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Abstract
Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty
acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty
acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol)
and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between
stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as
concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of
total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between
blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data
reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study
raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies
evaluating fatty acids and their relationships with disease biomarkers or risk.
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Fatty acids have diverse biological roles that are central to human
health and disease. Qualitative and quantitative changes in the
dietary fat content as a result of the modern Western diet(1–3)

have altered the balance of circulating and resultant tissue levels
of SFA, MUFA and PUFA and their metabolites. Many of these
changes have been associated with alterations in the levels of
disease biomarkers and chronic inflammation, which may impact
the risk for diseases such as CVD, diabetes and cancer(4–8).
In mammals, SFA and MUFA can be obtained preformed

from the diet or synthesised in vivo. In contrast, PUFA must be

obtained from the diet. The two essential dietary PUFA
precursors are the eighteen-carbon n-6 PUFA, linoleic acid
(LA, C18 : 2n-6), and the n-3 PUFA, α-linolenic acid (ALA,
C18 : 3n-3). The long-chain PUFA can be obtained from the diet
or biochemically derived from essential PUFA through a series
of alternating desaturation and elongation enzymatic steps(9).
For example, the n-6 long-chain PUFA, arachidonic acid (ARA,
C20 : 4n-6), can be synthesised from LA; the n-3 long-chain
PUFA, EPA (C20 : 5n-3) and DPA (C22 : 5n-3), can be
synthesised from ALA.
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There remain important questions concerning the recom-
mendations for quantities and ratios of dietary fatty acids nee-
ded to maintain health. In particular, there has been an intense
debate as to whether replacing dietary SFA with the n-6 PUFA
LA, abundant in vegetable oils, has benefited or harmed human
health(10,11). The question of dietary requirements has been
complicated by recent studies illustrating wide genetic varia-
tions in the capacity of individuals and racial/ethnic groups to
metabolise dietary PUFA(11–13).
Consequently numerous studies have directly examined the

relationships between levels of fatty acids in circulation or cells/
tissues and disease biomarkers and the incidence of human
disease(14–23). In such studies, fatty acid levels have been
evaluated in whole blood, erythrocytes, serum, plasma or
fractionated plasma components (phospholipids, cholesterol
esters, TAG, unesterified fatty acids) utilising GC with flame
ionisation detection. Fatty acid data from such studies typically
have been expressed as a percentage of an individual fatty acid
normalised to the total amount of all fatty acids measured in the
sample (i.e. 100 %). This expression method can serve to
overcome inter-study variations in extraction and separation
efficiencies in fatty acid analyses. In contrast, a few studies have
reported fatty acid levels as absolute concentrations(24,25). This
is interesting as other blood lipids and biomarkers are generally
reported in units of concentration.
The current study examined associations between levels of

circulating total fatty acids and blood lipids (TAG, and LDL,
HDL or total cholesterol (TC)) in two human cohorts. This study
has identified strong associations between circulating fatty acids
and lipid biomarkers. However, these data also point out
striking differences in associations garnered from data utilising
the common practice of expressing fatty acids as a percentage
of total v. data in which fatty acids are expressed as in terms of
concentration (mg/dl or mmol/l).

Methods

Participants

The Diet, Exercise, Metabolism and Obesity in older women
(DEMO) study was conducted from 2003 to 2007; the details of
this study have been described elsewhere(26). The DEMO
cohort consisted of ninety-three women who were overweight,
but were otherwise healthy. A second, replicate, cohort was
from a study designed to assess the effects of botanical and fish
oils on disease biomarkers in the diabetes/metabolic syndrome
subjects that was carried out from 2012 to 2013(27). The latter
diabetes/metabolic syndrome cohort was composed of fifty-
nine participants (59 % women) who had been diagnosed with
either early-stage type 2 diabetes or had the metabolic syn-
drome(28,29). Both studies were approved by the Wake Forest
School of Medicine Institutional Review Board, and all partici-
pants gave written, informed consent for their respective study
as well as for future research use of their archived biospeci-
mens. Blood lipid profiles (including TAG, and LDL, HDL or
TC) were measured in plasma (DEMO) or serum (the diabetes/
metabolic syndrome study) at baseline (pre-intervention) by a
qualified clinical laboratory (LabCorp).

Fatty acid analysis

Total serum fatty acids were analysed by GC with flame ioni-
sation detection(30) using a Hewlett Packard 5890 instrument
(Agilent) with an Agilent J&W DB-23 column (30 m, 0·25 mm
ID, 0·25 µm film; Agilent) fitted with an inert pre-column (1 m,
0·53mm ID) for cool on-column injection. Fatty acid was
cleaved from complex lipids and converted to methyl esters in
duplicate serum samples (100 μl) utilising a modification of
Metcalfe et al.(31). Fatty acids in samples were identified on
the basis of retention times of commercially available authentic
fatty acid methyl ester standards. Triheptadecanoin (100 µg;
TAG of C17 : 0; Nu-Chek Prep) was included in the samples as
an internal standard. Fatty acids (23–29 peaks) were routinely
identified and these accounted for >99 % of the total fatty
acids in the sample. Archival baseline serum samples from the
DEMO study had been stored at −80°C for 6–10 years.
The stability of circulating fatty acids over this time period
has been reported to be excellent(32). Fatty acid data are
presented as the percentage of total fatty acids in the sample
or expressed as concentration (mmol/l) in serum. Data for
nineteen of the most abundant fatty acids were used for
association analyses.

Statistical analyses

Measures of association between selected serum fatty acids and
blood lipids are reported as Pearson’s sample correlation
coefficients, with statistical significance for non-zero correla-
tions derived from hypothesis tests using Fisher’s z-transfor-
mation. Theoretical predictions for the correlations between
circulating lipids and fatty acid expressed as a percentage of
total were derived using standard linear model theory and a
first-order Taylor expansion for functions of multivariate ran-
dom variables(33), described in detail in the online Supple-
mentary Materials. All analyses were carried out using the
statistical environment R (http://cran.r-project.org).

Results

Characteristics of the study populations

The DEMO cohort consisted of ninety-three women (61 %
European-American, 39 % African-American) ranging in age
from 50 to 65 years, with an average age of 56·9 (SD 4·4) years.
Aside from being overweight (BMI, 33·3 (SD 3·8) kg/m2; range
26–41·3), this cohort of postmenopausal women was generally
healthy, as diabetes, coronary artery disease, cancer, diseases of
the liver, kidneys or lungs and tobacco use were criteria for
exclusion from the study. In addition, the individuals in the
cohort did not, on average, meet the criteria to be classified as
having the metabolic syndrome(28,29).

A replication cohort consisted of subjects (n 59; 59 %
European-American, 39 % African-American, 2 % Asian) with
the diabetes/metabolic syndrome and was composed of thirty-
five women (59 %) and twenty-four men. The average age of
this cohort was 58·1 (SD 5·6) years (range 40–74) and the
average BMI was 34·2 (SD 5·6) kg/m2 (range 23–49).
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Circulating fatty acid profile

Total fatty acids were analysed in baseline fasting serum
samples (before any intervention) of the ninety-three women
from the DEMO cohort. A total of fifty-nine serum samples were
available for analysis from the diabetes/metabolic syndrome
cohort. Table 1 shows the fatty acid profile of the twenty-three to
twenty-nine fatty acids routinely detected in these serum sam-
ples. These fatty acids accounted for >99 % of the fatty acids in
the samples. The fatty acid data are presented using two methods
of expression: the absolute concentration in μmol/l of serum and
the relative amount to total fatty acids (i.e. percentage of total
fatty acid) in serum. Nineteen of the most abundant circulating
fatty acids were subsequently used for association analyses.

Relationship between selected serum fatty acids and
circulating TAG levels

Fig. 1 shows the statistically significant associations between TAG
and the two most abundant circulating fatty acids, LA (31%) and
oleic acid (OA) (19–20 %), calculated as a percentage of total and
as concentrations. However, the direction of the relationship
between TAG and LA was negative when expressed as a
percentage of total (Fig. 1(b); r −0·53; P< 0·0001), but positive
when expressed as the serum concentration (mmol/l) of LA
(Fig. 1(a); r 0·60; P< 0·0001). In contrast, the association between
TAG and OA was positive using either fatty acid expression
method (r 0·71 with P< 0·0001 for percentage of total, Fig. 1(b);
and r 0·90 with P< 0·0001 for absolute concentration, Fig. 1(a)).
Using an independent data set from the diabetes study

cohort, we observed similar patterns (Fig. 1(c) and (d)) of
relationships between LA and OA and TAG levels. Here too, the
direction of the relationship between TAG and LA was negative
when expressed as a percentage of total (Fig. 1(d); r −0·53;
P< 0·0001), but positive when expressed as the serum con-
centration (mmol/l) of LA (Fig. 1(c); r 0·37; P< 0·005), and the
association between TAG and OA was positive using either fatty
acid expression method (r 0·62 with P< 0·0001 for percentage
of total, Fig. 1(d); and r 0·87 with P< 0·0001 for concentration,
Fig. 1(c)). We observed that the relationship between the
alternative forms of fatty acid expression and TAG levels was
consistent whether examining African-American and European-
American subgroups or the entire cohort (data not shown).
To better understand the discrepancies observed with

different methods of analysis, we derived a mathematical equa-
tion that could use the observed concentrations of fatty acids to
predict the correlation between TAG and fatty acids when fatty
acids were expressed as a percentage of total. As the percentage
of total fatty acids is a non-linear function of fatty acid con-
centrations, we used a first-order Taylor-series expansion to
estimate the correlation between TAG and fatty acid expressed
as a percentage of total (see the online Supplementary Materials
for mathematical details). Importantly, we observed that the
variable direction in the relationship only depends on the serum
fatty acid concentrations, their statistical variability and the
correlation with TAG levels. Mathematically, the sign of the
correlation between TAG and percentage of total solely depends
on the sign of the term ρ1σ1μ2− ρ2σ2μ1, where μ1 denotes the

average concentration of a serum fatty acid in the cohort, μ2 the
average of all other fatty acid concentrations, σ1 and σ2 the
respective standard deviations, and ρ1 and ρ2 the respective
correlations with the TAG levels (see the online Supplementary
Materials for details). Specifically, the correlation between TAG
and percentage of total fatty acids will be negative if, for a given
fatty acid, the product of the correlation with the TAG levels and
its CV is smaller than the corresponding product for all other fatty
acid concentrations combined:

ρ1 ´ σ1 = μ1 < ρ2 ´ σ2 = μ2:

In the case of LA (Fig. 2(a)), the average concentration among
the ninety-three samples (DEMO cohort) was 3·83 mmol/l
(estimate for μ1), and the average of all other fatty acids was
8·27mmol/l (estimate for μ2). The respective SD were 0·77mmol/l
(estimate for σ1) and 2·17mmol/l (estimate for σ2), yielding
estimated CV of 0·20 and 0·26, respectively. The sample
correlations with TAG levels were 0·60 (estimate for ρ1) and 0·87
(estimate for ρ2), respectively. As 0·12= 0·60×0·20< 0·87×
0·26= 0·23, the correlation between TAG and percentage of total
LA is predicted to be negative. Fig. 2(b) shows that the observed
ratio of means and standard deviations (large green circle) for LA
does reside in the predicted (grey) area of negative correlation.

In contrast, the average OA (Fig. 2(c)) concentration among the
ninety-three samples was 2·39mmol/l, and the average of all
other fatty acids was 9·70mmol/l. The respective SD were 0·76
and 2·04mmol/l, yielding estimated CV of 0·32 and 0·21,
respectively; the sample correlations with TAG levels were 0·90
for OA and 0·82 for the sum of all other fatty acids. As
0·90×0·32= 0·29> 0·17= 0·82× 0·21, the predicted correlation
between TAG and percentage of total OA should be positive
(Fig. 2(d)). In addition, the direction of the associations of ARA
(Fig. 2(e) and (f)) and DHA (Fig. 2(g) and (h)) with TAG is pre-
dicted to be negative as shown. Importantly, comparable direc-
tional relationships between these fatty acids and TAG were
observed in the replication cohort (online Supplementary Fig. S1).

Relationship between alternative forms of fatty acid
measurement

The mathematical model clearly established that the predicted
and observed relationships between TAG and selected fatty
acids (LA, OA, ARA and DHA) are in agreement. It was then
important to evaluate the relationships between the alternative
forms of fatty acid expression (independent of lipid biomarkers)
across the wider array of fatty acids assessed in these data. As
would be expected, the correlations between total and
individual fatty acid concentrations in serum were all positive
(not shown). In contrast, the correlation between total fatty acid
concentration and the percentage of total fatty acids for an
individual fatty acid were observed to be either positive or
negative, depending on the fatty acid. Mathematically, the
predicted sign of the correlation between total fatty acid
concentration and percentage of total fatty acid depends solely
on the term σ1μ2(σ1 + ρσ2)− σ2μ1(σ2 + ρσ1), whereas, above, μ1
denotes the average concentration of a serum fatty acid in the
population, μ2 the average of all other fatty acid concentrations,
σ1 and σ2 the respective standard deviations, and ρ the
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correlation between the serum fatty acid concentration and total
fatty acid level less than the fatty acid of interest (see the online
Supplementary Materials for details). The correlation between
total fatty acid concentration and percentage of total fatty acid
will be negative if, for a given fatty acid, its CV is small compared
with the coefficient for all other fatty acid concentrations com-
bined, with the exact threshold for the sign depending on ρː

σ1 + ρσ2ð Þσ1 = μ1 < σ2 + ρσ1ð Þσ2 = μ2:
Among the nineteen fatty acids examined, fourteen, including

OA, exhibited a positive relationship between the total fatty acid
concentration and the individual fatty acid when expressed as
percentage of total as evidenced by the location of the observed
ratio of fatty acid means and standard deviations (Fig. 3(a);
green circle). These include C18 : 1n-9t, C20 : 5n-3, C20 : 1n-9,
C16 : 1n-7, C20 : 3n-6, C22 : 5n-3, C18 : 3n-6, C18 : 3n-3, C18 :
1n-7, C17 : 1, C15 : 0, C14 : 1, C18 : 1n-9 and C16 : 0, in order of
increasing value of the correlation coefficient (ρ; range
0·32–0·94). In contrast, for five fatty acids, including LA, the
correlation between percentage of total for an individual fatty
acid and total fatty acid concentration was negative (Fig. 3(b)).
For this group of fatty acids (C22 : 6n-3, C20 : 4n-6, C20 : 2n-6,
C18 : 2n-6 and C18 : 0), the observed ratio of fatty acid means
and standard deviations fell in the negative correlation field.
Thus, the directionality of the relationship between fatty acids
as a percentage of total (a relative expression) and total fatty
acid concentration (absolute expression) among fatty acid
species is an apparent inherent property and independent of
the TAG. Nevertheless, we believed it important to evaluate the

impact of the alternative fatty acid expression methods on the
relationships between fatty acids and other blood lipids, whose
fatty acid content differs qualitatively and quantitatively from
that in TAG.

Relationship between serum fatty acid expression method
and other blood lipids

In addition to TAG, circulating fatty acids also reside in other
circulating complex lipids including LDL, HDL and TC, which
have been utilised as disease biomarkers. Fig. 4 summarises the
associations between cholesterol-containing blood lipids and
selected serum fatty acids (OA, LA, ARA, ALA, DHA) using both
concentration (mmol/l) and percentage of total data. With the
exception of HDL, the (Pearson’s) correlations of blood lipids
with fatty acid concentration (mass) were positive (blue cells),
whereas the correlations with percentage of total data were
either positive (blue) or negative (pink). Importantly, the
mathematically predicted association values for percentage of
total were nearly identical (in both magnitude and direction) to
those observed for percentage of total fatty acids. As was the
case for TAG, the associations of TC, LDL, HDL and the TC:HDL
ratio with OA were consistent for both expression methods.
Like LA, the long-chain n-6 and n-3 PUFA (ARA and DHA,
respectively) showed a reversal in the direction of associations
using the percentage of total fatty acid expression for TAG, TC,
LDL and the ratio of TC:HDL-cholesterol. In contrast, associa-
tions with HDL tended not to undergo a change in direction
between the fatty acid expression methods, except for LA, for
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Fig. 1. Impact of fatty acid (FA) expression method on the TAG relationship with oleic acid (OA, C18 : 1n-9) and linoleic acid (LA, C18 : 2n-6). The relationship between
TAG and the most abundant circulating FA, LA (31%), differs ( , C18 : 2n-6) on the basis of the method of FA expression: concentration (mmol/l) (a); or as percentage
of total (b) in the Diet, Exercise, Metabolism and Obesity in Older Women (DEMO) cohort. The same relationships were also examined in the replicate population
(the diabetes/metabolic syndrome cohort; right panels) as concentration (mmol/l) (c); or as percentage of total (d). The relationship between TAG and OA (19–20%) is
unaffected ( , C18 : 1n-9) by the method of FA expression. For visualisation, the linear regression line is shown for each data set.
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which the associations were not very robust. The associations
between TAG and DHA were comparable (for mass observed,
positive; percentage of total observed and predicted, negative)
to that for the association between TAG and EPA+DHA
(mass observed, 0·30; percentage of total observed, −0·21, and
predicted, −0·19). Nearly identical results, both in the
robustness and direction of correlations, were observed in
the replication data set (online Supplementary Fig. S2). Overall,
the mathematically modelling technique appears to be useful
for predicting a reversal in the direction on associations
between fatty acid expression methods and blood lipids.

Discussion

The identification of relationships between fatty acids levels and
disease biomarkers are important to understand potential roles of
fatty acids in human disease as well as to predict disease risk or
monitor disease progression. Consequently, numerous studies over
the past 50 years have examined the relationships between dietary
intake of fatty acids and circulating and cellular levels of fatty acid
and disease biomarkers, disease incidence and progres-
sion(22,23,34–40). Importantly, these studies have also been the basis
of dietary fatty acid recommendations for human populations(41,42).
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However, numerous factors complicate the assumption that
there is a link between fatty acid intake levels with disease risk or
to develop dietary recommendations. For example, multiple
pools of fatty acids, including both dietary fatty acids as well as
endogenously synthesised fatty acids from tissues such as the
liver and adipose, contribute to circulating fatty acid levels. In
addition, adipose tissue is a major storage repository for fatty
acids, which can be released into circulation under a variety of
conditions. Moreover, recent studies show that there can be
major differences in the frequencies of genetic variants that
impact fatty acid levels and particularly conversion of n-6 and
n-3, eighteen-carbon PUFA to long-chain highly unsaturated
fatty acids in different human populations(12,13,43,44). All of these

are key factors that contribute to circulating and cellular levels of
fatty acids and complicate studies that attempt to associate
dietary fatty acids and disease biomarkers or risk.

In addition, fatty acids are measured in a wide variety of
circulating (plasma, serum, plasma phospholipids and cholesterol
esters) and cellular compartments (erythrocytes or leucocytes) or
mixtures (whole blood) often without a great deal of considera-
tion for why a particular compartment was used. Total circulating
fatty acids represent a combination of free fatty acids and those
in complex lipids (esterified to TAG, cholesterol esters and
phospholipids) in lipoprotein particles. Each of these compart-
ments contains different fatty acid profiles(45,46). For example,
Edelstein(45) showed that, in human serum, n-6 PUFA account for
22% of the fatty acids in the TAG, 38% in the phospholipids and
60% in the cholesterol esters. In contrast, n-3 PUFA accounts for
only 1·8% of the fatty acids in the TAG, 3·5% in the phospholi-
pids and 1·7% in the cholesterol esters. This issue is made even
more complex given that there are hundreds of fatty acid-
containing molecular species contained within glycerolipid,
phospholipid and sphingolipid classes in human plasma(47).
Therefore, results garnered from any study depend on which
blood fraction or fractions are examined. Consequently, to avoid
confusion and discrepancies, it is important to consider the
specific hypothesis that is being addressed before determining
the compartment that is to be measured. For example, there are
circumstances where measurements of free fatty acids or parti-
cular complex lipid (phospholipid, glycerolipid or cholesterol
ester) classes or molecular species are necessary to answer a
specific question. In other circumstances, it is better to measure
the plasma (serum) compartment as a whole given that specific
fatty acids are selectively distributed in certain lipid classes and
molecular species.

As pointed out in this study, another potential complicating
factor in analysing both circulating and cellular fatty acids is the
way in which fatty acid data are expressed. This latter concern
has been a subject of debate for over 20 years(40,48,49). Fatty
acids have been historically expressed as a percentage of total
fatty acids in a given compartment. Although this is a
convenient and seemingly straightforward method of data
presentation, there are mathematical considerations that must
be taken into account that can impact the interpretation of the
data garnered from such an analysis. The key finding of this
study is that the manner in which fatty acid data were expressed
(percentage of total v. fatty acid concentrations) has a
tremendous impact on the relationship between circulating fatty
acids and circulating blood lipids.

This was particularly true for n-6 PUFA. The literature suggests
that serum LA is inversely associated with TAG, TC and
LDL-cholesterol(50–52) when fatty acid data are expressed as a
percentage of total. The percentage of total data from the DEMO
cohort confirms this inverse relationship between percentage of
total serum LA (Fig. 1 and 2) and TAG, but the direction of this
relationship reversed when LA levels were expressed as a
concentration of the fatty acid in serum (mmol/l). Similarly,
inverse associations have been reported between ARA and TAG
or LDL-cholesterol(50,52), but again these are reversed when
ARA is expressed as concentration. We caution though that
conclusions can be drawn only for fatty acids measured here and
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their respective ranges of concentrations observed, as other
relationships might exist, for example, among much higher
circulating levels of DHA, or among other fatty acids.
On the basis of the derivations and findings reported in this

manuscript, we also recommend that previously reached con-
clusions about LA and AA and their relationship to lipid profile
and CHD should be re-visited. The issue of whether relation-
ships reported using absolute v. relative concentrations agree or
disagree is purely mathematical, and depends on the mean
levels of these concentrations and their respective covariances.
This paper reveals that the different methods of expressing
concentrations lead to dissimilar correlations between blood
lipids and some fatty acids, a phenomenon that might well be
present among other biomarker relationships as well.
It is not surprising that there are positive associations between

total fatty acids and individual fatty acids when expressed as
concentration. It is also expected that total fatty acid concentra-
tions would be associated with TC, LDL-cholesterol and TAG as
fatty acids are esterified to cholesterol, TAG and phospholipids
in circulation. These complex lipids are packaged within lipo-
protein particles as major transporters of fatty acids to cells and
tissues. However, in an attempt to standardise and simplify the
data by using a percentage of total analysis, it does appear that
there is a great potential for misinterpreting such data, especially
in light of the number of highly influential papers and a recent
meta-analysis that have concluded that certain fatty acids, and
particularly n-6 PUFA, have cardio-protective attributes(37,41).
It could be argued that separating circulating fatty acids into

fractions such as plasma phospholipids is a better approach and
the percentage of total data would be more reliable in this
context. However, this would again assume that the size of the
fraction is uniform in all individuals and/or that all individual
fatty acids within the fraction increased or decreased at the
same rate. Taken together, these data suggest that when
examining fatty acids in total serum (or plasma) or in isolated
fractions such as plasma phospholipids the concentration of
individual fatty acids should be measured. This method of
analysis is particularly important when attempting to determine
the relationships between fatty acids and disease biomarkers.

Conclusion

Associations between circulating fatty acids and blood lipids
have influenced our view of fatty acid with regard to their
importance in human disease and dietary recommendations.
However, we show that different methods of fatty acid
expression result in non-uniform relationships between certain
circulating fatty acids and circulating complex lipids such as
TAG, and LDL, HDL or TC. In addition, we have demonstrated
that the commonly used percentage of total expression method
can be mathematically modelled using fatty acid concentration
data, and this provides a means of predicating a reversal in the
direction of association. Thus, the method by which circulating
and potentially cellular fatty acids are expressed appears to be
important when interpreting relationships between fatty acid
levels and blood lipid levels. These data suggest that relation-
ships between fatty acids and other biomarkers and indices of
CHD should be re-visited with this in mind.
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