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Abstract Let Ω be the closure of a bounded open set in Rd, and, for a sufficiently large integer κ, let
f ∈ Cκ(Ω) be a real-valued ‘bump’ function, i.e. supp(f) ⊂ int(Ω). First, for each h > 0, we construct
a surface spline function σh whose centres are the vertices of the grid Vh = Ω ∩ hZd, such that σh
approximates f uniformly over Ω with the maximal asymptotic accuracy rate for h → 0. Second, if
`1, `2, . . . , `n are the Lagrange functions for surface spline interpolation on the grid Vh, we prove that
maxx∈Ω

∑n
j=1 `

2
j (x) is bounded above independently of the mesh-size h. An interesting consequence of

these two results for the case of interpolation on Vh to the values of a bump data function f is obtained
by means of the Lebesgue inequality.
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1. Introduction

Surface spline interpolation belongs to the class of radial basis function methods for
multivariable approximation. Let d be a positive integer and let Ω be the closure of a
bounded open set in Rd. In order to describe the surface spline method for interpolation
at the vertices of the uniform d-dimensional grid Vh = Ω ∩ hZd of mesh-size h > 0,
we denote the elements of Vh by hz1, hz2, . . . , hzn, where {z1, z2, . . . , zn} ⊂ Zd. Notice
that n = O(h−d), as h → 0. For any real parameter γ > 0, define the basis function
φ : [0,∞)→ R by the formula

φ(r) =

{
rγ , if γ 6∈ 2N,
rγ ln r, if γ ∈ 2N,

(1.1)

and let m be the integer part of γ/2. Further, let Πd
m be the space of polynomials on

Rd of total degree not exceeding m, let N = dimΠd
m = (d + m)!/(d!m!), and denote

by {P1, P2, . . . , PN} the monomial basis of Πd
m. We also let Sh be the linear space of

functions s of the form

s(x) =
n∑
j=1

cjφ(‖x− hzj‖) +
N∑
l=1

cn+lPl(x), x ∈ Rd, (1.2)
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where ‖ · ‖ is the Euclidean norm on Rd and the first n real coefficients c1, c2, . . . , cn+N

satisfy the constraints

n∑
j=1

cjPl(hzj) = 0, l = 1, 2, . . . , N. (1.3)

Given any arbitrary function f : Ω → R, it is known that, for each sufficiently small
h, there exists a unique sh ∈ Sh satisfying

sh(hzk) = f(hzk), k = 1, 2, . . . , n. (1.4)

Moreover, this statement remains true if, in the definition of Sh, the place of Πd
m is taken

by any other polynomial space Πd
k with k > m. It has become customary to call sh the

surface spline interpolant to the values of f at the vertices of the finite uniform grid Vh.
For every parameter γ > 0, the existence and uniqueness of the surface spline inter-

polant has been established theoretically by Duchon [6] in the general case of scat-
tered interpolation points, using a variational approach. (In the scattered data case, h
is replaced by the Hausdorff distance between the set of interpolation points and the
domain Ω.) The same result also follows from the work of Micchelli [18], whose argu-
ments apply to any basis function φ for which the derivative of order m+1 of the function
ψ := φ(

√·) is strictly completely monotonic, i.e. (−1)kψ(k+m+1)(r) > 0, ∀r > 0, ∀k ∈ N.
As a consequence of this existence and uniqueness result, for each j = 1, 2, . . . , n, there
exists a unique function `j ∈ Sh satisfying the Lagrange conditions

`j(hzk) = δkj , k = 1, 2, . . . , n, (1.5)

where δkj is the Kronecker delta. Thus we have the following Lagrange representation
formula for the surface spline interpolant sh to the values of f at the vertices of Vh:

sh(x) =
n∑
j=1

f(hzj)`j(x), x ∈ Rd. (1.6)

Note that each `j depends on Ω, γ and h.
A basic problem from the point of view of approximation theory is to study the accu-

racy to which sh approximates f over Ω when h→ 0, under various smoothness assump-
tions on f . This problem and its version for scattered interpolation points have been
investigated by Duchon [7], Arcangéli and Rabut [1], Madych and Nelson [14], Wu and
Schaback [27], Powell [22], Matveev [16], Light and Wayne [13], Schaback [24,25] and
Johnson [9–12], who estimated the dependence on h of the error (or of some of its deriva-
tives) in the uniform or Lp-norm (1 6 p <∞) over the domain Ω. Further, Matveev [17]
and Bejancu [2,3] proved that the decay of the error as h→ 0 is significantly faster over
a compact subset K of the interior of Ω. Specifically, for any sufficiently differentiable
function f , we have

max
x∈K
|f(x)− sh(x)| = O(hγ+d), as h→ 0, (1.7)
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Table 1. Values of the error |(gp − sh)( 1
2h)| for d = 1, γ = 2

h−1 p = 4 p = 5

16 0.000 526 48 0.000 292 67
32 0.000 213 51 0.000 119 37
64 0.000 079 59 0.000 044 45

128 0.000 028 79 0.000 016 07
256 0.000 010 29 0.000 005 74

which matches the maximal convergence rate over Rd obtained by Buhmann [5] and
Powell [21, Theorem 8.5] in the ideal case of interpolation on the infinite grid hZd.

In the present paper, we assume that f is a ‘bump’ function, i.e. f is non-zero only on a
compact subset of the interior of Ω. Under this hypothesis, a natural question is whether
the decay rate hγ+d of (1.7) can also be attained by the uniform error maxx∈Ω |f(x) −
sh(x)|.

We can check numerically that the answer to this question is negative for d = 1 and
γ = 2 (in which case φ(r) = r2 ln r, m = 1 and N = dimΠ1

1 = 2). Indeed, let Ω = [0, 1],
h := 1/(n− 1), n ∈ {2, 3, . . . }, and, for each positive integer p, define the product

gp(x) = 10p+1[max{0, x− 1
4}]p[max{0, 3

4 − x}]p, x ∈ [0, 1]. (1.8)

Thus gp ∈ Cp−1(Ω) and supp(gp) = [1
4 ,

3
4 ]. We choose the data function f := gp and we

estimate the magnitude of the uniform error over Ω by evaluating the error function
eh := |gp − sh| at x = 1

2h. The coefficients of the representation of type (1.2) of sh
are computed by solving the (n + 2) × (n + 2) system given by (1.3) and (1.4). For
p ∈ {4, 5}, Table 1 shows that eh( 1

2h) is reduced by a factor of approximately 2
√

2
when h−1 doubles, which corresponds to a decay of magnitude h3/2. It can also be
checked that the same rate of decay is usual for larger values of p or even for C∞ bump
functions f .

However, the univariate natural spline case (d = 1, γ ∈ 2N+ 1) shows that a positive
answer to the question above is sometimes possible. Much insight has been obtained
recently by Johnson [11] for the multivariable case in which γ is a positive integer such
that γ + d is even, and for the version of the surface spline interpolation method that
uses Πd

(γ+d)/2−1 instead of Πd
m in the definition of Sh. His approach is based on the best

approximation property that characterizes the surface spline interpolant in the variational
framework of Duchon. When applied to the uniform norm of the error and to the grid of
interpolation points Ω ∩ hZd, Johnson’s results imply

max
x∈Ω
|f(x)− sh(x)| = O(hγ+d/2), as h→ 0, (1.9)

for a sufficiently differentiable bump function f .
In § 2 we prove, under the same restriction on γ and d, that the maximal rate O(hγ+d)

can hold uniformly over Ω for bump data functions if interpolation is replaced by approx-
imation with a suitably constructed element of Sh (cf. Theorem 2.1). On the other hand,
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there are no restrictions on γ or d in the main result of § 3, which states that the expres-
sion maxx∈Ω

∑n
j=1 `

2
j (x) is bounded from above independently of the mesh-size h (cf.

Theorem 3.1). As a consequence, we obtain a new proof of the convergence rate (1.9)
via the Lebesgue inequality (cf. Corollary 3.4). Furthermore, our approach shows that
the order of convergence (1.9) may be improved to the maximal one O(hγ+d), provided
that the Lebesgue constant of the surface spline interpolation operator admits an upper
bound that is independent of h. This conjecture, which is a topic of current research for
the author, is based on encouraging numerical evidence (cf. Remark 3.6).

1.1. Notation

‖ · ‖ is the Euclidean norm on Rd, xTy denotes the dot product of two vectors x and y
in Rd, i is the usual root of −1, and exp(·) is the complex exponential function of base e.
Also, const.(α, β, . . . ) is a generic notation for various constants which depend only on
the indicated arguments α, β, etc.

2. Approximation of maximal order

In this section we work under the assumption that γ + d is a positive even integer and
we relate the error of surface spline interpolation on the finite grid Ω ∩ hZd to the error
of interpolation on the infinite grid hZd.

Multivariable interpolation on the cardinal grid Zd by means of a basis function of the
form (1.1) in the case when γ+d is even has been considered by Madych and Nelson [15],
extending the univariate cardinal spline theory of Schoenberg [26]. In the following, we
need a basic result from [15], namely the existence of a unique set {µz : z ∈ Zd} of real
coefficients that satisfy

|µz| 6 A exp(−a‖z‖), ∀z ∈ Zd, (2.1)

for some positive constants A and a, such that the function χ : Rd → R,

χ(x) =
∑
z∈Zd

µzφ(‖x− z‖), x ∈ Rd, (2.2)

which is defined by an absolutely and uniformly convergent series on any compact subset
of Rd, achieves the Lagrange conditions χ(0) = 1 and χ(z) = 0 for z ∈ Zd \ 0. In
addition, the cardinal function χ has the property |χ(x)| 6 B exp(−b‖x‖), ∀x ∈ Rd, for
some positive constants B and b.

A comprehensive treatment of multivariable cardinal interpolation with radial basis
functions has been given by Buhmann [4,5], whose theory applies to virtually all of the
radial basis functions that are in current use. For example, if the parameter γ > 0 in (1.1)
is not a positive integer of the parity of d, Buhmann established that the corresponding
coefficients µz, z ∈ Zd, of the cardinal function χ decay at least as fast as O(‖z‖−(γ+2d)),
for large ‖z‖. He went further to consider interpolation at the vertices of the scaled grid
hZd (h > 0) and, based on polynomial reproduction properties, to derive convergence
orders for such a scheme when h → 0. In the particular case when the parameter γ of
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(1.1) is a positive integer of the same parity as d, Buhmann’s results imply that, for any
function f∗ ∈ Cγ+d(Rd) whose partial derivatives of order γ + d are bounded, the sum

Ihf
∗(x) :=

∑
ζ∈Zd

f∗(hζ)χ(h−1x− ζ), x ∈ Rd, (2.3)

which is absolutely and uniformly convergent in every compact subset of Rd, provides
not only the interpolation conditions

Ihf
∗(hz) = f∗(hz), ∀z ∈ Zd, (2.4)

but also the approximation property

max
x∈Rd

|f∗(x)− Ihf∗(x)| 6 const.(f∗, γ)hγ+d, as h→ 0. (2.5)

To return to the case of surface spline interpolation on a finite grid, we let Ω be the
closure of a bounded open set in Rd (note that no boundary conditions are imposed on
the domain Ω in this section). For a fixed parameter γ > 0 and for each h > 0, recall
that Sh is the linear space of surface spline functions of the form (1.2)–(1.3) associated
with the grid Ω ∩ hZd.

Theorem 2.1. Assume that γ + d is a positive even integer and let f ∈ Cγ+d(Ω) be
a bump data function, i.e. supp(f) = K, for some compact set K ⊂ int(Ω). Then, for
every sufficiently small h, there exists a surface spline approximant σh ∈ Sh, such that

max
x∈Ω
|f(x)− σh(x)| 6 const.(f, γ,Ω)hγ+d, as h→ 0. (2.6)

Proof. We construct σh by using the above interpolant Ihf∗ to f∗ on the infinite grid
hZd, where f∗ ∈ Cγ+d(Rd) is the trivial extension of f to Rd which takes the constant
value zero outside Ω. Since supp(f) = K, equation (2.3) becomes

Ihf
∗(x) =

∑
ζ∈Zd∩h−1K

f(hζ)χ(h−1x− ζ), x ∈ Rd. (2.7)

Before using (2.2) to substitute the corresponding series for χ(h−1x − ζ) into (2.7), we
observe that, for any z ∈ Zd, we have

φ(‖h−1x− z‖) =

{
h−γφ(‖x− hz‖), if γ is odd,

h−γφ(‖x− hz‖)− (h−γ lnh)‖x− hz‖γ , if γ is even.
(2.8)

Further, when γ is even, we use the ‘moment’ properties of the coefficients µz, z ∈ Zd
(cf. Buhmann [5, p. 245]), namely∑

z∈Zd
µzp(z) = 0, p ∈ Πd

d+γ−1, (2.9)

to deduce ∑
z∈Zd

µz‖x− hz‖γ = 0. (2.10)
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Consequently, for any positive integers γ, d which have the same parity and for any
ζ ∈ Zd, (2.2) provides

χ(h−1x− ζ) =
∑
z∈Zd

µzφ(‖h−1x− ζ − z‖)

=
∑
z∈Zd

h−γµz−ζφ(‖x− hz‖), x ∈ Rd. (2.11)

Since the index set Zd ∩ h−1K of the sum in (2.7) is finite, we may make the change in
the order of summation that provides the formula

Ihf
∗(x) =

∑
ζ∈Zd∩h−1K

f(hζ)
∑
z∈Zd

h−γµz−ζφ(‖x− hz‖)

=
∑
z∈Zd

νzφ(‖x− hz‖), (2.12)

where
νz := h−γ

∑
ζ∈Zd∩h−1K

f(hζ)µz−ζ , z ∈ Zd. (2.13)

The series on the last line of (2.12) is absolutely convergent for any x ∈ Rd, because it is
a finite sum of absolutely convergent series. Note that the coefficients νz, z ∈ Zd, depend
on h. We now write Ihf∗(x) as

Ihf
∗(x) = IΩh f

∗(x) +
∑

z∈Zd\h−1Ω

νzφ(‖x− hz‖), (2.14)

where the truncation operator IΩh is defined by

IΩh f
∗(x) :=

∑
z∈Zd∩h−1Ω

νzφ(‖x− hz‖), x ∈ Rd, (2.15)

and we seek to modify IΩh f
∗ in order to obtain the required approximant σh. First,

however, we estimate the difference Ihf∗ − IΩh f∗.
Lemma 2.2. The hypotheses of Theorem 2.1 imply the condition

max
x∈Ω
|Ihf∗(x)− IΩh f∗(x)| 6 const.(f, γ,Ω)hγ+d, as h→ 0. (2.16)

Proof. The essential ingredient is the exponential decay (2.1) of the coefficients µz,
z ∈ Zd, of the cardinal function χ, which holds only when γ and d are positive integers
of the same parity. As a consequence of this property, for any positive integer p, we have

|µz| 6 const.(d, γ, p)‖z‖−p, ∀z ∈ Zd \ 0. (2.17)

We will choose a suitable value of p later in the proof, and until then we shall work with
some large enough value of p.
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Let z be any element of Zd\h−1Ω. Using (2.13), (2.17) and the fact that, asymptotically
for h→ 0, the set Zd ∩ h−1K has O(h−d) elements, we find the estimate

|νz| 6 h−γ
∑

ζ∈Zd∩h−1K

|f(hζ)| |µz−ζ |

6 const.(d, γ, p)h−γ max
y∈K
|f(y)|

∑
ζ∈Zd∩h−1K

‖z − ζ‖−p

6 const.(f, d, γ, p)h−d−γ max
ζ∈Zd∩h−1K

‖z − ζ‖−p

6 const.(f, d, γ, p)h−d−γdE(z, h−1K)−p, (2.18)

where dE(z, h−1K) denotes the Euclidean distance from z to the set h−1K. Therefore,
the sum of expression (2.14) satisfies∣∣∣∣ ∑

z∈Zd\h−1Ω

νzφ(‖x− hz‖)
∣∣∣∣

6 const.(f, d, γ, p)
∑

z∈Zd\h−1Ω

h−d−γ
|φ(‖x− hz‖)|
dE(z, h−1K)p

6 const.(f, d, γ, p)h−d−γ
∑

z∈Zd\h−1Ω

1 + |φ(‖x‖)|+ |φ(‖hz‖)|
dE(z, h−1K)p

,

(2.19)

where we have used the inequality

φ(‖x− y‖) 6 const.(d, γ)(1 + |φ(‖x‖)|+ |φ(‖y‖)|), ∀x, y ∈ Rd. (2.20)

The term |φ(‖x‖)| that appears in the numerators of (2.19) is bounded above for x ∈ Ω
by a constant that depends on Ω.

To estimate the term |φ(‖hz‖)| of (2.19), it is sufficient to assume h < 1. Consider first
the case when γ is even. Since h < 1, we have h| lnh| < 1. Further, lnh and ln ‖z‖ have
opposite signs and ln ‖z‖ < ‖z‖ for z ∈ Zd \ 0. Therefore

|φ(‖hz‖)| = hγ‖z‖γ | lnh+ ln ‖z‖| 6 hγ−1‖z‖γ+1, ∀z ∈ Zd. (2.21)

When γ is odd, we also have |φ(‖hz‖)| = hγ‖z‖γ 6 hγ−1‖z‖γ+1, for all z ∈ Zd. It follows
that, irrespective of the parity of γ, the term |φ(‖hz‖)| of each numerator of (2.19) is
bounded by

|φ(‖hz‖)| 6 hγ−1‖z‖γ+1. (2.22)

Moreover, for any z ∈ Zd \ h−1Ω, there exists uz ∈ h−1K such that dE(z, h−1K) =
‖z−uz‖. Let δ = dE(∂Ω,K) > 0 be the Euclidean distance between K and the boundary
∂Ω of Ω. Since h−1δ 6 dE(z, h−1K) for z ∈ Zd \ h−1Ω, we have

‖z‖ 6 ‖z − uz‖+ ‖uz‖
6 dE(z, h−1K) + const.(K)h−1

6 (1 + const.(K)δ−1)dE(z, h−1K), ∀z ∈ Zd \ h−1Ω. (2.23)
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Using (2.22) and (2.23) to bound the last sum in (2.19), we obtain∣∣∣∣ ∑
z∈Zd\h−1Ω

νzφ(‖x− hz‖)
∣∣∣∣

6 const.(f, γ,Ω, p)h−d−γ
∑

z∈Zd\h−1Ω

1 + hγ−1dE(z, h−1K)γ+1

dE(z, h−1K)p

6 const.(f, γ,Ω, p)h−d−γ
∑

z∈Zd\h−1Ω

1
dE(z, h−1K)p

+ const.(f, γ,Ω, p)h−d−1
∑

z∈Zd\h−1Ω

1
dE(z, h−1K)p−γ−1 .

(2.24)

Furthermore, since (2.23) and the inequality h−1δ 6 dE(z, h−1K) imply ‖z‖ + h−1δ 6
const.(Ω,K)dE(z, h−1K) for z ∈ Zd \ h−1Ω, we have∑

z∈Zd\h−1Ω

1
dE(z, h−1K)p

6 const.(Ω,K)
∑
z∈Zd

1
(‖z‖+ h−1δ)p

6 const.(Ω,K, p)
∫
Rd

dt
(‖t‖+ h−1δ)p

= const.(Ω,K, p)
∫ ∞
s=h−1δ

ds
sp−d+1

= const.(Ω,K, p)hp−d. (2.25)

From (2.14), (2.24) and (2.25), we obtain

max
x∈Ω
|Ihf∗(x)− IΩh f∗(x)| 6 const.(f, γ,Ω, p)(hp−2d−γ + chp−2d−γ−2)

6 const.(f, γ,Ω)hd+γ , (2.26)

by choosing the value p = 3d+ 2γ+ 2 in (2.17). The proof of Lemma 2.2 is complete. �

We return to the construction of a suitable approximant σh ∈ Sh. We recall that N
denotes the dimension of the space Πd

m, {P1, P2, . . . , PN} is the monomial basis of Πd
m,

and Ω ∩ hZd = {hz1, hz2, . . . , hzn}, where n depends on h. Let V = {y1, y2, . . . , yN} be
a fixed subset of Ω such that interpolation on V from the linear space Πd

m has a unique
solution (for example, V may be the principal lattice grid of order m in any simplex
that is included in Ω, cf. [19]). Then, as in [2, Proof of Proposition 1], there are positive
constants h0, δ0 and ω0, which depend only on γ and Ω, such that, for every h 6 h0,
there exists a set Jh with N elements, Jh = {t(1), t(2), . . . , t(N)} ⊂ {1, 2, . . . , n}, that
has the properties ‖hzt(j) − yj‖ < δ0, j = 1, 2, . . . , N , and

|det(Pk(hzt(j)))16j, k6N | > ω0. (2.27)
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The last inequality guarantees the existence of a unique solution {αj : j ∈ Jh} of the
system ∑

j∈Jh
αjPl(hzj) = −

n∑
k=1

νzkPl(hzk), l = 1, 2, . . . , N, (2.28)

where the coefficients νz, z ∈ Zd, are defined by formula (2.13). Thus the function

σh(x) :=
n∑
k=1

νzkφ(‖x− hzk‖) +
∑
j∈Jh

αjφ(‖x− hzj‖), x ∈ Rd, (2.29)

belongs to Sh.
On the other hand, the ‘moment’ conditions (2.9), and the fact that Zd ∩ h−1K is a

finite set in (2.13), imply that similar ‘moment’ conditions are satisfied by the coefficients
νz, z ∈ Zd, namely ∑

z∈Zd
νzp(z) = 0, p ∈ Πd

d+γ−1. (2.30)

Thus the right-hand side entries of the system (2.28) can be written as

−
n∑
k=1

νzkPl(hzk) =
∑

z∈Zd\h−1Ω

νzPl(hz), l = 1, 2, . . . , N. (2.31)

Further, for each l = 1, 2, . . . , N , the method of proof of Lemma 2.2 shows that∣∣∣∣ ∑
z∈Zd\h−1Ω

νzPl(hz)
∣∣∣∣ 6 const.(f, γ,Ω)hd+γ , as h→ 0, (2.32)

for a sufficiently large choice of p in (2.17). Now the properties (2.27), (2.28), (2.31) and
(2.32) imply |αj | 6 const.(f, γ,Ω)hd+γ , as h→ 0, for all j ∈ Jh. Therefore the definitions
(2.15) and (2.29) give

max
x∈Ω
|IΩh f∗(x)− σh(x)| 6 max

x∈Ω

∑
j∈Jh

|αj | |φ(‖x− hzj‖)|

6 max
x,y∈Ω

|φ(‖x− y‖)|
∑
j∈Jh

|αj |

6 const.(f, γ,Ω)hd+γ . (2.33)

Finally, (2.5), (2.16) and (2.33) imply

max
x∈Ω
|f(x)− σh(x)| = max

x∈Ω
|f∗(x)− σh(x)|

6 max
x∈Ω
|f∗(x)− Ihf∗(x)|

+ max
x∈Ω
|Ihf∗(x)− IΩh f∗(x)|+ max

x∈Ω
|IΩh f∗(x)− σh(x)|

6 const.(f, γ,Ω)hd+γ , (2.34)

which completes the proof of Theorem 2.1. �
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Remark 2.3. The exponent γ+d in the approximation order (2.6) is maximal, in the
sense that there exists a sufficiently smooth bump data function f for which the left-hand
side of (2.6) does not tend to zero faster than O(hγ+d), as h→ 0 (see Bejancu [2,3]).

Remark 2.4. In the case d = 3 and γ = 1, but under different hypotheses on the data
function, the maximal convergence orderO(h4) for approximation with the corresponding
type of surface splines has also been obtained by Hardy and Nelson [8].

3. The Lebesgue inequality and kriging functions

For the purpose of the next theorem, we consider the general case γ > 0, d > 1. Let
Ω ⊂ Rd be a bounded closed domain with non-empty interior and, for any sufficiently
small h > 0, recall that Ω ∩ hZd = {hz1, hz2, . . . , hzn}, where

n 6 const.(Ω)h−d, as h→ 0. (3.1)

Denote by Th the linear operator that associates to each continuous function f : Ω → R
the unique surface spline Thf := sh ∈ Sh, which satisfies the interpolation conditions
(1.4). The induced ∞-norm ‖Th‖∞ of this operator has the value

‖Th‖∞ = sup{max
x∈Ω
|Thf(x)| : f ∈ C(Ω), max

x∈Ω
|f(x)| 6 1}, (3.2)

and is called the Lebesgue constant of Th. Using the Lagrange representation formula
(1.6), a standard argument shows that ‖Th‖∞ is finite and that

‖Th‖∞ = max
x∈Ω

n∑
j=1

|`j(x)|, (3.3)

where {`1, `2, . . . , `n} ⊂ Sh is the set of surface spline functions that are defined by the
Lagrange conditions (1.5) (recall that each function `j depends on Ω, γ and h). Moreover,
since the interpolation operator Th is a linear, bounded and idempotent map with domain
C(Ω) and range Sh, we have the Lebesgue inequality (cf. [20, Theorem 3.1])

max
x∈Ω
|f(x)− sh(x)| 6 (1 + ‖Th‖∞)d∞(f,Sh), (3.4)

where d∞(f,Sh) is the least distance from f to an element of Sh, in the uniform norm
over Ω. The following result will provide an upper estimate on ‖Th‖∞.

Theorem 3.1. Let Ω ⊂ Rd be the closure of a connected, open and bounded set,
which satisfies a cone property (see Duchon [7] for a suitable definition of the latter
condition). Then, for any parameter γ > 0, there exists a constant h0 > 0 such that the
surface spline functions `1, `2, . . . , `n, which satisfy the Lagrange equations (1.5) on the
grid Ω ∩ hZd, have the property

max
x∈Ω

n∑
j=1

`2j (x) 6 const.(γ,Ω), ∀h 6 h0. (3.5)
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Proof. We use a well-known property of the so-called kriging function associated with
the grid Ω ∩ hZd. For a fixed parameter γ > 0 and for each sufficiently small h > 0, the
kriging function Ph : Rd → [0,∞) is given by (cf. Wu and Schaback [27])

P2
h(x) :=

∫
Rd
|Θx(t)|2‖t‖−γ−d dt, x ∈ Rd, (3.6)

where

Θx(t) = exp(ixTt)−
n∑
j=1

`j(x) exp(ihzT
j t), t ∈ Rd. (3.7)

In order to show that the above integral is finite for each x ∈ Rd, we establish the
conditions

|Θx(t)| =
{
O(‖t‖m+1), for ‖t‖ → 0,

O(1), for ‖t‖ → ∞. (3.8)

Indeed, Θx is bounded for ‖t‖ → ∞, being a trigonometric polynomial. Further, the
uniqueness of the surface spline interpolation method and (1.6) imply that, for any p ∈
Πd
m, we have

p(x) =
n∑
j=1

p(hzj)`j(x), x ∈ Rd. (3.9)

Thus, the Taylor expansion of the exponential and (3.9) provide the bound (3.8) for
‖t‖ near zero. Consequently, the function g := |Θx(·)|2‖ · ‖−d−γ , defined a.e. on Rd
(everywhere except the origin), satisfies

g(t) =

{
O(‖t‖2m+2−γ−d), for ‖t‖ → 0,

O(‖t‖−d−γ), for ‖t‖ → ∞. (3.10)

Since m+ 1 > γ/2, we have g ∈ L1(Rd), so the integral (3.6) is finite, as required.
Using the change of variables v = ht in (3.6), we find

P2
h(x) = hγ

∫
Rd
|Θx(h−1v)|2‖v‖−d−γ dv. (3.11)

Also, the cone condition on Ω implies the existence of h0 > 0 such that the following
estimate holds (cf. Wu and Schaback [27] and Light and Wayne [13]):

max
x∈Ω
P2
h(x) 6 const.(γ,Ω)hγ , ∀h 6 h0. (3.12)

Note that, if γ ∈ (0, 2), then (3.12) can be established without assuming the cone condi-
tion for Ω, as demonstrated by the author in [3, § 5.3]. The last two displays imply

max
x∈Ω

∫
Rd
|Θx(h−1v)|2‖v‖−d−γ dv 6 const.(γ,Ω), ∀h 6 h0. (3.13)
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Further, since 1 6 (π
√
d)‖v‖−1 holds for any v ∈ [−π, π]d, v 6= 0, we deduce∫

[−π,π]d
|Θx(h−1v)|2 dv 6 (π

√
d)γ+d

∫
[−π,π]d

|Θx(h−1v)|2‖v‖−d−γ dv

6 (π
√
d)γ+d

∫
Rd
|Θx(h−1v)|2‖v‖−d−γ dv. (3.14)

From (3.13), (3.14) and the triangle inequality for L2-norms, we obtain{∫
[−π,π]d

∣∣∣∣ n∑
j=1

`j(x) exp(izT
j v)
∣∣∣∣2 dv

}1/2

6
{∫

[−π,π]d
|Θx(h−1v)|2 dv

}1/2

+
{∫

[−π,π]d
| exp(ih−1xTv)|2 dv

}1/2

6 const.(γ,Ω) + (2π)d/2, ∀h 6 h0. (3.15)

On the other hand, since zj ∈ Zd, j = 1, 2, . . . , n, the orthogonality of the trigonometric
polynomials provides∫

[−π,π]d

∣∣∣∣ n∑
j=1

`j(x) exp(izT
j v)
∣∣∣∣2 dv =

∫
[−π,π]d

n∑
j=1

n∑
k=1

`j(x)`k(x) exp(i(zj − zk)Tv) dv

=
n∑
j=1

n∑
k=1

`j(x)`k(x)
∫

[−π,π]d
exp(i(zj − zk)Tv) dv

= (2π)d
n∑
j=1

`2j (x). (3.16)

Therefore (3.15) and (3.16) imply the required conclusion (3.5). �

Remark 3.2. Since
∑n
j=1 `

2
j (hzk) = 1, ∀k ∈ {1, 2, . . . , n}, we have the lower bound

1 6 maxx∈Ω
∑n
j=1 `

2
j (x). It follows that (3.5) captures the true asymptotic behaviour of

maxx∈Ω
∑n
j=1 `

2
j (x), as h→ 0.

Remark 3.3. Bounds on the expression
∑n
j=1 `

2
j (x) have also been considered by

Schaback [23] for more general sets of interpolation points. For the case of interpolation
at the vertices of the grid Ω∩hZd, the upper bounds of [23] can be made independent of
h only if the minimum distance from x to any one of the interpolation points is greater
than a constant times h. The advantage of the bound (3.5) is that it holds uniformly for
x ∈ Ω.

The following error estimate is an application of Theorems 2.1 and 3.1 and the Lebesgue
inequality.

Corollary 3.4. Let γ ∈ N\0 be such that γ+d is even and let Ω ⊂ Rd be the closure
of a connected, open and bounded set, which satisfies a cone condition. Let f ∈ Cγ+d(Ω)
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Table 2. Evaluations of the Lebesgue constant for d = γ = 2

h−1 4 8 16 32

‖Th‖∞ 1.754 925 1.894 548 1.904 956 1.904 987

and assume that supp(f) ⊂ int(Ω). Further, let sh ∈ Sh be the surface spline that
interpolates f on Ω ∩ hZd. Then

max
x∈Ω
|f(x)− sh(x)| 6 const.(f, γ,Ω)hγ+d/2, as h→ 0. (3.17)

Proof. Combining the discrete Cauchy–Schwarz inequality{ n∑
j=1

|`j(x)|
}2

6 n
n∑
j=1

`2j (x), (3.18)

with (3.1) and (3.5), we obtain

max
x∈Ω

n∑
j=1

|`j(x)| 6 const.(γ,Ω)h−d/2, ∀h 6 h0. (3.19)

Thus the bound (3.17) on the error of interpolation follows from Theorem 2.1 and the
Lebesgue inequality (3.4). �

Remark 3.5. We note that Theorem 2.1 and Corollary 3.4 (respectively, Theorem 3.1)
remain valid if the polynomial space Πd

m used in the definition of Sh is replaced by Πd
k ,

for m 6 k 6 γ + d− 1 (respectively for any k > m). As mentioned in § 1, Johnson [11]
has recently obtained the convergence rate (3.17) by different means in the scattered-
data case, for the variant of the surface spline interpolation scheme that uses Πd

(γ+d)/2−1
instead of Πd

m in the definition of Sh.

Remark 3.6. Our approach based on the Lebesgue inequality shows that the maximal
rate O(hγ+d) may be obtained in (3.17), provided that ‖Th‖∞ is bounded above by a
constant independent of h. This conjecture is supported by the numerical results of
Table 2, in which we consider thin plate spline interpolation (d = γ = 2) at the vertices
of the grid Ω ∩ hZd on the unit square Ω = [0, 1] × [0, 1]. We evaluate the Lebesgue
constant (3.3) by computing the maximum of

∑n
j=1 |`j(x)| for x ∈ Ω∩( 1

2h)Zd. The table
indicates a tendency of the values of the Lebesgue constant to remain bounded above by
a number smaller than 2.
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