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ERGODIC THEORY AND AVERAGING ITERATIONS 

J. J. KOLIHA 

1. Introduction. Suppose X is a Banach space and T a continuous linear 
operator on X. The significance of the asymptotic convergence of T for the 
approximate solution of the equation (7 — T)x = f by means of the Picard 
iterations was clearly shown in Browder's and Petryshyn's paper [1], The 
results of [1] have stimulated further investigation of the Picard, and more 
generally, averaging iterations for the solution of linear and nonlinear func­
tional equations [2; 3; 4; 8; 9]. Kwon and Redheffer [8] analyzed the Picard 
iteration under the mildest possible condition on T, namely that T be con­
tinuous and linear on a normed (not necessarily complete) space X. The 
results of [8] (still waiting to be extended for the averaging iterations) seem 
to give the most complete story of the Picard iterations for the linear case. 
Only when T is subject to some further restrictions, such as asymptotic 
^4-boundedness and asymptotic A -regularity, one can agree with Dotson [4] 
that the iterative solution of linear functional equations is a special case of 
mean ergodic theory for affine operators. This thesis is rather convincingly 
demonstrated by results of De Figueiredo and Karlovitz [2], and Dotson [3], 
and most of all by Dotson's recent paper [4], in which the results of 
[1; 2; 3] are elegantly subsumed under the afrine mean ergodic theorem of 
Eberlein-Dotson. 

Our own investigation follows up the fact implicitly contained in the proof 
of Theorem 1 in [1] that X is the direct sum N(I - T) © R(J - T)~~ if 
{Tnx} converges in norm for all x £ X. (Here and everywhere in the paper, 
N(A) and R(A) denote the null space and the range of an operator A respec­
tively, the bar denotes, as usual, closure in X.) A generalization of this decom­
position for the ergodic subspace of a semigroup of linear operators ergodic in 
the sense of Eberlein is given in the subsequent section. Section 3 is devoted 
to the investigation of some properties of asymptotically A -bounded and 
asymptotically A -regular operators stemming largely from the decomposition 
theorem for the ergodic subspace of the semigroup G = {I, T, T2, . . .}, and 
gives some applications to the iterative solution of the equation (/ — T)x = f. 

The notation used in the paper is fairly standard. In addition to the symbols 
N(A), R(A) and ~" explained above, we use B(X) to denote the Banach 
algebra of all continuous linear operators on X, —> and —̂  are employed to 
denote strong and weak convergence in X respectively. The action of a 
functional w Ç X* on an element x £ X is written as (x, w). 
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2. Ergodic semigroups. Let X be a Banach space and G a semigroup of 
continuous linear operators on X. According to Eberlein [5], G is called 
ergodic if it possesses at least one system {Aa\a Ç D} of almost invariant 
integrals (D is a directed set). For the sake of completeness we list the condi­
tions characterizing such a system: 

I. Aa Ç B(X) for each a £ D. 
II. For each x G X and all a £ D, Aax £ 0(#) = œ{Tx\T £ G}, where 

co (S) is the closed convex hull of 5. 
III . p a | | g ikf for some Af > 0 and all a £ D. 
IV. For each T e G, limaAa(I - T) = lim«(/ - T)Aa = 0. 

{̂ 4a} will be called a wea& (strong) system of almost invariant integrals for G if 
IV is satisfied in the sense of the weak (strong) operator topology. Accordingly, 
G will be called weakly (strongly) ergodic. With each ergodic semigroup G we 
associate two subspaces N and R, where 

(1) N=nN(I-T), R = sp{ U R(I-T)}, 
T£G T£G 

with sp(5) denoting the linear hull of S. In addition, the ergodic subspace E 
of an ergodic semigroup G is defined by 

(2) E = {x\x e X, 0(x) r\N ^ 0}. 

The mean ergodic theorem of Eberlein [5, Theorem 3.1] then states: Suppose 
G is strongly ergodic. Then: 

(El) . \Aax) is strongly convergent if and only if {Aax} clusters weakly. 
(E2). {Aax} is strongly convergent if and only if x Ç E. 
(E3). If x Ç E, the intersection 0(x) C\ N consists of a single point, namely 

the strong limit of {^4a#}. 
Analyzing the proof of Theorem 3.1 in [5], we observe that the strong con­
vergence postulated in IV is only needed to establish the strong convergence 
of {Aax} under the assumption that {Aax} clusters weakly. Hence we have 
the following result for weakly ergodic semigroups: Suppose G is weakly 
ergodic. Then : 

(El) ' . {Aax} is weakly convergent if and only if \Aax} clusters weakly. 
(E2)r. {Aax} is weakly convergent if and only if x (E E. 
(E3)'. For each x Ç E, 0(x) Pi N contains exactly the weak limit of {Aax}. 
Given a strongly (weakly) ergodic semigroup G, we define an operator 

Q : E -> X by 

(3) Qx = 0(x) C\N. 

(E2) (respectively (E2) ;) implies that for any strong (respectively weak) 
system {Aa} of almost invariant integrals for G, Qx = lima^4ax (x G E) in 
the corresponding topology. We show that an analogue of Theorem 4.1 in [5] 
is valid also for weakly ergodic semigroups. 
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LEMMA 1. Suppose G is a weakly ergodic semigroup. The ergodic sub space E 
of G is a closed subspace of X invariant under each T G G. The operator Q 
defined by (3) is a continuous linear mapping of E into itself such that Q2 = Q 
and QTE = TQ = Q for each T G G. 

Proof. Let {Aa} be any weak system of almost invariant integrals for G. 
Since Aax —̂  Qx for each x G E, E is a subspace of X, and Q is linear. N is 
obviously contained in E, hence Q : E —> E in view of (3). To establish the 
continuity of Q, we observe that for any x G X, each w in the dual X* of X 
and all a £ D, 

\(Qx, w)\ ^ \(Aax, w)\ + \(Qx — Aax, w)\ S M\\x\\ \\w\\ + \(Qx — Aax, w)\. 

Passing to the limit as a G D, we obtain \(Qx, w)\ ^ Af||#||ze/||. Hence 

HQxIl = supiMi-il((?*,«/)! ^ M\\x\\, 

and ||Q|| = ^ - To prove the closure of E, suppose xn —> x for xn G E. It is 
easily verified that {Qxn} is a Cauchy sequence in the strong topology of X, 
so that Qxn —> 3> for some y £ X. For each ze; G X*, all a G 1} and any positive 
integer n, 

\(Aax - y,w)\ g Af||* - *n | | | H I + \\Qxn - y\\ \\w\\ + \(Aaxn - Qxn,w)\. 

Aax—^ y is proved on choosing n sufficiently large and that a suitably. The 
invariance of E under T follows from IV, and the rest from Lemma 4.1 in [5]. 

We now describe the structure of the ergodic subspace in terms of the 
subspaces N and R defined in (1). 

THEOREM 1 [6]. If G is a weakly (strongly) ergodic semigroup with the ergodic 
subspace E, then 

E = N ©R-. 

The projection of E onto N associated with this direct sum is the operator Q 
defined by (3). 

Proof. As shown in Lemma 1, Q is a continuous linear idempotent operator 
mapping E into itself. Hence E = R(Q) ®N(Q) with R(Q) closed. We 
establish that R(Q) = N and N(Q) = R~. For each x G £ , Qx G N by virtue 
of (3). If y G N, Qy = y, and y G R(Q). Suppose x G N(Q). Then 
Qx = 0 G 0{x). For each e > 0 there is z = JJ a^T.x with a, ^ 0, Z ï at = 1 
and Ti G G, such that ||z|| < e. The vector x — z = Y^ai(I ~ Tt)x lies 
in R} and ||x — (x — JS)|| = | |s| | < e, which in turn means that x G R~~. If, on 
the other hand, y G R, y = X)ï {I ~ Ti)%i for some Tt £ G and some xt G -X\ 
By IV, each (7 — Ti)xt lies in N(Q), hence also 3/ G N(Q). The inclusion 
-R"" C iV(Ç) then follows from R C iV((?) as #((?) is closed. 

Remark 1. Suppose G is a weakly ergodic semigroup with a weak system 
\Aa) of almost invariant integrals. In virtue of II, {Aax) is bounded for each 
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x Ç X. If {Aax} clusters weakly for each x € X or if X is reflexive, 
X = TV 0 R-. 

Remark 2. A special case of Theorem 1 for the semigroup G = {I, T, T2, . . .} 
with An = n~1(I + !T + . . . + rw-i) as a system of almost invariant integrals 
was proved by Yosida [10]. 

Let us consider the semigroup G = {/, T, T2, . . .}, where T £ B(X). We 
show that in this case the subspaces N and i? defined by (1) are given by the 
formulae 

(4) N = N(I - T), R = R(I - T). 

If x £ N(I - T), Tnx = x for each w G i\T, and * 6 f ï? ^ ( / - r*) = iV. 
The inclusion iV C N(I — T) is obvious. From the identity I — Tn = 
(I - TOXo"1 Tfc (with £ P = 0) it follows that R(I - Tn) C R(I - T) for 
all rc ^ 0, and sp{U~i?( / - T»)} = R C £ ( / - r ) . The reverse inclusion 
is trivial. 

3. Averaging i te ra t ions . T denotes a continuous linear operator on a 
Banach space X. A real infinite matrix A = [anj] (n,j ^ 0) will be called 
admissible if A is nonnegative lower triangular with each row summing to 1. 
Following Dotson [3; 4] we define the polynomials an(t) and bn(t) (n ^ 0) by 

n ' 

On(f) = E 0 » / , bn(f) = (1 ~ fl»(0)/(l - 0 . 

Definition. Let 4̂ be an admissible matrix, and let 4̂W = an(T) and 
J3n = 6re(r) for each n ^ 0. 

(i) T is asymptotically A-bounded if ||^4W|| ^ M for some ikf > 0 and all 
n è 0. 

(ii) JT is 2£/ea& (strong) asymptotically A-regular if limw^4w(J — 2") = 0 in 
the weak (strong) operator topology. 

(iii) T is weak (strong, uniform) A-convergent if T is weak asymptotically 
A -regular and {Bn} converges in the weak (strong, uniform) operator topology. 

(iv) T is weakly (strongly, uniformly) asymptotically A-convergent if T is weak 
asymptotically .4.-regular and {An} converges in the weak (strong, uniform) 
operator topology. 

It follows from the uniform boundedness principle that an asymptotically 
,4-convergent operator T (in any of the three mentioned operator topologies) 
is also asymptotically ^.-bounded. In the case when A is the infinite unit 
matrix 7, the preceding definition characterizes ordinary asymptotic bounded­
ness, asymptotic regularity, convergence and asymptotic convergence. Note 
that the condition that T be weak asymptotically A -regular in parts (iii) and 
(iv) of the above definition is included only to guarantee limn An = Q = 
QT = TQ. However, there is a class of admissible matrices A satisfying the 
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equality automatically, namely the matrices with the property that, for each 
continuous linear operator T, limw TAnx = \\mnAnx whenever {̂ 4wx} converges. 
It is not difficult to verify that the unit and Cesàro matrices belong to this 
class. 

Suppose T is asymptotically A -bounded and weak (strong) asymptotically 
A -regular for some admissible A. It is immediately obvious that {An} is a 
weak (strong) system of almost invariant integrals for G = {/, T, T2, . . .} . 
Let E be the ergodic subspace of G, and Q the operator defined by (3). Accord­
ing to Theorem 1 and the formula (4), E = N(I - T) © R(I - T)~, and 
{Anx} converges weakly (strongly) to Qx if and only if x £ E. Moreover, the 
operators An, Bn and Q satisfy the following conditions: 

(Al) (7 - T)Bn = I - An for each n è 0. 
(A2) For each x £ E and all n è 0, QAnx = Qx, and QBnx = cf>(n)Qx, 

where <t>(n) is a real valued function of n. 
(A3) If limn anj = 0 for each j }£ 0 (in this case A will be called Toeplitz), 

lim„0(») = +co. 
This all can be easily deduced from Theorem 3 in [3]. 

In the sequel we consider the approximate solution of the equation 
(I — T)x = f by means of the averaging iteration xn = Anx0 + Bnf [3; 4] 
provided T is at least asymptotically A -bounded and weak asymptotically 
A -regular. This iteration can be viewed as a generalization of the Picard 
iteration xn = Tnx0 + (2o~ Tk)f which arises when A = I. 

PROPOSITION 1. Suppose T is asymptotically A-bounded and weak {strong) 
asymptotically A-regular for some admissible matrix A. If f G R(I — T), the 
sequence {xn} = {Anx0 + Bnf} converges weakly (strongly) to a solution x of 
the equation (I — T)x — f if and only if x0 — y £ N(I — T) 0 R(I — T)~ 
for some y with (I — T)y = f. 

Proof. Suppose (I — T)y = f and put yn = Any + Bnf. Then yn — Any + 
Bn(I — T)y = Any + (/ — An)y = y in view of (Al). Furthermore, xn — y = 
xn yn An(x0 — y), and {xn} converges weakly (strongly) if and only if 
Xo — y lies in the ergodic subspace E = N(I — T) 0 R(I — T)~ of 
G = {I, T, T2, . . .}. Let x be the limit of {xn}. Since xn = y + An(x0 — y), 
x = y + Q(x0 - y), and (I - T)x = (/ - T)y + (I - T)Q(x0 - y) = f. 

Remark 3. A result related to the preceding proposition has been obtained 
by Kwon and Redheffer [8, Remark 1] for A = I, without the assumption 
of asymptotic boundedness and asymptotic regularity and with the subspace 
{x|{rwx} converges strongly} in place of N(I — T) 0 R(I — T)~. 

Next we consider the case when the equation (/ — T)x = f has a solution 
given by an averaging analogue of the Neumann series, namely a solution of 
the form x = limw Bnf. 

PROPOSITION 2. Suppose T is asymptotically A-bounded and weak (strong) 
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asymptotically A -regular for some admissible Toeplitz matrix A. The following 
are equivalent: 

(i) {Bnf\ is weakly {strongly) convergent. 
(ii) {Bnf} has a weak cluster point. 

(iii) / belongs to the image Y of R(I — T)~ under I — T. 
Moreover, any cluster point of {Bnf ) is a solution of the equation (I — T)x — f 
contained in R(I — T)~. 

Proof. The implication (i) => (ii) is obvious. 
(ii) => (iii). Suppose Bnf—^ x as n = tij —> co . Then (7 — An)f = 

(7 — T)Bnf~^ (I — T)x as n = tij —> oo ,{Anf } has a weak cluster point, and 
/ e E = N(I - T) ®R(I - T)~ according to (El)7 (respectively (El ) ) . 
Hence QBnf is denned and equal to <t>(n)Qf by (A2). {<t>(n)Qf} has a weak 
cluster point; since limn 4>{n) = +co in view of (A3), Qf = 0. Consequently, 
(/ — T)x = / — Qf = / , and the cluster point x of {Bnf} = {(7 — T)Bnx] 
is contained in R(I — T)~. This proves (iii) as well as the last statement of 
the present proposition. 

(iii) =» (i). Suppose (I — T)x = / for some x £ R(I — T)~. Then 
Bnf = Bn(I — T)x — x — Anx, and {Bnf} is weakly (strongly) convergent. 
Let us remark that every solution of the equation (7 — T)x = / with f £ Y 
lies in E as the coset x + N(I — T) is contained in JE whenever the particular 
solution x lies in R(I — T)~. 

Proposition 2 is related to Remarks 2, 4 and 5 of [8] in a similar way as 
described in our Remark 3. 

PROPOSITION 3. Suppose T is weakly (strongly) A-convergent for some admis-
sible Toeplitz matrix A. Then limw Bn = (7 — T ) - 1 in the weak (strong) operator 
topology. Moreover, for each f Ç X, the sequence {Anx0 + Bnf} converges weakly 
(strongly) to the unique solution of the equation (I — T)x = / . 

Proof. A weakly (strongly) A -convergent operator T is also weak (strong) 
asymptotically A -convergent as follows from (Al). For each x £ X we have 
QBnx = <j>(n)Qx in virtue of (A2). Since A is Toeplitz, (A3) holds, and 
Q = 0 on X, i.e., N(I - T) = {0}. Moreover, X = R(I - T)- in view of the 
decomposition theorem for the ergodic subspace X of G = {I, T, T2, . . .}, 
and R(I - T) is closed by Proposition 2. Hence (7 - T)~l G B(X) by the 
Banach theorem. Since lim^ (7 — T)Bn = limw (7 — An) = 7 in the weak 
(strong) operator topology, limn Bn = (7 — T)~l. The rest of Proposition 3 
follows immediately. 

It is seen from the foregoing proof that \imnAn = 0 and R(I — T) = 
R(I — r ) ~ are necessary for T to be A -convergent. The next proposition 
shows that these conditions are also sufficient even if the matrix A is only 
admissible. 

PROPOSITION 4. Let A be an admissible matrix. Suppose 
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(a) limw An = 0 in the weak {strong) operator topology, and 
(b) R{I - T) is closed. 

Then T is weakly {strongly) A-convergent. 

Proof. If the conditions (a) and (b) are fulfilled, T is asymptotically 
A -bounded and weak (strong) asymptotically A -regular, so that Theorem 1 
applies. Moreover, (a) implies that N{I — T) = {0}, hence X = R{I — T)~ = 
R{I - T) by (b), and (7 - T)" 1 G B{X). Then 

{Bn} = {{I- T)-^{I-An)} 

converges weakly (strongly) to (7 — T)~l. Let us remark that (b) can be 
replaced by any of the following equivalent conditions: (bi) R{I — T) = X, 
(b2) (7 — r ) _ 1 is bounded, (b3) 1 does not belong to the continuous spectrum 
of T. 

Kwon and Redheffer [8] gave an example of a shift operator T on a separable 
Hilbert space such that lim^ Tn = 0 in the strong operator topology for which 
(7 — 7")_1 is not continuous. This situation cannot occur \î An-^0 uniformly. 

PROPOSITION 5. Let A be an admissible matrix such that \\An\\ = ||an(7")|| —-> 0 
as n —» co. Then T is uniformly A-convergent, and Bn = bn{l^) —» (7 — T)~l 

uniformly. 

Proof. T is clearly asymptotically A bounded and strong asymptotically 
,4-regular. From \\An\\ —> 0 it follows that | |(7 - T)Bn — J|| - » 0 in virtue of 
(Al). Let N be a fixed positive integer with || (7 — T)BN — 7|| < J. For each 
x G X and each e > 0 there is a positive integer n0 such that 

||(7 — T){Bn — Bm)BNx\\ < §€, n,m > n0. 

Since 

Bnx - Bmx = (7 - (7 - T)BN){Bnx - Bmx) + (7 - T){Bn - Bm)BNx, 

we get the inequality 

\\Bnx — Bmx\\ < i\\Bnx - Bmx\\ + le 

valid for all n, m > n0. Hence \\Bnx — Bmx\\ < e for all n, m > n0, and 
{Bnx} converges in norm for each x G X as X is complete. For each x G X, 
x = limre(7 — T)Bnx = (7 — T){\imnBnx) in norm, so that X = R{I — T). 
Q = 0 on X, which proves N{I - T) = {0}. Therefore (7 - T)~l Ç B{X), 
a n d | | J 3 n - ( 7 - T)-^\\ ^ \\{I - r ) - i | | | | ( 7 - T)Bn - 7|| - 0 as n -* oo. 

As a consequence of Proposition 5 we obtain that X o 3 ^ converges uniformly 
if and only if | |r*|| -> 0, or equivalently, if and only if r ( r ) = limw||rw||1/w < 1. 
If jy Tn converges weakly or strongly, | |rw | | ^ M for some M > 0 and all 
n ^ 0, and r ( r ) ^ lim„ M1/n = 1. However, even in the case when jy Tn 

converges strongly we can have r{T) = 1. To see this suppose X is a separable 

https://doi.org/10.4153/CJM-1973-002-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-002-9


ERGODIC THEORY 21 

Hilbert space with an orthonormal basis {e&}î. Following [6] define a linear 
diagonal operator T by 

Tek = (1 - k)k~lek, jfe = 1, 2, . . . . 

r is selfadjoint, and r(T) = \\T\\ = sup*|(l — k)k~l\ = 1. For every k, 
\\Tnek\\—*0 as n —» oo. Also any finite linear combination y of the basis 
vectors satisfies ||P*;y|| —> 0 as n —> oo. Each x ^ I can be approximated by 
such y, and the inequality \\Tnx\\ ^ \\x — y\\ + \\Tny\\ shows that also 
| | r nx| | —>0 as n-^co. Given / = Y, akek £ X, we define x = J2 ^*A with 
A* = k(2k — l ) - 1 ^ ; X) l̂ &|2 converges as JX̂ I ^ M - It is easily verified that 
/ = (I — T)x, hence X = R(I — T). In view of Proposition 4, T is strongly 
convergent. 

PROPOSITION 6. Suppose T is weak (strong) asymptotically A-convergent for 
some admissible matrix A. Then X = N(I — T) 0 R(I — T)~. For each 
f G R(I — T) and any Xo G X, the sequence \Anxo + Bnf) converges weakly 
(strongly) to a solution x of the equation (I — T)x = f; x is of the form 
x = Qxo + x*, where Qxo is the projection of x0 into N(I — T) in the direction 
of R(I — T)~~, and x* is the unique solution of (I — T)x = f in R(I — T)~. 

Proof. The first two conclusions of the proposition follow from Theorem 1 
and Proposition 1 respectively. Suppose (I — T)y = / for some y G X. Then 
\Bnf \ = {(I — An)y} converges weakly (strongly) to the element 
x* = (I - Q)y (Q = limn An). Since I - Q projects X onto R(I - T)~, 
x* £ R(I - T)~, and (I - 7 > * = (I - T)(I - Q)y = (7 - T)y = / . Hence 
x* is a solution of (I — T)x ~ f contained in R(I — T)~; the uniqueness of 
such a solution is a consequence of the decomposition 

X = N(I - T) ®R(I - T)~. 

The last statement in Proposition 6 then follows from the fact that 
\\mn(AnXQ + Bnf) = Qxo + x* in the corresponding topology. 

Remark 4. If we assume that T is strong asymptotically A -regular and that 
\An) converges in the weak operator topology, (El) supplies the result that 
{Anx$ + Bnf} converges strongly for each / 6 R(I — 2") and each x0 G X 
as in Theorem 3 of [4]. Proposition 6 provides the additional insight pertaining 
to the decomposition of X and the form of a solution x of the equation 
(J - T)x = f. 

Suppose T is asymptotically bounded and weak (strong) asymptotically 
regular. For any admissible matrix A, T is also asymptotically A -bounded. 
Indeed, if \\Tn\\ S M for some M > 0 and all » ^ 0 , then | |a»(r) | | ^ 
ESûWlI^II = M. If A is also Toeplitz, T is weak (strong) asymptotically 
A -regular. Suppose \\mn Tnx = z for some x 6 X. Then limn an(T)x = z [9]. 
If T is weak (strong) asymptotically regular, limn Tn(I — T)x = 0 weakly 
(strongly) for each x f l , and also limw an(T) (I — T)x = 0 weakly (strongly) 
for each x Ç X. Thus we are led to 
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PROPOSITION 7. An operator T is weak (strong) asymptotically convergent if 
and only if: 

(a) T is asymptotically bounded, 
(b) T is weak (strong) asymptotically regular, and 
(c) for some admissible Toeplitz matrix A, {Anx} clusters weakly for each 

x e X. 

The proposition strengthens the Corollary to Theorem 5 in [3]. 
The conclusions of Proposition 6 are naturally valid with strong convergence 

throughout when T is uniform asymptotically A -convergent for some admis­
sible A. In this case however the following stronger result can be obtained. 

PROPOSITION 8. Suppose T is uniform asymptotically A-convergent for some 
admissible matrix A. Then R(I — T) is closed, and 

X = N(I - T) ®R(I - T). 

Consequently, if N(I — T) 9^ {0}, 1 is a simple pole of (XI — T)*1. 

Proof. Let Q be the uniform limit of {An} = {an(T)\. Then Q2 = Q and 
TSQ = Q for each j = 0, 1, . . . , in view of Lemma 1. Hence (T — Q)j = 
Tj - Q for each j = 0, 1, . . . , and an(T - Q) = £*-o anj(T - Q)j = 
E3-o anj(T

j - (?) = an(T) - Q. Then \\an(T - Q)\\ -> 0 as n -> 00. Accord­
ing to Proposition 5, T — Q is uniformly A -convergent, and 

(I-T + Q)-*eB(X). 

In particular, X = R(I — T + Q), and each x £ X can be written in the form 
x = (7 - T)u + Qu, where Qu € N(I - T). Suppose x G R(I - T)~. In 
view of the decomposition X — N(I — T) © R(I — T)~ which follows from 
Theorem 1, and the equality x = Qu + (I — T)u, Qu is necessarily 0, and 
x = (J — T)u. This proves R(I — r ) ~ = R(I — T). The last statement in 
Proposition 8 is a direct consequence of the decomposition 

X = N(I - T) ®R(I - T) 

with i? (7 - T) closed. 

Proposition 8 is a generalization of the result obtained in [7] for a uniform 
asymptotically convergent operator T. 

REFERENCES 

1. F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations 
in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566-570. 

2. D. G. De Figueiredo and L. A. Karlovitz, On the approximate solution of linear functional 
equations in Banach spaces, J. Math. Anal. Appl. 24 (1968), 654-664. 

3. W. G. Dotson, Jr., An application of ergodic theory to the solution of linear functional 
equations in Banach spaces, Bull. Amer. Math. Soc. 75 (1969), 347-352. 

https://doi.org/10.4153/CJM-1973-002-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-002-9


ERGODIC THEORY 23 

4. Mean ergodic theorem and iterative solution of linear functional equations, J. Math. 
Anal. Appl. 34 (1971), 141-150. 

5. W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. 
Math. Soc. 67 (1949), 217-240. 

6. J. J. Koliha, Iterative solution of linear equations in Banach and Hilbert spaces, Ph.D. 
Thesis, University of Melbourne, 1972. 

7. Convergent and stable operators and their generalization (to appear). 
8. Y. K. Kwon and R. M. Redheffer, Remarks on linear equations in Banach space, Arch. 

Rational Mech. Anal. 32 (1969), 247-254. 
9. Curtis Outlaw and C. W. Groetsch, Averaging iterations in a Banach space, Bull. Amer. 

Math. Soc. 75 (1969), 430-432. 
10. K. Yosida, Functional Analysis (Springer-Verlag, New York, 1965). 

University of Melbourne, 
Parkville, Australia 

https://doi.org/10.4153/CJM-1973-002-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-002-9

