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Abstract

Background. Anorexia nervosa (AN) is a psychiatric disorder associated with marked mor-
bidity. Whilst AN genetic studies could identify novel treatment targets, integration of func-
tional genomics data, including transcriptomics and proteomics, would assist to disentangle
correlated signals and reveal causally associated genes.
Methods. We used models of genetically imputed expression and splicing from 14 tissues,
leveraging mRNA, protein, and mRNA alternative splicing weights to identify genes, proteins,
and transcripts, respectively, associated with AN risk. This was accomplished through tran-
scriptome, proteome, and spliceosome-wide association studies, followed by conditional ana-
lysis and finemapping to prioritise candidate causal genes.
Results. We uncovered 134 genes for which genetically predicted mRNA expression was asso-
ciated with AN after multiple-testing correction, as well as four proteins and 16 alternatively
spliced transcripts. Conditional analysis of these significantly associated genes on other prox-
imal association signals resulted in 97 genes independently associated with AN. Moreover,
probabilistic finemapping further refined these associations and prioritised putative causal
genes. The gene WDR6, for which increased genetically predicted mRNA expression was cor-
related with AN, was strongly supported by both conditional analyses and finemapping.
Pathway analysis of genes revealed by finemapping identified the pathway regulation of
immune system process (overlapping genes =MST1, TREX1, PRKAR2A, PROS1) as statistically
overrepresented.
Conclusions. We leveraged multiomic datasets to genetically prioritise novel risk genes for
AN. Multiple-lines of evidence support that WDR6 is associated with AN, whilst other priori-
tised genes were enriched within immune related pathways, further supporting the role of the
immune system in AN.

Introduction

Anorexia nervosa (AN) is a complex psychiatric disorder associated with alterations to satiety,
activity, and self-perception that results in severe mental distress and malnourishment (Sibeoni
et al., 2017). Cognitive behavioural therapy and weight rehabilitation are the first-line treat-
ments for AN, as there are still no approved pharmacotherapies for the disorder
(Wonderlich, Bulik, Schmidt, Steiger, & Hoek, 2020). Unravelling the biological complexity
of AN onset and its clinical course will be key to developing more effective interventions
and improving clinical management.

AN is influenced by genetic and environmental factors, with twin studies estimating her-
itability at 56% (Bulik et al., 2006), and common variants are now shown to account for
around 10–20% of liability scale heritability through genome-wide association studies
(GWAS) (Hirtz & Hinney, 2020). The most recent AN GWAS uncovered eight independent
genome-wide associated loci (Watson et al., 2019). GWAS present an opportunity to better
understand the biology of AN, as well as potentially identify novel treatment targets and
opportunities for drug repurposing (Reay & Cairns, 2021). For example, the latest AN
GWAS consolidated the strong genetic overlap between the disorder and systemic metabolic
factors like cholesterol and insulin, leading to AN being conceptualised a ‘metabo-psychiatric’
disorder (Adams, Reay, Geaghan, & Cairns, 2021; Watson et al., 2019). An ongoing challenge
in the field of AN genetics is to identify key genes and biological systems that are informative
to the pathogenesis of the disorder and may be relevant for treatment.

One way to approach this challenge is through gene-based aggregation methods that can
increase power to detect associations beyond genome-wide significant loci and yield more bio-
logically relevant information. In other words, rather than studying individual risk variants,
these data can be collapsed at the level of genes to reduce multiple-testing burden and resolve
key disorder-associated biological processes. For example, transcriptome wide association
studies (TWAS) achieve this by integrating mRNA expression data with GWAS association
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data to detect genes for which genetically predicted expression is
associated with the trait (Wainberg et al., 2019). TWAS can be
conceptualised as a genetic approach to more traditional differen-
tial expression analyses. Specifically, rather than directly measur-
ing mRNA expression in cases and controls, estimates of genetic
effects on mRNA expression are integrated with the effect of those
same genetic variants on a phenotype or disorder of interest. The
expression component of this approach constructs a model that
predicts mRNA expression for each gene using genetic variants.
As a result, TWAS is capable of prioritising genes that may be
involved in the disorder and assign them a direction of genetically
predicted expression that is odds increasing (Wainberg et al.,
2019). The direction of effect associated with the disorder derived
from TWAS, that is, upregulation or downregulation, is particu-
larly useful in the context of identifying compounds that could
reverse the risk-increasing direction of expression. This method
can also be extended to other quantitative functional data such
as protein and alternatively spliced mRNA isoform abundance.
Despite these useful features, TWAS alone is not a test of causality
as genes identified may arise due to the confounding factors like
co-regulation between genes or linkage disequilibrium between
the variants associated with expression (Reay & Cairns, 2021).
However, TWAS can be subjected to different statistical
approaches to attempt to increase the fidelity to identify true
risk genes for a trait (Hall et al., 2019; Mancuso et al., 2019).

AN TWAS have previously been performed and revealed some
insights into the pathogenesis of the disorder (Chatzinakos et al.,
2020; Cheng et al., 2020; Johnson et al., 2022). For example,
TWAS using the S-PrediXcan approach (Barbeira et al., 2018),
was previously performed in the study outlining the largest AN
GWAS, uncovering 36 genes with predicted expression associated
with the disorder using data from Genotype-Tissue Expression
(GTEx) project brain and blood data (Watson et al., 2019).
However, these studies in AN have only considered mRNA
expression, which may miss effects mediated from alternative spli-
cing or protein expression. Moreover, large sample size post-
mortem brain datasets like the PsychENCODE consortium
(NSamples > 1000) with expression and genetic data available pre-
sent an opportunity to boost power to discover AN associated
genes through TWAS. In this study, we utilise models of genetic-
ally predicted mRNA expression, protein expression, and alterna-
tive mRNA isoform abundance to prioritise genes involved in
AN. These association signals were further refined through condi-
tional analysis and finemapping to reveal several genes including
WDR6 that may play a role in AN biology. Pathways analysis also
implicated regulation of immune system process with gene set
functional analysis including signal from MST1, TREX1,
PRKAR2A and PROS1.

Materials and methods

Overview of study

We aimed to prioritise genes associated with AN and implicate
potential mechanisms related to expression and/or splicing.
Firstly, we conducted a comprehensive brain and blood-based
transcriptome-wide association study (TWAS) (Gamazon et al.,
2015; Gusev et al., 2016; Reay & Cairns, 2021). TWAS requires
expression data which can be imputed from independent
SNP-mRNA expression weights from multivariate models of
cis-acting genetically regulated expression (GReX). TWAS then
compares imputed expression with SNP-AN effect sizes to test

the association between predicted expression and the odds of
AN. Genes uncovered from this approach that survived multiple-
testing correction were then further probed to refine candidate
causal genes through conditional analysis and probabilistic fine-
mapping (Gusev et al., 2016; Mancuso et al., 2019). Whilst
mRNA expression is arguably the most well studied cellular read-
out, genes may operate more specifically in the pathogenesis of
AN through dysregulation of other factors like protein expression
and alternative splicing. As a result, we leveraged SNP weights,
where available, for protein expression and splicing to also per-
form a proteome-wide association study (PWAS) and an alterna-
tive splicing based test (spliceWAS). Notably, PWAS and
spliceWAS analyses have not previously be published for AN.
Genes were prioritised based on evidence from mRNA, protein,
and alternative isoform expression and then subjected to further
in silico analyses related to overrepresentation in biological path-
ways. The AN GWAS utilised in this study was a
meta-analysis encompassing European ancestry cohorts that
totalled 16 992 cases and 55 525 controls. In the AN GWAS,
case status was mostly ascertained from online questionnaires or
structured interviews based on standardised clinical criteria, for
example, DSM-IV, whilst the UK Biobank derived cases were self-
reported. Further details related to collection of samples, pheno-
type acquisition, and GWAS approach are described in the ori-
ginal publication (Watson et al., 2019).

Weights for genetically predicted mRNA, protein, and splicing

Brain related SNP weights (multivariate GReX) for TWAS were
derived from GTEx v7 and PsychENCODE, whilst whole blood
weights were also obtained from GTEx v7 (Gandal et al., 2018;
Gusev et al., 2016). The GTEx v7 SNP weights comprise data
from twelve different brain regions – with the sample sizes of
the cohorts utilised for GReX estimation as follows: amygdala
(N = 88), anterior cingulate cortex (N = 109), caudate (N = 144),
cerebellar hemisphere (N = 125), cerebellum (N = 154), cortex
(N = 136), frontal cortex (N = 136), hippocampus (N = 111),
hypothalamus (N = 108), nucleus accumbens (N = 130), putamen
(N = 80) and substantia nigra (N = 80). HapMap3 SNPs from the
1000 genomes phase 3 European reference panel were used as a
linkage disequilibrium (LD) estimate, to correspond with how
the weights were calculated with those same HapMap3 SNPs.
The TWAS using whole blood weights utilised the same LD ref-
erence strategy, with 369 GTEx v7 participants in these models.
Frontal or cerebral cortex tissue from the larger PsychENCODE
cohort was also utilised in terms of SNP weights, with a sample
size of 1695. As described in the original PsychENCODE publica-
tion, gene-wise GReX were estimated for all imputed SNPs, not
just the HapMap3 panel, and thus, we utilised the full suite of
the phase 3 1000 genomes European subset as the LD reference.
There were two tissues for which SNP weights related to protein
expression were available – the dorsolateral prefrontal cortex
(DLPFC, N = 376) and plasma (N = 7213) (Wingo et al., 2021;
Zhang et al., 2021). It should be noted that the plasma weights
were derived from the European subset of the study cohort and
the authors only used the elastic net method to derive GReX.
Analogous to the difference between the GTEx v7 and
PsychENCODE studies above, the DLPFC SNP weights were esti-
mated using the HapMap3 panel, and thus, we only used those
SNPs as an LD reference. The plasma PWAS utilised the full ref-
erence panel. Finally, the splicing related weights were derived
from the DLPFC samples from the Common Mind Consortium
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(N = 452) which utilised the HapMap3 restricted 1000 genomes
panel (Gusev et al., 2018).

Implementation of the FUSION pipeline

We conducted TWAS/PWAS/spliceWAS using the FUSION pack-
age (Gusev et al., 2016). Specifically, the FUSION.assoc_test.R
script was utilised, with the best performing GReX model selected
from five-fold cross-validation (R2) and the SNP weight set
selected by FUSION for calculating the TWAS Z score. In accord-
ance with usual practice for the FUSION approach, only genes/
transcripts with significantly non-zero cis-acting heritability
(cis-h2) are included. Prior to analysis, summary statistics were
also munged whereby SNPs were retained with an imputation
INFO > 0.9, as well as removing indels, strand ambiguous SNPs
and SNPs with MAF < 0.01. We corrected for the number of non-
missing models tested for the TWAS, PWAS, and spliceWAS
independently. Our primary method for correcting for multiple
testing was the Bonferroni approach considering all models tested
for each modality (TWAS, PWAS, and spliceWAS independently),
however, this is inherently conservative due to genes having
a GReX model in multiple tissues and correlations between
genes. As a result, we also used a more exploratory Benjamini-
Hochberg false discovery rate (FDR) approach for the TWAS,
PWAS, and spliceWAS separately.

Conditional analyses and probabilistic finemapping

We applied conditional analysis via the FUSION framework
(FUSION.post_process.R) to the regions of significant genes after
correction to investigate the proportion of implicated genes in
any given locus that are independently associated. Specifically,
jointly significant genes retain their significance after jointly esti-
mating association for all models within a 500 000 base pair
region of a significant gene. Marginally associated genes, which
are not jointly significant, likely arise due to factors such as
genes for which predicted expression was correlated.

Moreover, we applied probabilistic finemapping to prioritise
candidate causal genes from any locus in the AN GWAS sum-
mary statistics with at least a suggestively significant SNP ( p <
1 × 10−5) using the FOCUS method (Mancuso et al., 2019). The
default prior ( p = 1 × 10−3), and prior variance (nσ2 = 40), were
utilised to approximate Bayes’ factors such that the posterior
inclusion probability (PIP) of each gene being a member of a
credible set with 90% probability of containing the causal gene
could be derived. Finemapping was performed with default tissue
prioritisation, as well as the prioritisation of brain tissue. In the
TWAS, there were two reference panels utilised for finemapping
– for genes uncovered from a GTEx v7 tissue, we utilised the
default combined FOCUS SNP weight set which collated GTEx
v7 tissues, DLPFC (CommonMind), blood (YFS, NTR), and adi-
pose (METSIM) SNP weight sets (https://www.dropbox.com/s/
ep3dzlqnp7p8e5j/focus.db?dl=0), with genes discovered using
the PsychENCODE weights finemapped specifically using that
panel given the different LD parameters and its more complete
set of genes with cis-heritable models in that one tissue. The
multi-tissue finemapping panel contains several other non-brain
tissues, and thus, some GReX models that would not have been
available in brain and blood. We sought to balance maximising
the number of models available for finemapping, whilst acknow-
ledging that some of the tissues in this panel are less likely to be
disease relevant. As FOCUS allows the null mode that the causal

feature is not typed to be predicted as a possible member of the
credible set, we excluded any genes for which that occurred.
The credible set was defined by summing normalised PIP such
that ρ was exceeded, sorting the genes, and then including
those genes until at least ρ of the normalised-posterior mass is
explained, as described in more detail elsewhere (Mancuso
et al., 2019; Reay et al., 2021). As an exploratory analysis, we
also applied finemapping to the PWAS and spliceWAS results,
although the limited number of SNP weights available for protein
and alternative splicing means that the probability of a causal gene
for any region not being present is higher.

Investigation of prioritised AN associated genes

We investigated two sets of prioritised genes in silico: (1) condi-
tionally independent associations (TWAS/PWAS/spliceWAS)
from marginally significant signals (FDR < 0.05) that are at least
nominally jointly significant ( p < 0.05), and (2) genes in the fine-
mapped 90% credible set with PIP > 0.4 and the absence of the
null model in the credible set. Firstly, we considered biological
pathways and other ontological sets for which these two sets of
genes could separately be overrepresented via the g:Profiler frame-
work and the Benjamini-Hochberg method for multiple-testing
correction (Reimand, Kull, Peterson, Hansen, & Vilo, 2007). We
used the default background for gene-set enrichment (statistical
domain size) in g:Profiler of only genes annotated to at one
least domain out of the thousands of gene-sets considered.

Results

Novel AN risk genes uncovered through genetically predicted
expression or splicing

Firstly, a TWAS was performed using models of genetically pre-
dicted mRNA expression across twelve brain regions from
GTEx, cortical samples from the PsychENCODE consortium,
and whole blood GTEx samples. This was the most well-powered
approach as there were 57 596 mRNA models, that is genetically
predicted models of expression, available to test, with the number
of unique genes totalling 11242, 12183, and 5915, for GTEx brain,
PsychENCODE brain, and GTEx whole blood samples, respect-
ively (online Supplementary Table S1). TWAS tested the associ-
ation between genetically predicted expression of these mRNA
and the odds of AN. Correcting for all 57 596 genetic models of
mRNA expression ( p < 8.68 × 10−7) revealed 40 association sig-
nals (14 unique genes), with several genes revealed in multiple
brain regions (online Supplementary Table S1). We note here
that ‘signals’ refers to any detected association in a tissue, which
is different from unique genes as genes often have GReX models
available to test in multiple tissues. The most significant associ-
ation signals were found in a gene dense region on chromosome
3 (Fig. 1), in line with expectation given the significant GWAS sig-
nal for AN (chromosome 3: 47 588 253–51 368 253) overlaps this
cluster of significant genes. Upregulation of the gene encoding
WD Repeat Domain 6 (WDR6) was the top hit in this region
associated with increased odds of AN – ZTWAS = 7.44, p =
9.96 × 10−14 (GTEx cortex). This gene also surpassed
Bonferroni correction in several other tissues, including the larger
sample size PsychENCODE cortical samples, whole blood,
nucleus accumbens, and caudate basal ganglia. The WD repeat
protein family effects signal transduction (Li & Roberts, 2001),
whilst WDR6 is thought to influence cell cycle arrest (Xie,
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Wang, & Chen, 2007). Several other proximal genes toWDR6 also
survived Bonferroni correction in multiple tissues, such as,
CCDC71, NCKIPSD, and MST1R. O-6-Methylguanine-DNA
Methyltransferase (MGMT) was the most significant gene outside
of chromosome 3 (ZTWAS =−5.33, p = 9.88 × 10−8 – caudate basal
ganglia), followed by CDK11B on chromosome 1, and the long
non-coding RNA (lncRNA) LINC00324 on chromosome 17.
Previous analysis, differing in methodology and samples, found
an association between SUOX expression and AN which was
not replicated in the present study (Baird et al., 2021;
Chatzinakos et al., 2020). Using a more lenient FDR approach
for multiple-testing correction revealed more association signals
(273 signals, 104 unique genes, online Supplementary Table S1).
Additionally, we replicated 18 of the 36 significant associations
from a previously published AN PrediXcan analysis, including
WDR6 and their most significant association DALRD3. We

posit that any signals not replicated would be a function of
FUSION only using cis-heritable genes, differences in GReX con-
struction between the methods, and our study only including
brain and blood tissues.

We then sought to extend the power for gene discovery, as
well as supporting signals uncovered by the TWAS, through
integration of models of genetically regulated protein expres-
sion (PWAS) and alternative splicing (spliceWAS, online
Supplementary Tables S2, S3). In other words, these analyses con-
sidered the association of genetically predicted protein expression
and alternative splicing with AN rather than mRNA expression.
There were 2300 protein expression SNP weight sets in total avail-
able to test across the DLPFC and blood cohorts in which the
imputed expression models were trained. Two proteins survived
Bonferroni correction in the PWAS, and we uncovered four sig-
nals that were significant after applying a less stringent FDR

Fig. 1. TWAS associations and region plot of the densely associated AN signal on chromosome 3. a: Heatmap of genes with at least one Bonferroni significant eQTL
tissue associated with AN. Red indicates positive z scores; blue indicates negative z scores (legend). Columns indicates genes, rows indicate tissue models. *
Indicates nominally significant genes, ** indicates Benjamini-Hochberg significant associations, *** indicates Bonferroni significant associations. Grey squares indi-
cate that a significantly cis-heritable model of imputed expression data was unavailable in that tissue. b: Relative AN gene and SNP locations and significance.
Points in the top panel indicate SNPs, legend indicates r2, left side y-axis indicates the negative log transformed p value of SNPs, right side y-axis indicates
the recombination rate (cM/Mb). The bottom panel indicates the location of genes relative to the top panel SNPs. Plot generated using ZoomLocus (Pruim
et al., 2010) with 200 kb flanking size. The SNP with the most significant p value in this region: rs73082362 is highlighted.
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based cut-off (FDR < 0.05). The strongest protein association,
MHC class I chain-related gene B (MICB) (ZPWAS = 4.53, p =
5.75 × 10−6, plasma) was correlated with increased odds risk of
AN, however, due to the extensive LD of the MHC region it is dif-
ficult to apply approaches such as PWAS, and thus, this signal
should be treated cautiously. The densely associated region on
chromosome 3 harboured the next most significant protein
expression signal, with decreased predicted expression of
Glutathione peroxidase 1 (GPX1) associated with AN in the
DLPFC (ZPWAS =−4.41), mirroring its negative TWAS test statis-
tic in the hypothalamus for mRNA expression (ZTWAS =−4.51).
Thereafter, the remaining two proteins surviving correction
were each on different chromosomes (FGF23, chromosome 12
and CTNND1, chromosome 11). The spliceWAS yielded fourteen
transcripts that survived Bonferroni correction from the 7708
transcripts tested relating to 3291 total genes. Once more the
AN association dense region on chromosome 3 implicated already
by GWAS, TWAS, and PWAS, yielded the most significant signal,
with seven transcripts of Ariadne RBR E3 Ubiquitin Protein
Ligase 2 (ARIH2) significantly associated. Interestingly, there
were mixed directions of effect amongst the different isoforms
as increased predicted abundance of three splice variants were
associated with AN, whilst the converse was true for the remain-
ing four. None of these isoforms correspond to the canonical
transcript; chr3:48 918 821:48 967 151 (Howe et al., 2020). In gen-
eral, the ARIH2 gene is postulated to regulate ubiquitination
(Kelsall et al., 2013; Marteijn et al., 2005) and post-
transcriptionally modifies NLRP3 to reduce inflammatory activity
(Kawashima et al., 2017), however, the functional specificity of
particular splicing isoforms is less well characterised. This gene
was also not significant in the TWAS, despite having a well-
powered model of imputed expression in the PsychENCODE cor-
tical samples. The only remaining transcripts surviving
Bonferroni correction not proximally located to the chromosome
3 region were two isoforms of GPR75-ASB3 Readthrough
(GPR75-ASB3). Decreased predicted abundance of these two iso-
forms was associated with AN.

Conditional analyses and probabilistic finemapping further
refine AN association signals

Co-regulation and LD between genes can confound TWAS signals
and lead to spurious associations for non-causal genes.
Conditional analysis and finemapping was performed to distin-
guish genes with increased evidence of exerting an independent
causal effect on AN. In other words, we tested whether there
was statistical evidence to support each of our identified associ-
ation signals as directly relevant for the disorder. Conditional ana-
lysis (Gusev et al., 2016) estimates the residual independent
association of TWAS signals after controlling for the predicted
expression of nearby significant genes. Benjamini-Hochberg sig-
nificant TWAS genes were subjected to conditional analysis to
predict which genes accounted for the localised signal. From
313 significant TWAS signals, 97 genes had a conditionally inde-
pendent association ( pJoint < 0.05) with AN as indicated by their
nominally significant joint p value (online Supplementary
Table S4). The gene most significantly associated with AN,
WDR6 (Zconditional−TWAS = 7.4, p = 1 × 10−13, Cortex) maintained
an independent association after conditioning on the 77 other
TWAS significant gene models (21 unique genes) from chromo-
some 3, three of which are also conditionally independent
(CTNNB1, GOLIM4, STX19).

Finemapping through the FOCUS method (Mancuso et al.,
2019) is a Bayesian statistical method designed to isolate subsets
of genes more likely to contain causal genes based on a prior
expectation of the number of causal genes we expect. We applied
this approach to all suggestively significant regions in the AN
GWAS ( pGWAS < 1 × 10−5) to derive 90% credible sets. Credible
sets were removed if they contained the null model that is
included by FOCUS to account for missing causal mechanisms
like genes without a suitable GReX model. Across either
mRNA, protein or mRNA alternative splicing weights, there
were 116 genes that were prioritised in a credible set (online
Supplementary Table S5). Of these, eight genes (Table 1) had
moderate (PIP > 0.4) evidence of a causal effect on AN, while
five genes demonstrated strong evidence (PIP > 0.8). The strongest
evidence of a causal relationship was observed for Neurexophilin
And PC-Esterase Domain Family Member 1 (NXPE1) (PIP = 1,
testis). Surprisingly, NXPE1 was indicated for the testis (GTEx),
whilst it was also highly expressed in the colon (Aguet et al.,
2017). The other four genes with strong evidence of a potential
causal effect on AN were as follows: WDR6 (PIP = 0.997,
DLPFC), PRKAR2A (PIP = 0.814, GTEx artery tibial), PROS1
(PIP = 0.895, GTEx cortex) and the non-coding RNA
RP13-238F13.5 (PIP = 0.971, GTEx spinal cord cervical c-1).
WDR6 and MST1 were the only genes found to be both condi-
tionally independent with at least moderate finemap evidence of
a causal relationship (Table 1). Macrophage Stimulating 1
(MST1) mediates cell division and apoptosis (Wang et al., 2020;
Zhang et al., 2019) and is predicted to increase risk of AN
(ZTWAS = 4.85, p = 1.2 × 10−6, GTEx Hypothalamus). However,
finemapping of the MST1 PWAS indicates evidence of a protect-
ive relationship with AN (Zfinemap = −4.63, PIP = 0.457, blood
plasma protein). This discordant direction between mRNA and
protein requires further investigation to refine its biological sali-
ence. The power of finemapping to identify causal genes increases
when more GReX expression models are included, and thus, tis-
sues were used for finemapping that were not subjected to the
marginal TWAS, since removing these would decrease finemap-
ping power. There are three genes (RP13- 28F13.5, NXPE1 and
PRKAR2A) without TWAS blood and brain associations. One of
these; PRKAR2A, exists in a credible set with four other genes
(the same set as the finemapped TREX1), three of which are asso-
ciated within brain regions.

Functional interrogation of prioritised AN risk genes suggests a
role for immune function

Pathway analysis was performed on the conditionally independ-
ent (N = 97) and finemapped credible set of genes (N=8)
using g:Profiler (Ensembl 103, Ensembl Genomes 50). We
focused on pathways that were enriched for either of these
input sets of genes that survived FDR correction (FDR < 0.05)
and had at least three intersecting genes with the input list.
Firstly, the conditionally independent genes were overrepre-
sented amongst pathways related to the presynaptic active zone
(overlapping genes = STX19, CTNND1, CTBP2, CTNNB1)
(online Supplementary Table S6). While the genes prioritised
by finemapping were overrepresented in the regulation of
immune system process (overlapping genes =MST1, TREX1,
PRKAR2A, PROS1) (online Supplementary Table S7). We note
that as there were only eight genes that survived our finemap-
ping pipeline that pathway analyses using this set of genes is
somewhat underpowered.
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Table 1. Finemapped associations

Molecular
name

Tissue
(finemapped

model) Ref name Zfinemap PIP ZTWAS (P) -tissue
ZPWAS (P)
-tissue Region

Credible set
size (brain/
default)

MST1 Blood plasma
protein

GTEx −4.63 0.457 4.85 (1.2 × 10−6)- hypothalamus – Conditionally independent −3.4787
(5.04 ×
10−4)
-plasma

3: 49 317
941–3: 51
830 833

NA/1

WDR6 Brain
dorsolateral
prefrontal cortex

PsychENCODE 6.46 0.997 7.44 (9.96 × 10−14)- cortex – Conditionally independent NA 3: 49 317
338–3: 51
828 635

1/1

RP13-238F13.5 Brain spinal
cord cervical c-1

GTEx 5.01 0.97 NA NA 10: 125
919 795–
10: 127
999 424

1/1

NXPE1 Testis GTEx 6.02 1 NA NA 11: 114
833 710–
11: 116
383 064

1/1

C3orf62 Brain
dorsolateral
prefrontal cortex

CommonMind
Consortium

−7.19 0.423 −7.13 (9.71 × 10−13)- cortex NA 3: 47 777
774–3: 49
313 978

4/384

TREX1 Brain cortex GTEx −6.95 0.449 −3.2575 (1.1 × 10−3) – Nucleus accumbens basal ganglia −2.1349
(0.032)
-DLPFC

3: 49 317
338–3: 51
815 687

5/476

PROS1 Brain cortex GTEx 5.21 0.895 0.07 (0.94) -whole blood NA 3: 94 256
654–3: 95
306 175

2/3

PRKAR2A Artery tibial GTEx −6.95 0.814 NA NA 3: 49 317
338–3: 51
815 687

5/476

Finemapped genes with moderate or strong evidence of a causal effect on AN (PIP > 0.4). Tissue indicates which tissue the expression weights were derived from, Ref name indicates the group/consortium responsible for eQTL generation, Zfinemap

indicates the estimated Z score association, PIP indicates the posterior inclusion probability and region indicates the GRCh37 genomic region the credible set was derived from. Credible set size indicates the number of genes in the credible set when
prioritising brain or any tissue. All genes are in the credible set. ZTWAS (P) -tissue and ZPWAS (P) -tissue indicates the TWAS and PWAS Z score and p value associated with the most significant tissue for each association. No spliceWAS associations are
available for these eight genes.
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Discussion

We integrated genome wide association signals for AN with gen-
etically regulated gene expression to identify novel risk genes and
biological insights into the disorder. Critically, through the appli-
cation of methods such as conditional analysis and finemapping,
we refined a smaller set of genes with greater confidence of true
association that can be subjected to future follow-up study.
Leveraging proteomic and alternative splicing data also revealed
association signals that were not seen using mRNA data alone.
While previous studies have uncovered potential AN risk genes,
our use of statistical finemapping and conditional analysis allowed
us to prioritise confident associations such as WDR6 that more
likely exert a causal effect. Upregulation of WDR6 exhibited a
plausible causal relationship with AN across all methods with
available data (TWAS, conditional analysis, finemapping). While
the surrounding region is rich with genes predicted to have an
association, a conditionally significant TWAS signal along with
the finemapping evidence suggests that WDR6 is a causal gene
at this locus, however, further analyses such as SNP based fine-
mapping and in silico prediction of variants in this locus are war-
ranted to confirm this finding given genetic influence on disease
may not directly be mediated by cis-acting expression. WDR6 is a
conserved repeat region expressed ubiquitously during human
development that may function as a restriction factor to inhibit
virus replication and a protein complex assembly platform (Li
et al., 2000; Sivan, Ormanoglu, Buehler, Martin, & Moss, 2015;
Smith, 2008). Previous work in a rodent model suggests WDR6
may modulate insulin signalling in the hypothalamus (Chiba
et al., 2009), which is interesting given that we observed evidence
to suggest fasting insulin level exerts a protective effect against AN
risk (Adams et al., 2021).

Mounting evidence suggests a relationship may exist between
immune function and AN (Dalton et al., 2018a; Reay et al.,
2022). Starvation can lead to inflammation; however, there
remains differences between the presentation of immune dysregu-
lation during malnutrition and AN, suggesting an underlying
relationship may exist beyond the pathology associated with mal-
nutrition (Gibson & Mehler, 2019). Interestingly, four of the eight
finemapped genes were members in the immune system processes
gene-set, which was a statistically significant overrepresentation.
This is supportive of previous observations suggesting that
immune system dysregulation may contribute to AN onset and
maintenance (Gibson & Mehler, 2019). Furthermore, the stron-
gest protein PWAS signal MICB, which implicates the MHC
region, and the lead mRNA isoform gene ARIH2 were also pre-
sent within the immune system processes pathway. However,
the overrepresentation in this instance was not significant like
the finemapped genes. The identification of MICB in the PWAS
necessitates further analysis of the MHC region in AN, such as
the role of specific human leucocyte antigen types. Finemapped
genes; MST1 (Chanda et al., 2016; Lu, Zhao, & Liu, 2020),
PRKAR2A (Kong et al., 2016) and WDR6 (Lv, 2022) have previ-
ously been linked to inflammatory processes. Additionally, AN is
also observationally associated with a pro-inflammatory state
which includes increased levels of cytokines such as tumour
necrosis factor and interleukins 1 and 6 (Caso et al., 2020;
Dalton et al., 2018b; Gibson & Mehler, 2019). These studies are
likely confounded by factors like reverse causality that complicates
their interpretation, whilst there is evidence suggesting that some
protein expression differences in severe AN may disappear after
rehabilitation (Nilsson et al., 2020). Recent genetic studies suggest

a protective effect of C-reactive protein (CRP) on AN, which may
relate to infection susceptibility given that CRP is not simply a
marker of inflammation (Reay et al., 2022; Tylee et al., 2018), as
is often characterised, and directly participates in processes like
phagocytosis (Dalton et al., 2018a; Del Giudice & Gangestad,
2018). Our data suggests that genes with immune related func-
tions are involved in the pathogenesis of AN. Further work is
now needed to refine whether the immune system is a plausible
target for AN that could lead to new treatments. Pathway analysis
performed on prioritised genes support these data that genetic
risk for AN may exert a functional role in the immune system.
The mechanistic action of the immune system in AN pathophysi-
ology remains still largely uncharacterised, however, further
experimental exploration of the specific genes prioritised in this
study may reveal clinically relevant insights.

Whilst TWAS, SpliceWAS and PWAS provide a mechanistic
framework for the associative evidence between genes and disease,
there is also significant confounding by co-regulation derived cor-
relation. TWAS associations can also be confounded by linkage
disequilibrium which can bias SNP effect estimates for both
expression weights and disease associations (Wainberg et al.,
2019). Performing TWAS is also limited to some extent by the
sample size of GReX data from different tissues and that some
genes are not expressed and are therefore ‘missing’ from a relevant
gene set. Incompleteness of gene expression data diminishes the
effectiveness of finemapping, null models within the credible set
could be better linked to potentially causal genes which would
allow for the identification of other causal genes. Our understand-
ing of the genetic architecture of AN is also far from complete,
both in terms of common variants and effects mediated through
rare or structural variants. Future larger-scale AN GWAS planned
will help to consolidate the strength and replicability of these find-
ings. Previous work in power analysis for TWAS approaches have
suggested that both expression and trait heritability/sample size
influence discovery power. The liability scale SNP heritability of
AN even at current sample sizes is larger than several other psy-
chiatric disorders, supporting that post-GWAS analyses can be
deployed despite the above limitations. Moreover, expression-
based approaches would be greatly improved by access to cell-type
specific genetic models of expression. In terms of bulk-tissue
panels, the PsychENCODE cortical dataset is well-powered and
captures genetic effects on numerous genes, however, this is not
the case for other brain regions and tissues in GTEx where sample
size is much smaller. Another limitation of the eQTL association
data used in this analysis is that it captures steady-state expression
levels which cannot directly distinguish between decay rates of
mRNA and transcriptional variance (Pai et al., 2012).
Furthermore, these analyses were performed in exclusively
European ancestries, and as more diverse non-European samples
and trans-ancestry GWAS become available, this is likely to
improve TWAS and finemapping studies (Aguet et al., 2017; Pai
et al., 2012; Veturi & Ritchie, 2018; Watson et al., 2019).
Finally, the existing AN GWAS has predominately female com-
position which somewhat restricts the identification of sex specific
causal risk/protective factors.

In conclusion, our study highlighted novel genes, proteins
and mRNA isoforms predicted to affect AN risk. We provide
strong evidence suggesting that WDR6 and several genes related
to immune system function contribute to the pathogenesis of
the disorder. Further research is warranted to establish these
mechanisms and determine their potential as targets for
treatment.
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