Canad. Math. Bull. Vol. 43 (4), 2000 pp. 440-447

On the Existence of a New Class of Contact Metric Manifolds

Themis Koufogiorgos and Charalambos Tsichlias

Abstract. A new class of 3-dimensional contact metric manifolds is found. Moreover it is proved that there are no such manifolds in dimensions greater than 3.

1 Introduction

Let *M* be a Riemannian manifold. The tangent sphere bundle T_1M admits a contact metric structure (ϕ, ξ, η, g) and so T_1M together with this structure is a contact metric manifold [1]. If *M* is of constant sectional curvature, then the curvature tensor *R* of $T_1M(\phi, \xi, \eta, g)$ satisfies the condition

(*)
$$R(x, y)\xi = \kappa[\eta(y)x - \eta(x)y] + \mu[\eta(y)hx - \eta(x)hy]$$

for any $x, y \in \mathcal{X}(T_1M)$, where 2h is the Lie derivative of ϕ with respect to ξ and κ , μ are constant. Moreover, the converse is also true [3]. This class of contact metric manifolds is especially interesting, because apart from its other characteristics, it contains the well known Sasakian manifolds. In [5], [6], [7] are studied contact metric manifolds satisfying (*) but with κ , μ smooth functions not necessarily constant. In these papers it is proved that, with an extra assumption, the functions κ , μ must be constant. On the other hand, up to now, we didn't know any example of a contact metric manifold satisfying (*) and with κ , μ non-constant smooth functions. The following question comes up naturally. Do there exist contact metric manifolds satisfying (*) with κ , μ non-constant smooth functions, independent of the choice of vector fields x, y? In this paper we give a negative answer to the above question for dimensions > 3. For dimension 3 we give an affirmative answer, through the construction of examples.

2 Preliminaries

A differentiable (2m + 1)-dimensional manifold M^{2m+1} is called a contact manifold if it carries a global differential 1-form η such that $\eta \wedge (d\eta)^m \neq 0$ everywhere on M^{2m+1} . It is known that a contact manifold admits an almost contact metric structure (ϕ, ξ, η, g) , *i.e.*, a global vector field ξ , which will be called the characteristic vector field, a (1,1) tensor field

Received by the editors November 12, 1998; revised January 29, 1999.

The authors were supported by G.G.S.R.T (IIENE Δ 1995, 388). The second author was also supported by the Institute of State Scholarships of Greece (I.K.Y.).

AMS subject classification: Primary: 53C25; secondary: 53C15.

Keywords: contact metric manifolds, generalized (κ, μ)-contact metric manifolds.

[©]Canadian Mathematical Society 2000.

 ϕ and a Riemannian metric g such that

(2.1)
$$\phi^2 = -\operatorname{Id} + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

(2.2)
$$g(\phi x, \phi y) = g(x, y) - \eta(x)\eta(y),$$

for all vector fields *x*, *y* on M^{2m+1} . Moreover, (ϕ, ξ, η, g) can be chosen such that $d\eta(x, y) = g(x, \phi y)$ and thus the structure is called a contact metric structure and the manifold M^{2m+1} a contact metric manifold. Equations (2.1) and (2.2) imply

(2.3)
$$\phi \xi = 0, \quad \eta \circ \phi = 0, \quad d\eta(\xi, x) = 0.$$

Denoting by \mathcal{L} and R, Lie differentiation and the curvature tensor respectively, the operators l and h are defined by

(2.4)
$$lx = R(x,\xi)\xi, \quad hx = \frac{1}{2}(\mathcal{L}_{\xi}\phi)x.$$

The (1,1) tensors *h* and *l* are self-adjoint and satisfy

(2.5)
$$h\xi = 0, \quad l\xi = 0, \quad h\phi + \phi h = 0.$$

If ∇ is the Riemannian connection of *g*, equations (2.1)–(2.5) imply

(2.6)
$$\nabla_x \xi = -\phi x - \phi h x,$$

(2.7)
$$\phi l\phi - l = 2(\phi^2 + h^2),$$

(2.8)
$$\nabla_{\xi}\phi = 0,$$

(2.9)
$$\nabla_{\xi} h = \phi - \phi l - \phi h^2.$$

A contact structure on M^{2m+1} gives rise to an almost complex structure on the product $M^{2m+1} \times R$. If this structure is integrable, then the contact metric manifold is said to be Sasakian. Equivalently, a contact metric manifold is Sasakian if and only if

(2.10)
$$R(x, y)\xi = \eta(y)x - \eta(x)y.$$

For more details concerning contact manifolds the reader is referred to [1].

3 Main Results

Let $M^{2m+1}(\phi, \xi, \eta, g)$ be a contact metric manifold. We suppose that

(3.1)
$$R(x, y)\xi = \kappa[\eta(y)x - \eta(x)y] + \mu[\eta(y)hx - \eta(x)hy],$$

for some smooth functions κ and μ on M independent of the choice of vector fields x and y. We call such a manifold M, a *generalized* (κ, μ) -*contact metric manifold*. In the special case $\kappa, \mu = \text{constant}$, the manifold will be called simply a (κ, μ) -contact metric manifold.

441

The 3-dimensional case, (m = 1)

Now, we are going to construct examples of 3-dimensional generalized (κ , μ)-contact metric manifolds, which are not (κ , μ)-contact metric manifolds.

Example 1 We consider the 3-dimensional manifold $M = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 \neq 0\}$, where (x_1, x_2, x_3) are the standard coordinates in \mathbb{R}^3 . The vector fields

$$e_1 = \frac{\partial}{\partial x_1}, \quad e_2 = -2x_2x_3\frac{\partial}{\partial x_1} + \frac{2x_1}{x_3^3}\frac{\partial}{\partial x_2} - \frac{1}{x_2^3}\frac{\partial}{\partial x_3}, \quad e_3 = \frac{1}{x_3}\frac{\partial}{\partial x_2}$$

are linearly independent at each point of *M*. Let *g* be the Riemannian metric defined by $g(e_i, e_j) = \delta_{ij}$, i, j = 1, 2, 3. Let ∇ be the Riemannian connection and *R* the curvature tensor of *g*. We easily get

$$[e_1, e_2] = \frac{2}{x_3^2}e_3, \quad [e_2, e_3] = 2e_1 + \frac{1}{x_3^3}e_3, \quad [e_3, e_1] = 0.$$

Let η be the 1-form defined by $\eta(z) = g(z, e_1)$ for any $z \in \mathfrak{X}(\mathfrak{M})$. Because $\eta \wedge d\eta \neq 0$ everywhere on M, η is a contact form. Let ϕ be the (1,1)-tensor field, defined by $\phi e_1 = 0$, $\phi e_2 = e_3$, $\phi e_3 = -e_2$. Using the linearity of ϕ , $d\eta$ and g we find $\eta(e_1) = 1$, $\phi^2 z = -z + \eta(z)e_1$, $d\eta(z, w) = g(z, \phi w)$ and $g(\phi z, \phi w) = g(z, w) - \eta(z)\eta(w)$ for any $z, w \in \mathfrak{X}(\mathfrak{M})$. Hence (ϕ, e_1, η, g) defines a contact metric structure on M and so M together with this structure is a contact metric manifold.

Putting $\xi = e_1, x = e_2, \phi x = e_3$ and using the well known formula

$$2g(\nabla_{y}z,w) = yg(z,w) + zg(w,y) - wg(y,z) - g(y,[z,w]) - g(z,[y,w]) + g(w,[y,z])$$

we calculate

$$\nabla_x \xi = -\left(1 + \frac{1}{x_3^2}\right) \phi x, \quad \nabla_{\phi x} \xi = \left(1 - \frac{1}{x_3^2}\right) x,$$
$$\nabla_{\xi} x = \left(-1 + \frac{1}{x_3^2}\right) \phi x, \quad \nabla_{\xi} \phi x = \left(1 - \frac{1}{x_3^2}\right) x,$$
$$\nabla_x x = 0, \quad \nabla_x \phi x = \left(1 + \frac{1}{x_3^2}\right) \xi, \quad \nabla_{\phi x} x = \left(-1 + \frac{1}{x_3^2}\right) \xi - \frac{1}{x_3^3} \phi x, \quad \nabla_{\phi x} \phi x = \frac{1}{x_3^3} x.$$

Therefore for the tensor field *h* we get $h\xi = 0$, $hx = \lambda x$, $h\phi x = -\lambda\phi x$, where $\lambda = \frac{1}{x_3^2}$. Now, putting $\mu = 2(1 - \frac{1}{x_3^2})$ and $\kappa = \frac{x_3^4 - 1}{x_3^4}$ we finally get

$$R(x,\xi)\xi = \kappa \big(\eta(\xi)x - \eta(x)\xi\big) + \mu \big(\eta(\xi)hx - \eta(x)h\xi\big)$$
$$R(\phi x,\xi)\xi = \kappa \big(\eta(\xi)\phi x - \eta(\phi x)\xi\big) + \mu \big(\eta(\xi)h\phi x - \eta(\phi x)h\xi\big)$$
$$R(x,\phi x)\xi = \kappa \big(\eta(\phi x)x - \eta(x)\phi x\big) + \mu \big(\eta(\phi x)hx - \eta(x)h\phi x\big).$$

442

These relations yield the following, by a straightforward calculation,

$$R(z,w)\xi = \kappa \big(\eta(w)z - \eta(z)w\big) + \mu \big(\eta(w)hz - \eta(z)hw\big),$$

where κ and μ are non-constant smooth functions. Hence *M* is a generalized (κ , μ)-contact metric manifold.

Example 2 We consider the 3-dimensional manifold $M = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 \neq 0\}$ and the vector fields

$$e_1 = \frac{\partial}{\partial x_1}, \quad e_2 = \frac{1}{x_3^2} \frac{\partial}{\partial x_2}, \quad e_3 = 2x_2 x_3^2 \frac{\partial}{\partial x_1} + \frac{2x_1}{x_3^6} \frac{\partial}{\partial x_2} + \frac{1}{x_3^6} \frac{\partial}{\partial x_3}$$

We define ξ , g, η , ϕ by $\xi = e_1$, $g(e_i, e_j) = \delta_{ij}$, (i, j = 1, 2, 3) and $\phi e_1 = 0$, $\phi e_2 = e_3$, $\phi e_3 = -e_2$. Working as in the previous example we finally get that $M(\phi, \xi, \eta, g)$ is a generalized (κ, μ) -contact metric manifold with $\kappa = 1 - \frac{1}{x_i^3}$, $\mu = 2(1 + \frac{1}{x_i^4})$.

Let us give some more examples. Starting with the examples given previously we will now construct new 3-dimensional generalized (κ , μ)-contact metric manifolds for any positive real number.

Let $M(\phi, \xi, \eta, g)$ be a 3-dimensional generalized (κ, μ) -contact metric manifold. By a D_a -homothetic deformation [8] we mean a change of structure tensors of the form $\bar{\eta} = a\eta$, $\bar{\xi} = \frac{1}{a}\xi$, $\bar{\phi} = \phi$, $\bar{g} = ag + a(a-1)\eta \otimes \eta$, where *a* is a positive constant. It is well known that $M(\bar{\phi}, \bar{\xi}, \bar{\eta}, \bar{g})$ is also a contact metric manifold. Moreover the curvature tensor *R* and the tensor *h* transform in the following manner [3], $\bar{h} = \frac{1}{a}h$ and

$$a\bar{R}(x,y)\bar{\xi} = R(x,y)\xi + (a-1)^2 (\eta(y)x - \eta(x)y) - (a-1)\{(\nabla_x \phi)y - (\nabla_y \phi)x + \eta(x)(y+hy) - \eta(y)(x+hx)\},\$$

for any $x, y \in \mathfrak{X}(\mathcal{M})$.

Additionally it is well known [9, pp. 446–447], that any 3-dimensional contact metric manifold satisfies $(\nabla_x \phi)y = g(x + hx, y)\xi - \eta(y)(x + hx)$. Using the above relations we finally obtain

$$\bar{R}(x,y)\bar{\xi} = \frac{\kappa + a^2 - 1}{a^2} \left(\bar{\eta}(y)x - \bar{\eta}(x)y \right) + \frac{\mu + 2(a-1)}{a} \left(\bar{\eta}(y)\bar{h}x - \bar{\eta}(x)\bar{h}y \right)$$

for any $x, y \in \mathfrak{X}(\mathcal{M})$. So we have proved the following Theorem.

Theorem 3.1 For any positive number, there exists a 3-dimensional generalized (κ, μ) -contact metric manifold.

The case m > 1 Let $M^{2m+1}(\phi, \xi, \eta, g)$ be a generalized (κ, μ) -contact metric manifold and $B = \{p \in M \mid \kappa(p) = 1\}$. The set N = M - B is an open subset of M and thus $N^{2m+1}(\phi, \xi, \eta, g)$ is a contact metric manifold, which satisfies the equation (3.1) with $\kappa \neq 1$ everywhere. **Lemma 3.2** The following relations are valid on $N^{2m+1}(\phi, \xi, \eta, g)$

$$(3.2) l\phi - \phi l = 2\mu h\phi,$$

$$h^2 = (\kappa - 1)\phi^2, \quad \kappa < 1$$

(3.4)
$$R(\xi, x)y = \kappa[g(x, y)\xi - \eta(y)x] + \mu[g(hx, y)\xi - \eta(y)hx],$$

(3.5)
$$(\nabla_x h)y - (\nabla_y h)x = (1 - \kappa)[2g(x, \phi y)\xi + \eta(x)\phi y - \eta(y)\phi x] + (1 - \mu)[\eta(x)\phi hy - \eta(y)\phi hx],$$

$$(3.6) \xi\kappa = 0.$$

for any $x, y \in \mathfrak{X}(N)$ *.*

Proof The proof of (3.2)–(3.5) is similar to that of Lemma 3.1 of [3] and hence we omit it. To prove (3.6), we operate (3.2) by ϕ and use (2.7) and (3.3) we get $l = -\kappa \phi^2 + \mu h$ and so through (2.8) we find

(3.7)
$$\nabla_{\xi} l = -(\xi \kappa) \phi^2 + (\xi \mu) h + \mu (\nabla_{\xi} h).$$

Moreover from (2.9), (3.3) and $l = -\kappa \phi^2 + \mu h$ we obtain

(3.8)
$$\nabla_{\xi} h = \mu h \phi.$$

The use of (3.8) in (3.7) shows

(3.9)
$$\nabla_{\xi} l = -(\xi \kappa) \phi^2 + (\xi \mu) h + \mu^2 h \phi.$$

Differentiating (2.7) along ξ and using (3.8) we get $\phi(\nabla_{\xi}l)\phi - \nabla_{\xi}l = 0$. This together with (3.9) complete the proof of the Lemma.

Lemma 3.3 For any vector fields x, y on a (2m + 1)-dimensional generalized (κ, μ) -contact metric manifold the following differential equation is valid

(3.10)
$$(y\kappa)\phi^2 x - (x\kappa)\phi^2 y + (x\mu)hy - (y\mu)hx + (\xi\mu)[\eta(y)hx - \eta(x)hy] = 0.$$

Proof Differentiating (3.1) along an arbitrary vector field *z* and using (2.6) we find

$$\begin{aligned} \nabla_z R(x,y)\xi &= (z\kappa)[\eta(y)x - \eta(x)y] + (z\mu)[\eta(y)hx + \eta(x)hy] \\ &+ \kappa \big[\big(\eta(\nabla_z y) - g(y,\phi z) - g(y,\phi hz)\big)x + \eta(y)\nabla_z x \\ &- \big(\eta(\nabla_z x) - g(x,\phi z) - g(x,\phi hz)\big)y + \eta(x)\nabla_z y \big] \\ &+ \mu \big[\big(\eta(\nabla_z y) - g(y,\phi z) - g(y,\phi hz)\big)hx + \eta(y)\nabla_z hx \\ &- \big(\eta(\nabla_z x) - g(x,\phi z) - g(x,\phi hz)\big)hy + \eta(x)\nabla_z hy \big].\end{aligned}$$

The use of the last relation, (3.1) and (2.6) in Bianchi second identity yield to the following relation, by a direct calculation,

$$\begin{split} \bigoplus_{\{x,y,z\}} \left\{ (z\kappa)[\eta(y)x - \eta(x)y] + (z\mu)[\eta(y)hx + \eta(x)hy] \right. \\ \left. + \kappa \left[\left(\eta(\nabla_z y) - g(y,\phi z) - g(y,\phi hz) \right) x + \eta(y)\nabla_z x \right. \\ \left. - \left(\eta(\nabla_z x) - g(x,\phi z) - g(x,\phi hz) \right) y + \eta(x)\nabla_z y \right] \right. \\ \left. + \mu \left[\left(\eta(\nabla_z y) - g(y,\phi z) - g(y,\phi hz) \right) hx + \eta(y)\nabla_z hx \right. \\ \left. - \left(\eta(\nabla_z x) - g(x,\phi z) - g(x,\phi hz) \right) hy + \eta(x)\nabla_z hy \right] \right. \\ \left. - \kappa [\eta(y)\nabla_z x - \eta(\nabla_z x)y] - \mu [\eta(y)h\nabla_z x - \eta(\nabla_z x)hy] \right. \\ \left. - \kappa [\eta(\nabla_x z)y - \eta(y)\nabla_x z] - \mu [\eta(\nabla_x z)hy - \eta(y)h\nabla_x z] \right. \\ \left. + R(x,y)\phi z + R(x,y)\phi hz \right\} = 0, \end{split}$$

where $\bigoplus_{\{x,y,z\}}$ denotes the cyclic sum of *x*, *y*, *z*. Putting ξ instead of *z* in the last relation and using (3.4) and (3.6) we obtain

$$- (y\kappa)x + (x\kappa)y + [(\xi\mu)\eta(y) - (y\mu)]hx + [-(\xi\mu)\eta(x) + (x\mu)]hy$$

+ $\eta(y)(\nabla_{\xi}h)x - \mu\eta(x)(\nabla_{\xi}h)y + \mu(\nabla_{x}h)y - \mu(\nabla_{y}h)x$
+ $[-(x\kappa)\eta(y) + (y\kappa)\eta(x) + \kappa(g(y,\phi hx) - g(x,\phi hy)))$
+ $\mu(g(hx,\phi hy) - g(hy,\phi hx) - g(hy,\phi x) + g(hx,\phi y))]\xi$
 $- \mu\eta(x)h\nabla_{y}\xi - \mu\eta(y)h\nabla_{x}\xi = 0.$

Substituting (2.1), (2.5) and (3.5) in the last relation we finally get (3.10) and it completes the proof of the Lemma.

Lemma 3.4 For any $P \in N$ there exist an open neighbourhood U of P and orthonormal local vector fields x_i , ϕx_i , ξ , i = 1, ..., m, defined on U, such as

 $(3.11) hx_i = \lambda x_i, \quad h\phi x_i = -\lambda\phi x_i, \quad h\xi = 0, \quad i = 1, \dots, m,$

where $\lambda = \sqrt{1 - \kappa}$.

Proof Using (3.3), we see that, at any point of *N* the tensor *h* has three eigenvalues; 0 with multiplicity 1, $\sqrt{1-\kappa}$ with multiplicity *m* and $-\sqrt{1-\kappa}$ with multiplicity *m*. The function $\lambda = \sqrt{1-\kappa}$ is smooth on *N*. Let $y_1, \ldots, y_m, y_{m+1}, \ldots, y_{2m}, y_{2m+1}$ be a basis of T_PN , such that $hy_i = \lambda y_i$, $i = 1, \ldots, m$, $hy_j = -\lambda y_j$, $j = m+1, \ldots, 2m$, $y_{2m+1} = \xi$. We extend y_k 's to vector fields on *N* and define the vector fields $w_i = (h + \lambda I)y_i - \lambda \eta(y_i)\xi$, $i = 1, \ldots, m$, $w_j = (h-\lambda I)y_j + \lambda \eta(y_j)\xi$, $j = m+1, \ldots, 2m$ and ξ . At *P* we have $w_i = 2\lambda y_i$, $i = 1, \ldots, m$, and $w_j = -2\lambda y_j$, $j = m+1, \ldots, 2m$. Thus $w_1, \ldots, w_m, w_{m+1}, \ldots, w_{2m}, \xi$

are linearly independent at P and hence in a neighbourhood U of P. At each point of U we have

$$hw_i = h((h + \lambda I)y_i - \lambda \eta(y_i)\xi) = \lambda w_i, \quad i = 1, \dots, m,$$

$$hw_j = h((h - \lambda I)y_j + \lambda \eta(y_j)\xi) = -\lambda w_j, \quad j = m + 1, \dots, 2m,$$

$$h\xi = 0.$$

The vector fields ξ , $x_i = \frac{w_i}{|w_i|}$ and ϕx_i , i = 1, ..., m, satisfy (3.11) and so the proof is completed.

From now on, we will call the vector fields of Lemma 3.4 a local *h*-basis. We suppose that $\{x_i, \phi x_i, \xi\}, i = 1, ..., m$, is a local *h*-basis on *N*. Substituting $x = x_i, y = \phi x_i$ in (3.10) we get

(3.12)
$$\lambda x_i \mu = x_i \kappa, \quad -\lambda \phi x_i \mu = \phi x_i \kappa, \quad i = 1, \dots, m.$$

Since m > 1, replacing x, y by x_i , x_j $(i \neq j)$ respectively, equation (3.10) gives

$$(3.13) -\lambda x_i \mu = x_i \kappa, \quad i = 1, \dots, m.$$

Finally, substituting $x = \phi x_i$, $y = \phi x_j$, $(i \neq j)$, in (3.10) we have

(3.14)
$$\lambda \phi x_i \mu = \phi x_i \kappa, \quad i = 1, \dots, m.$$

By virtue of (3.6), (3.12), (3.13) and (3.14) we obtain

(3.15)
$$x_i\kappa = \phi x_i\kappa = \xi\kappa = x_i\mu = \phi x_i\mu = 0, \quad i = 1, \dots, m.$$

Considering the 1-form $d\mu$ and using (3.15) we have $d\mu = (\xi\mu)\eta$, and so

$$(3.16) 0 = d^2\mu = d(\xi\mu) \wedge \eta + (\xi\mu)d\eta.$$

Using (3.15) and (3.16) we obtain $d(\xi\mu) = \xi(\xi\mu)\eta$ and so $\xi\mu = 0$. This together with (3.15) show that the functions κ and μ are constant on N. Therefore by the continuity of κ , μ we conclude that the functions κ , μ are constant on M. If $\kappa \equiv 1$, then using $h^2 = (\kappa - 1)\phi^2$, which is valid on any (κ, μ) -contact metric manifold, we get h = 0 and so by (3.1) and (2.10) M is Sasakian manifold.

So we have proved the following Theorem.

Theorem 3.5 On a non Sasakian, generalized (κ, μ) -contact metric manifold M^{2m+1} with m > 1, the functions κ , μ are constant, i.e., M^{2m+1} is a (κ, μ) -contact metric manifold.

Using Lemma 3.3, for the 3-dimensional case, and working as in the case m > 1, we easily prove the following Theorem.

Theorem 3.6 Let M be a non Sasakian, generalized (κ, μ) -contact metric manifold. If κ, μ satisfy the condition $a\kappa + b\mu = c$ (a, b, c, constant), then κ, μ are constant.

446

Remarks 1. If $\kappa = \mu = 0$, then $R(x, y)\xi = 0$ and such a contact metric manifold M^{2m+1} is locally the product of a flat (m+1)-dimensional manifold and an *m*-dimensional manifold of constant curvature 4 [2].

2. Recently, we have been informed by D. E. Blair, that (κ, μ) -contact metric manifolds have been classified [4]. For the 3-dimensional case see also [3].

Acknowledgment The authors thank the referee for his suggestions.

References

- [1] D. E. Blair, *Contact manifolds in Riemannian geometry*. Lecture Notes in Math. **509**, Springer-Verlag, Berlin, 1976.
- [2] _____, Two remarks on contact metric structures. Tohôku Math. J. 29(1977), 319–324.
- [3] D. E. Blair, T. Koufogiorgos and B. Papantoniou, *Contact metric manifolds satisfying a nullity condition*. Israel J. Math. **91**(1995), 189–214.
- [4] E. Boeckx, A full classification of contact metric (κ, μ) -spaces. Preprint.
- [5] F. Gouli-Andreou and P. J. Xenos, A class of contact metric 3-manifolds with $\xi \in N(\kappa, \mu)$ and κ, μ functions. Algebras Groups Geom., to appear.
- [6] _____, *Two classes of conformally flat contact metric 3-manifolds*. J. Geom., to appear.
- [7] R. Sharma, On the curvature of contact metric manifolds. J. Geom. 53(1995), 179–190.
- [8] S. Tanno, The topology of contact Riemannian manifolds. Illinois J. Math. 12(1968), 700–717.
- [9] _____, Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. **314**(1989), 349–379.

Department of Mathematics University of Ioannina Ioannina 45110 Greece email: tkoufog@cc.uoi.gr ctsichli@cc.uoi.gr