Mathematical Notes.

A Review of Elementary Mathematics and Science. PUBLISHED BY
THE EDINBURGH MATHEMATICAL SOCIETY
Edited by P. PINKERTON, M.A., D.Sc.

No. 14.
October 1913.

Geometrical illustration of the terms in Taylor's

 theorem.-The following is an extension of the note by $\mathbf{M r} \mathbf{W}$. M. Roberts in the Gazette (215 [v. 4, c], 1906); or of Mr A. H. Barker's discussion on p. 163 of his "Graphical Calculus."

Let $\mathrm{ONPA}=f(x)$ and $\mathrm{NM}=d x$ so that $\mathrm{NP}=f^{\prime}(x)$ and $\mathrm{RT}=d x \tan \theta=d x f^{\prime \prime}(x)$. Then

$$
\mathrm{OMQA}=\mathrm{ONPA}+\mathrm{NMRP}+\mathrm{PRT}+\mathrm{TQP}
$$

i.e.

$$
f(x+d x)=f(x)+d x f^{\prime}(x)+\frac{1}{2} d x^{2} f^{\prime \prime}(x)+\mathrm{PTQ} .
$$

Assume arc PQ to be parabolic. Then

$$
\mathrm{PTQ}=\frac{1}{3} \mathrm{PTQS}=\frac{1}{3} \mathrm{PR} . \mathrm{TQ}=\frac{1}{3} \mathrm{PR} \cdot \frac{\mathrm{PT}^{2}}{4 a \sec ^{2} \theta}=\frac{1}{3} \cdot \frac{d x^{3}}{4 a}
$$

But the equation of PQ is of form $4 a y=x^{2}+p x+q$ where $y=f^{\prime \prime}(x)$. Hence $4 a f^{\prime \prime \prime}(x)=2$ and

$$
\mathrm{PTQ}=\frac{1}{6} d x^{3} f^{\prime \prime \prime}(x)
$$

which provides a geometrical meaning for the fourth term in Taylor's theorem.

> G. D. C. Stokes.

