh(s) —> 0, as s —» 0 + , and h(s) —* 0, 
a s s —> 00 . 

Remark. T h e conditions (i) and (ii) on h(s; X) may be replaced by any pair 
of the equivalent conditions given in Lemma 3.6. T h e form of the theorem we 
shall most often use replaces (i) and (ii) by the condition t h a t there exist 
So > 1 such t h a t h(s0\X) < 1 and h(s0'}X') < 1. 
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4. The Lorentz spaces. The spaces to be discussed here were defined in (7). 
Suppose that <f> £ ty(R+) is non-increasing, and that 

$ (0 = I 4(s)ds < œ for* < 

The space A(<£, p) is defined by the length function 

( f00 "I 1/p 

*p(u) = \ Jo <Kt)[u*(f)]Pdtf , p>l. 

The associate of A(<£, 1) = A(<£), is denoted M(</>), and has the length function 

<r'(u) = sup ") I w*(/)<fc / $00 f . 
Note that if <j> is identically 1, then A(<j), p) = ZA 
Before calculating h(s) for these spaces, we note that it is easily proved that 

h(s;Ab4>,p)) = [h(s; A(4>))Y'*, p > 1. 

Also, Af (<£) is the associate of A($) so that 

*(*; A(*)) = A(1A;M(0))A; 

so we need only derive h(s) for the space M(<f>). 

THEOREM 4.1. Define N(s) by 

N(s) = sup $(t)/$(st), s > 0. 

Then 
h(s; A(4>,p)) = N(sy», h(s;M(t)) = (l/s)N(l/s). 

Proof. L e t / 6 M{^>), with | | / | | < 1, so that 

(1) f f*(x)dx< $(0-
Hence, 

(2) f ÇEsf)*(x)dx= f f*(sx)dx 

i r* i 
W o 5 ' 0 

from (1). However, by definition of N, $(st) < $(t) -N(l/s). Substituting this 
in (2) and using the definition of the norm in M(<f>), we obtain 

\\EJ\\ < (l/s)N(l/s). 

However, if we le t / = <£, which has norm 1, equality holds throughout in (2), 
and in fact, 

\\Esd>\\ = (l/s)N(l/s). 

Hence, h(s-, M(<j>)) = (l/s)-N(l/s), and the remainder of the theorem 
follows as in the preceding remarks. 
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Examples. I t is shown in (4) that, for p > 1, A(</>, p)(R) is reflexive if and 
only if 0 € L 1 ^ 4 " ) , and that A($) and M(<j>) are never reflexive. In fact, 
M{4>) is non-separable. 

If we take <j>(t) = ta~\ for 0 < a < 1, then iV(s) = <ra. Hence H G [A(0)] 
and H G [ikf (<̂ >)], so that neither reflexivity nor separability of X is necessary 
for if G [X]. 

Taking <£(/) = (1 + Z)"1, iV(s) = max(l/5, 1), so that H G [A(0, />)]; but 
A(<£, £>) is reflexive if p > 1. Hence, reflexivity is insufficient for H G [X]. 

Because of the last example, the following result would seem to be welcome. 

THEOREM 4.2. If 1 < p < oo then H G A(<£, £) if and only if A(<£, £) is 
uniformly convex. 

LEMMA 4.3 (Halperin). The space A(<£, p)(H) where M(2) = œ, 1 < £ < oo, 
is uniformly convex if and only if 

sup $(0/*(2f) < 1. 

Proof. See (3). 

LEMMA 4.4. If N(s) is defined as in Theorem 4.1, then either N(s) < 1 for all 
s > 1, or else N(s) = 1 /or a// s > 1. 

Proof. Suppose that there is an s0 > 1 such that N(s0) = 1. Let 

S! = sup{s: N(s) = 1} > 1. 

We may assume Si < oo. Define 5 = (2s i + l ) / 3 so that 5 G (1, s{) and 
N(s) = 1. There exists a sequence of values of t for which 

(1) 1 = N(s) = lim $ (0 /* ( r f ) , 

and thus 

(2) lim [$($*) - $ ( 0 ]/$(*) = 0. 

Since <£ is non-increasing, if we let sf = 2s — 1, we have 

Ji ( 2 s - 1 ) * 

<j>(u)du < (s - l)t-(l>(st) 
st 

s*st 

< I <t>(u) dw = $(50 - <£(/). 

Thus 

o < [$0'0 - $o>0]/$(0 < [$00 - $(*) ]/$(*) ->o. 
Hence iV(V) = 1 because 

H m $ ( s ' 0 / $ ( 0 = \\m$(st)/$(t) = 1. 

However, 5' = 2s — 1 > su which contradicts the choice of Si. 

Proof of Theorem 4.2. We have H G [A(<£, p)] if and only if P and P ' are in 
[A(0, £>)]. For any 0, we have P G [A(<£, £)] for £ > 1. For 

N(s) = h(s;A(<j>)) < max(l/<>, 1), 
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by Lemma 3.2. Thus, h(s; Afo,£)) < max(lA1/2?, 1), so that 

J h(s) ds < oo, 
o 

so that P £ [A(0, £)], by Theorem 3.4. 
Suppose that A(0, p) is uniformly convex. Then by Lemma 4.3, N(2) < 1, 

so by Lemma 3.7 and Theorem 3.4, P' £ [A(<£, £)]. 
Conversely, suppose that P ' Ç [A(<£, £)]. Then, by the above-mentioned 

results, there exists an s0 > 1 such that 

N(sQ) = h(s0; A(4>,p))*< 1. 

By Lemma 4.4, this implies that N(2) < 1, and so by Lemma 4.3, A(</>, p) is 
uniformly convex. 

5. The Orlicz spaces. In this section, we calculate h(s ; X) whenever X is 
an Orlicz space. The definition of Orlicz space which is used here is that given 
in (9). This definition includes the spaces L1 and L°° as wrell as Lp, for 
1 < p < oo. 

Definition 5.1. Let 0 be a non-decreasing function on fO, oo), continuous on 
the right, and for which <£(0) = 0. Denote its left-continuous inverse by \f/ and 
write 

/ » « f*U 

$00 = <l>(t)dt, V(u) = t(t)dt, z* > 0. 
Jo Jo 

Then <£ and ^ are called complementary Young's functions. 

It is possible that ^ is infinite for all v > b, where b is some finite number. 
By definition, $ and ^ are convex wherever finite. 

Define the functional My on SDÎ(S) by 

(1) M*(f)= ( *(\f(*)\Mdx) = r*(J*(t))dt. 

I f / 6 $ ( 2 ) , let 

p s ( / ) = in f{ . :M,( /A) < 1 } . 

By (9), ps is a length function. Since ps(/) = pR+(f*), ps is also an r-function. 
The space corresponding to ps is denoted LM<%, and its dual is called Z$. 

Similarly, LM$ and L^ are defined. The following is proved in (9): 

H/IU*<||/||*<2||/|U. 

Because of this, if H is a bounded operator from any one of the four Orlicz 
spaces to itself, then this is true for all the spaces. 

We need the following definition before deriving an expression for h(s; X). 
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Definition 5.2. Suppose that $ is a function from [0, oo ) to [0, co ], and that 
there are numbers a G [0, oo), 6 G (0, <»], with a < 6, such that 

(0, i f / e F0,a], 
* w \«o , iff 6 [b, » ) , 

and $ is non-decreasing in [a, i ] . Define a function i£ from [0, <» ) to [0, °° ], by 

X(s) = 

sup $(st)/$(t) iî a 9* band s£ [0, 1], 
r€(o,6) 

0 i f 0 < a = & < o o , 
sup $(st)/$(t) if a = 0, & = oo , and 5 £ (1, œ ), 

*€(0,oo) 

oo i f a ^ O o r ^ ^ o o . 

We call X the upper quotient function of <J>. 

Remarks. If a ^ 6, 5 G [0, 1], and £ 6 (0, oo), then 

$(5/) < K(s)$(t). 

Also, if $ is continuous whenever finite, then K is continuous on the left 
wherever finite. 

Note that even when a = 0 and b = °° , K (s) is either finite for all 5 G (1, oo ) 
or infinite for all 5 G (1, °°). 

The next theorem seems to have intrinsic interest apart from its use here. 
If all the inverses appearing were strict, the result would be almost obvious. 

THEOREM 5.3. Suppose that <ï> is as described in Definition 5.2 and further 
that <ï> is strictly increasing and continuous in [a, b]. Let $ _ 1 be the right continuous 
inverse of $, and define 

G(s) = inf ^-\st)/^-\t). 

Let K be as in Definition 5.2 and let K~l be the right-continuous inverse of K. 
Then, for all s G [0, oo ), 

G (s) = K-i(s). 

Proof. Note that G is right-continuous; let G~l be its left-continuous inverse. 
The following are easily verified: 

(1) (KoK-i)(s) <s< (K-ioK)(s), 

(2) (G-1oG)(s) <s < ( G o G - O W . 

We shall give the proof when a = 0, b = oo so that $> maps [0, oo ) one-one 
onto itself. We assume further that 5 G [0,1]. The remaining cases are handled 
in the same way, requiring slightly more care. 

Let I = [0, 1]. Then each of K, K~l, G, G~l maps I into I. 
From 

<&(st) < K(s)$(t), s G I, t > 0, 
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it follows that 

$(K-i(s)t) < K(K~Hs))*(t) < s*(t), by (1). 

Hence, since $ _ 1 is a strict inverse and is increasing, 

(3) K~1(s)t < Q-^s&it)). 

By the definition of G, given s e I, and e > 0, there exists 

k = t0(s,e) 6 (0, oo ) 
such that 

Q-^sto) < (G(s) +e)$-i(t0). 

The range of <£ contains to so that /0 = $(h) for some t\ G (0, oo ) and hence 

(4) *rHs*(ti)) < (G(s) + e)$-i($(h)). 

Combining (3) and (4), we obtain 

K-i(s)h < S"1 (**&)) < (G(s) + e)h; 

so, since h > 0, and e > 0 is arbitrary, 

(5) K~i(s) <G(s), s e I. 

Now, we apply analogous steps starting with G, to obtain (in place of (3)), 

(6) QisQ-^t)) < G-1^, s e I, t > 0. 

By definition of K, given s e I, e > 0, there exists t\ = ti(s, e) such that 
(in place of (4)), 

(7) (K(s) - e)h< *(s^(h)). 

Combining (6) and (7), we obtain 

(8) K(s)<G-i(s), se I 

and hence 

(9) K-i(s)>G(s), se I. 

Together, (5) and (9) show that G = K~l for s e L 

COROLLARY 5.4. If G is as in Theorem 5.3, then 

$(G(s)t) < s$(t) for all s, t > 0. 

The proof follows directly from Theorem 5.3, and equation (1) of its proof, 
once it is noticed that, if a > 0, or b < oo in the definition of $, then G(s) < 1 
for all s. 

THEOREM 5.5. The function h{- ; X) for the Orlicz spaces is given by: 

h(s;LM*) = l/K-i(s) 

where K is as in Theorem 5.3. 
Also 

h(s;L$) = (l/s)'h(l/s;LM*). 
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Proof. Suppose that/ 6 L$ with ||/|| = 1. Then 

(1) M*(J) = P Hf*(tW = 1 
Jo 

so that 

(2) M*(G(s) -E J) = p *(G(s)/*(rf)) * 

= r*(G(s)/*(0)7 (st-^t) 
Jo s 

J'°° /// 

5 $ ( / * ( 0 ) ~ , by Corollary 5.4, 
o 5 

= M9(f) = 1. 
Hence, by definition of the norm, 

(3) P./H < 1/G(s), 

so that A (5; Z,M$) < 1/G(s). 
However, if we t a k e / to be the characteristic function of the interval [0, t], 

we have | | / | | = l/Qr^l/t) so that 

(4) sup |.r|| = sup x( -~r = sup -7=17-7: = 7Tf-T . 

Hence, equality holds in (3), proving the required result upon application of 
Theorem 5.3 and Lemma 3.2(a). 

The conditions under which L$(2) (hence LM$, Z*, LM^) is reflexive have 
been given in (9). The criterion differs depending on the nature of 2, and is 
simpler if /x(S) < 00 or if 2 is purely atomic. 

Definition 5.6. $ is said to satisfy the (<52, A2) condition, if and only if there 
exists a constant m > 0 such that 

$(2v) < ra <£(*>) for all A > 0. 

LEMMA 5.7 (9). Let L$ denote Z$(S) where M ( 2 ) = °° and 2 /zas no atoms. 
Then L$* = LM* if and only if $ satisfies (ô2, A2). £$ is reflexive if and only if 
both <ï> and ^ satisfy (<52, A2). 

THEOREM 5.8. H £ [L$(R)] if and only if L$(R) is reflexive. 

LEMMA 5.9. <£ satisfies (5 2, A2) if and only if there exists an s0 > 1 5wcfe /Aa£ 
h(s0;LMq>) < 1. 

Proof. Let a and 6 be as in Theorem 5.3. 
If a > 0, or 6 < 00, then it is easily checked that $ cannot have property 

(<52, A2). In this case, K(s) = 00, for 5 > 1 so that 

h(s;LM(S,) = 1/K~l(s) = 1 for 5 > 1. 
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Conversely, if h(s;LM$) = 1, for all 5 > 1, then K(2) = oo, proving that $ 
does not have property (<52, A2). 

If a = 0, b = oo and if $ has property (<52, A2), then K(2) < w, by Defini­
tion 5.6 so that K(2n) < mn < co for any integer n so that if (5) < 00 for all 
5 > 1. Thus there exists s0 > 1 with i£_1(so) > 1 and hence such that 
h(s0; LM$) < 1. 

Conversely, if h(s0; LM$) < 1, then K(s) <*> îor s > 1, and in particular 
K{2) < 00, so that $ satisfies (<52, A2). 

Proof of Theorem 5.8. We have H G [L$(R)] if and only if both P and P' are 
in [L$(R+)]. Also P G [L$] if and only if P' G [ L ^ ] since LM* and Z,$ are 
associates. And P' G [L$] if and only if P' G [L¥$], since LM$ and Z$ are 
equivalent spaces. 

However P' G [LM$] if and only if h(so;LM$) < 1 for some s0 > 1, by 
Lemma 3.7 and Theorem 3.4. And by Lemma 5.9, this is true if and only if 
$ satisfies the condition (<52, A2). Similarly, P' G [LMy] if and only if SI> 
satisfies (52, A2). 

Combining these results we obtain that H G [L$(R)] if and only if both $ 
and ^ satisfy (52, A2) which is true if and only if L$(R) is reflexive, by Lemma 
5.7. This completes our proof. 

By remarks made earlier, Theorem 5.8 is true if Z$ is replaced by any of the 
other Orlicz spaces. 

A result analogous to Theorem 5.8 has been obtained by Ryan (11) for the 
"conjugate function" operator. The method used was quite different. 

6. Further results. By using an inequality of Calderôn, it is possible to 
prove the following theorem by methods similar to those used in §3. This is, 
in essence, an interpolation theorem. The connection between some of the 
ideas developed in this paper and the theory of interpolation spaces may be 
found in (1). 

THEOREM 6.1. Let 2 be a totally a-finite measure space. Suppose that T is a 
linear operator with S)(r) Z5 Lv (11) for I < p < 00 and that T G [Lp(2)]for all p 
satisfying 1 < p < 00. 

Let X be a rearrangement-invariant space for which 
(i) sh{s\X) - > 0 a s s - > 0 + , 

(ii) h(s;X) -> 0 as s -> œ. 
Then £)(70 D X ( 2 ) and T G [X(2)]. 

The statement of Theorem 6.1 can be strengthened. It is possible to allow 
T to be "quasilinear," and to require only that T be of "weak type" (p, p), 
for 1 < p < 00. 

The conditions on h(s; X) are necessary in general, since they are necessary 
for H G [X(R)]j and H satisfies the other conditions of the theorem. 
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Theorem 6.1 is, in particular, applicable to the singular integral operators of 
Calderon and Zygmund. 

It is possible to characterize the functions which may appear in the form 
h(s; X) in the following sense: 

THEOREM 6.2. Suppose that g is any function on (0, œ ) which satisfies the 
following conditions: 

(a) g(s) > OforO < s < oo, 
(b) g(st) < g(s)g(t): 

(c) g is non-in creasing and sg(s) is non-decreasing, 

(d) «(1) = 1. 
Then there is a rearrangement-invariant space X for which 

g(s) =h(s;X). 

Proof. Consider the following function on $(i?+): 

p(/) = supg(l / / ) - /**(0. 

Because of the subadditive property of the ** mapping, it is easy to verify 
that p is a length function which is obviously rearrangement-invariant. Let 
X be the space defined by this length function; then h(s;X) = g(s). For if 
/ <G X, then, using (b), 

p(E8f) = sup g (1 A)/** (st) = sup g (s/t)f* (0 

<g(s) • sup g(l/t)f*(t) = g(s) -p(f). 

But if / is the characteristic function of the interval [0, t], then it is easy to 
verify, using (c), that 

P(/) = g(V0. 
Hence, p(Esf)/p(f) = g(s/t)/g(l/t) which is equal to g(s) for t = 1. 
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