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NONOSCILLATORY SOLUTIONS OF
NEUTRAL DELAY DIFFERENTIAL EQUATIONS

M I N G - P O CHEN, J .S. YU AND Z.C. WANG

Consider the following neutral delay differential equation

^ - T ) ] + Q(t)x(t -6) = 0,t£to

where p G R, T 6 (0, oo), S E R+ = [0,oo) and Q £ C([t0,oo) ,R). We show that
if

(**) f
Jo

\Q(s)\ds <oo

then Equation (*) has a nonoscillatory solution when p ^ —1. We also deal in
detail with a conjecture of Chuanxi, Kulenovic and Ladas, and Gyori and Ladas.

1. INTRODUCTION

Consider the following neutral delay differential equation

(1) j t [x{t) + px(t - r ) ] + Q(t)x(t -S) = O,t>to

where

(2) PER, T 6(0, oo), SeR+ = [0,oo) and Qe C([t0,oo) ,R).

Recently, the oscillation and asymptotic behaviour of Equation (1) have been inves-
tigated by many authors, see for example [1, 2, 3, 5, 6, 7, 8]. For a recent survey,
see [4]. All the papers mentioned above, however, assume that Q(t) is nonnegative.
Considerably less is known about the behaviour of the solutions of Equation (1) when
the coefficient Q(t) is oscillatory. In particular, by combining the result in [5, 7, and
8] we know that if

, o o

(3) Q{t) ̂  0 and / Q{a)da < oo
•/to
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then Equation (1) has a nonoscillatory solution when p ^ — 1. For the critical case
p = —1, Yu, Wang and Qian [5] found a sufficient condition for the oscillation of all
solutions of Equation (1) under the assumption (3). One of our aims in this paper is to
study the existence of a nonoscillatory solution of Equation (1) when Q(t) is oscillatory.
In section 2, we show that

(4)
Jo

<oo

implies that Equation (1) has a nonoscillatory solution when p ^ — 1.

In addition, the following result on the asymptotic behaviour of a nonoscillatory

solution of Equation (1) has been established by Chuanxi, Kulenovic and Ladas [2], see

also [4].

THEOREM A. [2] Assume that (2) holds and that

f°°
(5) Q{t) ^0 and Q{

Jt0

a)ds = oo.

Let x(t) be nonoscillatory solution of Equation (1). Then the following statements

hold:

(a) If p < - 1 , iiien lim \x(t)\ = oo
t—>O0

(b) If p> -1, and p ^ l , then l i m x ( t ) = 0 .
t—>oo

REMARK 1. As was shown in [1] and [2], the assumption tht p = —1, as well as (2) and
(5) hold, implies that every solution of Equation (1) oscillates. Thus the assumption in
the above Theorem A that p ^ — 1 is harmless. But, the case p = 1 has not yet been
handled. Therefore, Chuanxi, Kulenovic and Ladas [2] posed the following conjecture.
See also [4, Problem 6.12.9 (Conjecture)].

CONJECTURE B . [2, 4] Assume that (2) and (5) hold. Let x(t) be a nonoscilla-
tory solution of the neutral differential equation

(6) dt^W + X(* ~ TM + <5(<)x(< - *) = 0, < 2* to-
Then

(7) lim x(t) = 0.

The second aim in this paper is to answer in detail the above Conjecture B. In
section 3, we first give an existence result of a nonoscillatory solution not satisfying (7)
of Equation (6), and then by using this result we answer Conjecture B in the negative.
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Finally, we also show that, under appropriate additional hypothesis on Q(t), Conjecture
B is also true.

Let ti ^ t0 and let <f> e C([t\ —m],R), where m = max{T,4}. By a solution of
Equation (1) with initial function <f> at ti we mean a function x G Ci\t\ — m},oo,R)

such that x(t) — <j>{t) for t G [ti — m,ti], x(<) + px(t — T ) is continuously differentiable
for t ^ t\ and x(t) satisfies Equation (1) for all t ^ t \ .

As usual, a solution of Equation (1) is called nonoscillatory if it is eventually
positive or eventually negative and oscillatory if it has arbitrarily large zeros.

2. NONOSCILLATORY SOLUTIONS OF EQUATION (1)

In this section we study the existence of a nonoscillatory solution of Equation (1)
with p ^ — 1. The main result in this section is the following theorem.

THEOREM 1 . Assume that (2) and (4) hold with p ^ - 1 . Then Equation (1)

has a nonoscillatory solution.

PROOF: The proof of this theorem is rather long and will be divided into five
claims. Let X be the set of all continuous and bounded functions on [to,oo) with the
sup-norm. Then X is a Banach space. u

CLAIM 1 . For the case —1 < p < 0, choose a ti > t0 sufRciently large such that

<i — T ^ to, ti — 8 ^ to and

i:
Define a bounded, closed and convex subset of X as follows

A = {x£X; %±±1± ^ x(t) ^\fort> t0}.

Now we define a mapping T : A —+ X as follows

IT w^ i
[1 x)\t) = <

[{TxXu), to
Clearly, T is continuous. For every x 6 A and t ^ ti, we see that
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Hence, (2(1 + p))/3 ^ (Tx)(t) ^ 4/3 for t > tQ andsoTAcA.

Now we shall shows that T is a contraction mapping on A. In fact, for any
x\,X2 6 A and t~^ t\ we have

- (Tza)(OI ^ - P |*i(« - T) - x2(t - r ) |

Then it follows that

Since 0 < (1 — 3p)/4 < 1, we see that T is a contraction. Therefore, by the Banach
contraction principle, T has a fixed point x £ J4, that is, Tx — x. Clearly, x(t) is a
positive solution of Equation (1) on [<i, oo) and so the proof of Claim 1 is complete.

CLAIM 2 . For the case p < - 1 , let ti > t0 be such that ti + r - 6 ~£ t0 and

i:It+T •*

Set A = {x £ X; - | ^ x(t) ̂  -2p for t ^ t 0} .

Tien A is a bounded, closed and convex subset of X. Define a mapping T : A —> X
as follows

{ -p-l--x(t + T)+- f Q(s)x(s-6)ds, O * i
P PJt+T

In is easy to show that T maps A into itself, and by a fashion similar to that in the
proof of Claim 1 we see that for any xi,x2 £ A

This means that T is a contraction, since 0 < (p — 3)/(4p) < 1. Therefore, by the
Banach contraction principle, T has a fixed point x £ A. It is easy to see that this x
is a positive solution of Equation (1) and the proof of Claim 2 is finished.

CLAIM 3 . Forthecase 0 < p < I,let tj > t0 be such that h-r ^ t0, U-S ^ t0

and

Set A = {x £ X : 2(1 - p) < x(t) ^ 4 for t ^ t0}
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which is a bounded, closed and convex subset of X. Define T : A —> X as follows:

Q(s)x(s - 6)ds, t>h
(Tx){t) =

[ {Tx){U),

It is easy to show that T maps A into A and for any Xi,x2 £ A,

As 0 < (1 + 3p)/4 < 1, the Banach contraction principle can be applied to obtain a
fixed point x € A. We can see easily that this x is a positive solution of Equation (1).
This completes the proof of Claim 3.

CLAIM 4 . For the case p = 1, let tt > to be such that ti + T — S ~£ to and

,00 j

/ \Q(s)\ds < - .
Jh+r 4

Clearly, the set A = {x £ X : 2 ^ x(t) < 4, for t ^ t0}

is a bounded, closed and convex subset of X. Define a mapping T on A as follows

E /
i=l Jt+(2i-l)r{

3 + E /
i=l Jt+(2i-l)r

Clearly T is continuous. It is easy to show that T maps A into A and for any
xi,x2 e A,

\\Tx1-Tx2\\^l\\x1-X2\\.

Thus, by the Banach contraction principle, T has a fixed point x € A, that is,

Q(s)x(s — S)ds, < > * i ,
x(t) = f

to

J s + S /
< i=lJt+(2i-l)r
I

,00

It follows that x(t) + x(t-r) = 6+ / Q{s)x(s - 6)dx, t^tx+T.

From this we see that x(t) is a positive solution of Equation (1) with p = 1 on

[ti + T, 00) and so the proof for the case p = 1 is complete.

CLAIM 5 . Finally we consider the last case when p > 1. Let t\ > to be such

that 11 + T — S ^ to and

r \O(s)\ds< P~1

Jt+T ^ 4
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Consider the bounded, closed and convex subset of X;

A = {xeX : 2(p - 1) ^ x(t) < 4p for t ^ t0},

and define a mapping T on A as follows:

f 3p + l--x{t + T)+- I Q(a)x(a - 6)ds, t > h
(Tx)(t) = < P P Jt+T

{ (Tx){h), t0 ^t^h.

By an argument similar to that in the previous four cases, we can easily show that all
assumptions of the Banach contraction principle are satisfied. Therefore, T has a fixed
point x € A. It is easy to see that this x is a positive solution of Equation (1) on
[ti + TjOo)> and the proof of Theorem 1 is complete.

3. ON THE CONJECTURE B

Consider the neutral delay differential equation

(8) ±[x(t) + x{t-T)]+Q{t)x{t-8) = 0

where

(9) r > 0, 6^ 0 andQ € C([<0,oo) ,(0,oo)).

First we establish the following result on the existence of a nonoscillatory solution of
Equation (8).

THEOREM 2 . Assume that (9) holds and there exists a nonnegative continuous

function B(t) on [to,oo) such that

(10) B(t) + B{t -T) = Constant, t^U+T.

Also suppose that there exists a positive number A such that

(11) A(l + eXT) > Q{t)[B(t - 6)ext + ex% t>to+6.

Then Equation (8) has a positive solution x(t) satisfying x{t) ^ B(t) for t ^ to + T + £

and x(t) - B(t) -> 0 as t - • oo.

PROOF: Set

y(t) = e~xt

Then by (11) we have
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[»(*) + y(t - r)]' + Q(t)[B(t - 6) + y(t - 6)} ^ 0, t > t0 + 6.

Also let Q*(t) = -[y(t) + y(t - r)]'/[B(t - 6) + y(t - 6)}.

Then Q*(t) ^ Q(t) and y(t) satisfies

[y(t) + y(t - T)}' + Q*(t)[B(t -S) + y(t - J ) ] = 0 , l ^ , + 6.

From this we have

- T ) = / Q*{t)[B(s -S)+ y(s - 6)}ds, t^to+6
Jt

which yields

(12)

By a slight modification of Lemma 10.5.2 in [4] we can easily see that the corre-
sponding integral equation

*(*) = £ /< + 2 l T Q{*)[B(a -S) + z(a - 6))ds
£rj Jt+(2i-i)r

has a positive solution z : [to + 6 — T, OO) —• (0, oo) and 0 < z(t) ^ y(t). From (13) we
have

z{t) + z(t-r)= f Q{s)[B(a - S) + z(s - 6)]ds, t > t0 + 6.
Jt

That is [z[t) + z(t - r)]' + Q{t)[B(t -S) + z(t -f)] = 0 , ^ l o + S,

which implies that x(t) = B{t) + z(t) is a positive solution of Equation (8) satisfying
x(t) > B(t) and x[t) - B{i) -> 0 as i -» oo. The proof of Theorem 2 is complete. D

Note that by using Theorem 2, we can easily construct many examples which show
that the answer to Conjective B is negative. In fact for any constant c > 0, we define

B(t) =

0, te[2iT,[X+=:

where i = 0,1,2,3,. . . . Clearly

B(t) + B(t - T) = C for
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and B{t) is a nonnegative continuous function on [0, oo). Thus, if Q(t) satisfies for
some A > 0

A(l + eAr) A(l + eXr)

2(e*« + B(t - 6)e*) ^ ^ w ^ eA* + B{t - 6)e*' ^ '

then (5) is satisfied and by Theorem 2 Equation (8) has a positive solution x(t) satis-

fying x(t) — B(t) —> 0 as t —» oo. But x(t) -» 0 as t —> oo, since lim sup £ ( 0 = c.
t-»oo

The above example indeed shows that Conjecture B is not true. But, on the other
hand, the following theorem shows that, under appropriate additional hypothesis on
Q(t), Conjecture B is true.

THEOREM 3 . Assume that all the assumptions of Conjecture B hold. Further
assume that there exists a positive constant /3 such that /? ^ 1, and

(14) Q(t)^/3Q(t-r),fort^t0+r.

Then every nonoscillatory solution of Equation (6) goes to zero as t —> oo.

PROOF: Let x(t) be a nonoscillatory solution of Equation (6). As — x(t) is also a
solution of Equation (6), we may assume that x(t) is eventually positive. Thus there
exists a. U ^ t0 + r such that x(t - T ) > 0, x(t - S) > 0 for t ^ U . Set

3/(0 = x{t) + x(t - T).

Then by (6) we have y'[t) ^ 0, y(t) > 0 for t ^ <i

and y'(t) - -Q(t)x(t - S) = -Q(t)y(t - S) + Q(t)x(t - r - 6)

^ -Q(t)y{* -S)+ PQ{t - r)x(t -T-S)

= -Q{t)y(t-6)-py\t-T).

That is y'(t) + f3y'(t - r ) + Q(t)y{t - S) ^ 0 for t ^ t j .

It follows by (5) that lim y(t) = 0.

Consequently, lim x(t) = 0.

The proof of Theorem 3 is complete. LJ
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