WEAK COMPACTNESS IN SPACES OF VECTOR VALUED MEASURES

F.G.J. WIID

We characterise relative weak compactness in $\sigma BM(\Sigma, X)$, the space of sigma-additive, X-valued measures of bounded variation, where X is a Banach space.

Let Σ be a σ -algebra of subsets of Ω and let X be a Banach space. We denote by $\sigma BM(\Sigma, X)$ the space of σ -additive vector measures $G: \Sigma \to X$ of bounded variation with the variation norm $|\cdot|$.

In this note we give necessary and sufficient conditions for a subset $K \subseteq \sigma BM(\Sigma, X)$ to be relatively weakly compact. This is achieved by modifying slightly the sufficient conditions given by Brooks and Dinculeanu in [1].

Let $\pi \subset \Sigma$ be a finite measurable partition of Ω and let

$$G_{\pi} = \sum_{A \in \pi} \mu(A)^{-1} G(A) \mu_A, \, G \in \sigma BM(\Sigma, X)$$

where $\mu_A(E) = \mu(A \cap E)$ for all $E \in \Sigma$.

A topology τ on $\sigma BM(\Sigma, X)$ is induced by the family

$$\{G \to x^*G(E) : x^* \in X^* \text{ and } E \in \Sigma\}$$

of linear functionals.

THEOREM. $K \subseteq \sigma BM(\Sigma, X)$ is relatively weakly compact if and only if the following conditions are satisfied

- 1) K is bounded;
- 2) $\{|G|: G \in K\}$ is uniformly μ -continuous for some positive measure μ ;
- 3) $\{G(E): G \in K\}$ is relatively weakly compact;
- 4) G_{π} converges weakly quasi-uniformly on \overline{K} , the closure of K in the topology τ , to G (that is given $g^* \in \sigma BM(\Sigma, X)^*, \pi \in P =$ { finite measurable partition of Ω } and $\xi > 0$, then there exist $\pi_1 \dots \pi_n \in P$, all finer than π , such that

$$\min_{i=1...n} \left| g^* G_{\pi_i} - g^* G \right| < \xi, \ G \in \overline{\overline{K}} \right).$$

Received 9 December 1987

46G10

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

F.G.J. Wiid

PROOF: We showed in [2] that K is relatively weakly compact if and only if the conditions (1)...(3) of the theorem, as well as the following condition:

$$g^* \in \sigma BM(\Sigma, X)^*$$
 restricted to \overline{K} is au -continuous,

are satisfied.

We assume without loss of generality that $K \subseteq L_1(\Sigma, \mu, X)$: one can always resort to the Stone space approach of Brooks and Dinculeanu [1].

It is clear that the martingale $(f_{\pi})_{P}$ converges strongly to f for every integrable f. Let $g^{*} \in L_{1}(\Sigma, \mu, X)^{*}$ and define g_{π}^{*} by

$$g_{\pi}^*(f) = g^*(f_{\pi}).$$

Then g_{π}^* converges pointwise to g^* . If K is relatively weakly compact, then g^* is τ -continuous and the Arzela-Ascoli theorem implies that the convergence $g_{\pi}^* \to g^*$ is quasi-uniform on $\overline{\overline{K}}$, as required.

Say conversely that $g_{\pi}^* \to g^*$ quasi-uniformly on \overline{K} . We showed in [2] that g^* has a representation of the following form.

Let $\bar{\pi}$ be a *-finite partition of * Ω that is finer than any standard measurable partition of Ω in some nonstandard world. Then

$$g^*(f) = st(\sum_{E \in \pi} x^* \int_E f d\mu).$$

where st denotes the standard part operation.

Now a simple computation shows that

$$g_{\pi}^* = \sum_{A \in \pi} st(\sum_{\substack{E \in \pi \\ E \subset A}} \mu^{-1}(A)\mu(E)x_E^* \int_A f d\mu) .$$

Hence g_{π}^* is represented by a simple function and it follows that g^* , being a quasiuniform limit of τ -continuous functions, is τ -continuous on $\overline{\overline{K}}$.

References

- J. Brooks and N. Dinculeanu, 'Weak compactness in spaces of Bochner integrable functions and applications', Adv. in Math. 24 (1977), 172-188.
- [2] F. Wild, Weak compactness in function spaces, (preprint).

National Research Institute for Mathematical Sciences C.S.I.R. P.O. Box 395 Pretoria 001 South Africa [2]