LENGTH AiND AREA INEQUALITIES FOR THE DERIVATIVE OF A BOUNDED AND HOLOMORPHIC FUNCTION

Shinji Yamashita

The Schwarz-Pick lemma,

$$
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| /\left(1-|f(z)|^{2}\right) \leq 1
$$

for f analytic and bounded, $|f|<1$, in the disk $|z|<1$, is refined:

$$
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| /\left(1-|f(z)|^{2}\right) \leq \Phi(z, r) \leq \psi(z, r) \leq 1,
$$

where $\Phi(z, r)$ is a quantity determined by the non-Euclidean area of the image of

$$
D(z, r)=\{\omega ;|\omega|<1,|\omega-z| /|1-\bar{z} \omega|<r\}, 0<r<1,
$$

and $\Psi(z, r)$ is that determined by the non-Euclidean length of the image of the boundary of $D(z, r)$. The multiplicities in both images by f are not counted.

1. Introduction

Let f be a function nonconstant, holomorphic, and bounded, $|f|<1$, in the unit disk $D=\{|z|<1\}$. Let

$$
f^{*}(z)=\left|f^{\prime}(z)\right| /\left(1-|f(z)|^{2}\right), \quad z \in D
$$

Received 19 July 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$.
and let

$$
D(z, r)=\{\omega \in D ;|\omega-z| /|1-\bar{z} \omega|<r\}, \quad z \in D, 0<r<1,
$$

be the non-Euclidean disk of the non-Euclidean center z and the nonEuclidean radius $\tanh ^{-1} r$. Let $\Delta(z, r)=f(D(z, r))$ be the image of $D(z, r)$, that is, the projection of the Riemannian image of $D(z, r)$ by f. Let $A(z, r, f)$ be the non-Euclidean area of $\Delta(z, r)$, and let $L(z, r, f)$ and $L^{\#}(z, r, f)$ be the non-Euclidean lengths of the boundary $\partial \Delta(z, r)$ and the exact outer boundary $\partial^{\#} \Delta(z, r)$ of $\Delta(z, r)$, respectively. To explain $\partial^{\#} \Delta(z, r)$ we let E be the unbounded complement of the closure of $\Delta(z, r)$ in the complex palne. Then $\partial^{\#} \Delta(z, r)$ is the boundary of $\Delta^{\#}(z, r)=D \backslash E \supset \Delta(z, r)$. Roughly, $\Delta^{\#}(z, r)$ is the "island" $\Delta(z, r)$ plus its reclaimed "lakes" and "bays". Apparently, $L^{\#}(z, r, f) \leq L(z, r, f)$ by $\partial^{\#} \Delta(z, r) \subset \partial \Delta(z, r)$.

The Schwarz-Pick lemma

$$
\begin{equation*}
\left(1-|z|^{2}\right) f^{*}(z) \leq 1, \quad z \in D \tag{1.1}
\end{equation*}
$$

referred to in the abstract, will be refined in
THEOREM 1. Let f be a fionction nonconstant, holomorphic, and bounded, $|f|<1$, in D. Then, for each $z \in D$, and for each r, $0<r<1$,

$$
\begin{equation*}
\left(1-|z|^{2}\right) f^{*}(z) \leq \Phi(A(z, r, f)) \leq \Psi\left(L^{\#}(z, r, f)\right) \leq \Psi(L(z, r, f)) \leq 1, \tag{1.2}
\end{equation*}
$$ where

$$
\begin{aligned}
& \Phi(x)=x^{\frac{1}{2}} /\left\{r(x+\pi)^{\frac{1}{2}}\right\}, \\
& \Psi(x)=\left\{\left(x^{2}+\pi^{2}\right)^{\frac{1}{2}}-\pi\right\} /(r x), \quad 0<x<+\infty
\end{aligned}
$$

For the sharpness, it is apparent that if f is a conformal homeomorphism from D onto D,

$$
\begin{equation*}
f(w)=e^{i \alpha}(w-\beta) /(1-\bar{\beta} \omega) \tag{1.3}
\end{equation*}
$$

where α is a real constant and $\beta \in D$, then all the equalities in (1.2) hold because the left- and the right-most are identical. Conversely, it
will be shown that if the last equality in (1.2) holds, $\Psi(L)=1$, for a certain pair z, r, then f is a conformal homeomorphism of (1.3).

2. Proofs of some parts of Theorem 1

Since Ψ is increasing, the third inequality in (1.2), $\Psi\left(L^{\#}\right) \leq \Psi(L)$, is obvious by $L^{\#} \leq L$. Furthermore, since

$$
\text { (2.1) } L(z, r, f) \leq \int_{\partial D(z, r)} f^{*}(w)|\partial w| \leq \int_{\partial D(z, r)}\left(1-|w|^{2}\right)^{-1}|\partial w|
$$

$$
=2 \pi r /\left(1-r^{2}\right)
$$

by (1.1), the fourth inequality $\Psi(L) \leq 1$ in (1.2) immediately follows. The second quantity in (2.1) is the length of the Riemannian image of $\partial D(z, r)$.

To prove the second inequality $\Phi(A) \leq \Psi\left(L^{\#}\right)$ in (1.2), we let $A^{\#}(z, r, f)$ be the area of the simply connected domain $\Delta^{\#}(z, r)$. Since the Gauss curvature of the non-Euclidean space D endowed with the metric in the differential form $\left(1-|w|^{2}\right)^{-1}|d \omega|$ is the constant -4 , the isoperimetric inequality [3, Theorem 4.3, (4.25), p. 1206] reads

$$
\begin{equation*}
\lambda^{2} \geq 4 \pi \sigma+4 \sigma^{2} \tag{2.2}
\end{equation*}
$$

where σ is the non-Euclidean area of a simply connected domain in D and λ is the non-Euclidean length of its boundary. Applying (2.2) to $\Delta^{\#}(z, r)$ we obtain
(2.3) $L^{\#}(z, r, f)^{2} \geq 4 \pi A^{\#}(z, r, f)+4 A^{\#}(z, r, f)^{2}$

$$
\geq 4 \pi A(z, r, f)+4 A(z, r, f)^{2},
$$

from which we have $\Phi(A) \leq \Psi\left(L^{\#}\right)$.

3. An area theorem

To complete the proof of Theorem 1 use is made of
THEOREM 2. Let f be a function nonconstant, holomorphic, and bounded, $|f|<1$, in D. Then the function $\Phi(A(0, r, f))$ of r, $0<r<1$, is nondecreasing.

Proof. The proof is based on a version of Dufresnoy's idea [2]. We first find a simply connected domain $G(r)$ in the disk $D(0, r)$, where f is univalent and

$$
\begin{equation*}
A(r) \equiv A(0, r, f)=\iint_{G(r)} f^{\star}(w)^{2} d u d v \quad(w=u+i v) \tag{3.1}
\end{equation*}
$$

The projections of all the branch points of the Riemannian image of $D(0, r)$ by f are a finite number of distinct points, a_{1}, \ldots, a_{n} in $\Delta(r)=\Delta(0, r)$. First we find a finite number of analytic cross-cuts and analytic end-cuts of $\Delta(r)[1, p .168], \gamma_{1}, \ldots, \gamma_{k}$, such that
$\Delta_{1}(r)=\Delta(r) \backslash \bigcup_{j=1}^{k} \gamma_{k}$ is simply connected and $a_{\imath} \vDash \bigcup_{j=1}^{k} \gamma_{k}$ for
$1 \leq Z \leq n$. Then find an analytic end-cut γ_{0} of $\Delta_{1}(r)$ on which all the points $a_{\ell}, 1 \leq \ell \leq n$, lie. See Figure l. Let $G(r)$ be one of the preimages of $\Delta_{1}(r) \backslash \gamma_{0}$ by f. Since the area of $\Delta(r)$ is the same as that of $\Delta_{1}(r) \backslash \gamma_{0}$ we have (3.1).

Figure 1

It now follows from

$$
A(r)=\int_{0}^{r} t d t \int_{\Gamma(r, t)} f^{*}\left(t e^{i \theta}\right)^{2} d \theta,
$$

where

$$
\Gamma(r, t)=\left\{\theta ; 0 \leq \theta \leq 2 \pi, t e^{i \theta} \in \overline{G(r)}\right\},
$$

that

$$
\begin{equation*}
d A(r) / d r=r \int_{\Gamma(r, r)} f^{*}\left(r e^{i \theta}\right)^{2} d \theta \tag{3.2}
\end{equation*}
$$

Furthermore, the length $L(r)=L(0, r, f)$ is given by

$$
\begin{equation*}
L(r)=r \int_{\Gamma(r, r)} f^{*}\left(r e^{i \theta}\right) d \theta \tag{3.3}
\end{equation*}
$$

It then follows from the Schwarz inequality

$$
\left\{\int_{\Gamma(r, r)} f^{*}\left(r e^{i \theta}\right) d \theta\right\}^{2} \leq \int_{\Gamma(r, r)} f^{*}\left(r e^{i \theta}\right)^{2} d \theta \int_{\Gamma(r, r)} d \theta
$$

with

$$
\int_{\Gamma(r, r)} d \theta \leq 2 \pi
$$

(3.2), and (3.3), that

$$
\begin{equation*}
L(r)^{2} \leq 2 \pi r d A(r) / d r \tag{3.4}
\end{equation*}
$$

On the other hand, it follows from (2.3) for $z=0$ that

$$
\begin{equation*}
L(r)^{2} \geq L^{\#}(0, r, f)^{2} \geq 4 \pi A(r)+4 A(r)^{2} \tag{3.5}
\end{equation*}
$$

Combining (3.4) with (3.5) we have
$(2 / r) d r \leq A(r)^{-1} d A(r)-(A(r)+\pi)^{-1} d A(r), 0<r<1$.
On integrating (3.6) from r_{1} to $r_{2}, 0<r_{1} \leq r_{2}<1$, we observe, after a short computation, that $\Phi\left(A\left(0, r_{1}, f\right)\right) \leq \Phi\left(A\left(0, r_{2}, f\right)\right)$.
4. Completion of the proof of Theorem 1

For the proof of the first inequality in (1.2) we set

$$
\begin{equation*}
g(w)=f((w+z) /(1+\bar{z} w)\}, \quad w \in D \tag{4.1}
\end{equation*}
$$

so that $g^{*}(0)=\left(1-|z|^{2}\right) f^{*}(z)$. Since

$$
\lim _{\delta \rightarrow+0} \Phi(A(0, \delta, g))=g^{*}(0) \text { and } A(0, r, g)=A(z, r, f)
$$

Theorem 2 now yields the desired conclusion.
It remains to show that if $\Psi(L)=1$ in (1.2), then f must be of the form (1.3). We may suppose that $z=0$; otherwise, we examine g of (4.1). Consider the part

$$
P=\left\{r e^{i \theta} ; \theta \in \Gamma(r, r)\right\}=\overline{G(r)} \cap \partial D(0, r)
$$

of $\partial D(0, r)$. Then

$$
\int_{P} f^{*}(w)|d w|=L(0, r, f)=2 \pi r /\left(1-r^{2}\right) \geq \int_{P}\left(1-|w|^{2}\right)^{-1}|d \omega|
$$

This, combined with (1.1), shows that $f^{*}(w)=\left(1-|w|^{2}\right)^{-1}$ at each point of P. Thus f must be a conformal homeomorphism of D onto itself.

References

[1] E.F. Collingwood and A.J. Lohwater, The theory of cluster sets (Cambridge University Press, Cambridge, 1966).
[2] J. Dufresnoy, "Sur l'aire sphérique décrite par les valeurs d'une fonction méromorphe", Bull. Sci. Math. 65 (1941), 214-219.
[3] R. Osserman, "The isoperimetric inequality", Bull. Amer. Math. Soc. 84 (1978), 1182-1238.

Department of Mathematics,
Tokyo Metropolitan University,
Fukasawa,
Setagaya,
Tokyo 158,
Japan.

