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ON THE FIRST CONJUGATE POINT FUNCTION 
FOR NONLINEAR DIFFERENTIAL EQUATIONS 

BY 

ALLAN C. PETERSON AND DWIGHT V. SUKUP 

ABSTRACT. We are concerned with the nth order differential 
equation yin) =/(x, y, y\ . . . ,j(n-1))> where it is assumed through­
out that/is continuous on [a, /?) X jRn, a</?< oo, and that solutions 
of initial value problems are unique and exist on [a, ft). The defin­
ition of the first conjugate point function r\i(i) for linear homoge­
neous equations is extended to this nonlinear case. Our main con­
cern is what properties of this conjugacy function are valid in the 
nonlinear case. 

We will be concerned with the nth order nonlinear differential equation 

a) y n )=/(x,y,/, . . . , y*-i}) 
where x e [a, /?), a</?<oo. We will always assume that/satisfies 

(A) / i s continuous on [oc, (3)xRn, and 
(B) solutions of initial value problems (IVP's) are unique and extend to [a, /?). 
Sometimes we will further assume that 

r , » (n-ik 3/(x, y,. . . , y n ) 
fk(x,y,y,...,y ) = — - , fc = 0, 1,. . . , n - 1 

is continuous on [a, (3)xRn. In this case we will be interested in the so called 
[3] variational equation along a solution yQ(x) of (1): 

(2) z"*> = "f/&(x, yfa), y0(x),..., j#-u(x))z<w. 

Let t G [oc, /?) and R(t)={r>t: there exist distinct solutions u, v of (1) such that 
u—v has an (Jl9 . . . , /m)-distribution of zeros on [t, r]}. If R{t)^<f> set r{ mi (t)= 
inf R(t). IfR(t)=(/>, set riitmti (t)=co. The first conjugate point rj^t) for equation 
(1) of x=t is defined by 

Vi(t) = min|ril...im(0: 2** = »]• 

We will let ^(f; j0(*)) denote the first conjugate point for equation (2) of x=t. 
We say (1) is disconjugate on a subinterval J of [a, /?) provided there do not exist 
distinct solutions u, v of (1) such that u—v has at least n zeros, counting multi­
plicities on /. 
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Recent results show that the conjugacy function rj^t) for the nonlinear equation 
(1) has analogous properties as in the linear case. For example it is well known [2], 
[10] that for linear differential equations that 

(3) Vi(t) = r^it) 

(4) ?h(0 = min{r„(0: i+j = n}. 

Jackson [6] has recently proved (3) for the nonlinear case (1). For n=3, Jackson 
[7] proved (4) for the nonlinear case, while for n=4, D. Peterson [9] proved (4) 
for the nonlinear case. 

In the linear case it is well known that *7i(0>*- This is not true in general in the 
nonlinear case (see Theorem 2 and examples 3 and 4). However, i f / satisfies a 
uniform Lipschitz condition with respect to y,y',. . . , j ( w _ 1 ) on compact sub-
intervals of [oc, /?), then using bounds for the Green's function [5] and the fact 
that ^i(0= = r i . . . i(0 o n e c a n U s e standard fixed point arguments to prove ? h ( 0 > ' 
for all te[oi, /?). We will sometimes assume ?h(0>^ If /(*> J> • • • > y{n~1)) = 
f(x, y) satisfies (A) and (B) and 

\f(x,y)-f(x9z)\<K\y-z\ 

for (x, y), (x, z) e [a, /?) X R then using the contraction mapping principle and 
Beesack's inequality [1] one can show that 

/ ^ , (nl\1/nl n )1"(1/w) 

The following lemma is useful for giving examples and for actually calculating 

O O ­

LEMMA 1. Assume n=2, ??i(0>^ and y{x, in) is the solution of the IVP (1), 

y(t, m)=A, y'(t, m)=m. Then 
lim y(x, m) = ± c o , 

m->±oo 

respectively, uniformly on compact subsets of(t, ^i(O)-

Proof. Since (1) is disconjugate on [t, rj^t)) we have for m2>m1 thaty(x, m2)> 
y(x, mt), x e (t, rj^t)). We claim that l i m ^ ^ y(x, m)=co for each x in (/, rj^t)). 
To see this let x0 e (t, rj^t)) and K>0 be given. But then there is [8] an m0 such 
that y(x0, m0)=K. Hence y(x0, m)>K for all m>m0. Since K and x0 are arbitrary 
our claim is verified. It then follows by use of Dini's theorem that l i m ^ ^ y(x, m)= 
oo uniformly on compact subsets of (7, rj^t)). Similarly limm_>_^y(x,m)= — co 
uniformly on compact subsets of (t, rj^t)). 

THEOREM 2. Assume n=2, f(x, y, y')=f(x, y), the partial derivative f0(x9y) is 
continuous on [a, (5)xR and l im^^/J^x, j ) = — oo {or lim3,_H_00/0(x,y)= — oo) 
uniformly on compact subsets of (a, /?), then r]i(t)=tfor t e [OC, /?). 
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Proof. Assume there is a te [a,/?) such that rj!(t)>t. Let t<t1<.t2<r]1(t). 
Let y(x, m), m e R1 be the solution of (1) with y(t, m)=A,y'(t, rri)=m. Then by 
Lemma 1 limm_^aoy(x9 m)=co uniformly on [tl9 t2]. By Corollary 1.14 [12] 

Vi(h) = WViihl yo(x)) 

where the infimum is taken over solutions y0(x) of (1). Assume Timv_^O0f0(x9 y)= 
— oo uniformly on compact subsets of (a, /?), then by applying Sturm's comparison 
theorem to the equation 

z"-fo(x> ym(x))z = 0 

we get that for m sufficiently large 

Viihl y(x9 m)) < fa­

it follows that i7i(0<*2 which is a contradiction. 
It is well known [10] that in the linear case, rj^t) is strictly increasing. Using 

Theorem 2 one can easily verify the following example which shows that rj^t) 
need not be strictly increasing in the nonlinear case. (The reader should verify that 
(A) and (B) are satisfied.) 

EXAMPLE 3. 

H»:"' t >0 

In this case %(*)=() for / < 0 and ^1(f)=/ for t^O. 
In the linear case it is well known [10] that rj^t) is a continuous function of /. 

The following example shows that this need not be true in the nonlinear case. 
Again one can verify this example by using Theorem 2. Later we will see that rj^t) 
is an upper semicontinuous function of t. 

EXAMPLE 4. 

,, = / * / , t < 0 
y \-tyf t > 0. 

In this case rj^t^t, t<0 and 0<^1(0)<oo. 
Assume n=29f(x, y9 y')=f(x9 y) and in addition to (A) and (B) being satisfied, 

fo(x, y) is continuous on [a, /?) X R and 

fo(x, y) > Pi*) * e [a, p) 

wherep{x) is continuous on [a, /?)• Let rjx{t) be the first conjugate point of x—t for 

the differential equation 

y"-p(*)y = o. 

It is well known (see sections 6 and 7 in [4]) that ? h ( 0 ^ i ( 0 - The novelty in 
Remark 5 is that we give conditions under which ?h(0=^i(0- We are not trying 
to be as general as possible but we want to show how to construct examples. 
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REMARK 5. Assume in addition to the previous discussion that 

lim/oCx, y) = p(x) 
2/->00 

uniformly on compact subsets of [a, /?). Then 

*?i(0 = *h(0. 

Proof. It suffices to show that the assumption ^i(0<*?i(0 *eacls to a contra­
diction. Pick t{>t sufficiently close that ??i(A)<?h(0- Let y(x, m) be the solution 
of (1) with y(a, m)=A, y'(a, m)=m, m e R1. It follows from Lemma 1 that 

lim/0O, y(x9 m)) = p(t) 
m-*co 

uniformly on [tl9%(tj\. By [11] the continuity of ^ for linear equations with 
respect to coefficients 

lim rj^t, y(x, m)) = ^(tj. 
w-*oo 

Hence there is an m1 such that 

which leads to a contradiction. 
Remark 5 gives us immediately the following example which appears in [4] 

and [13]. 

EXAMPLE 6. y = — j+Arc t any . In this case ^1(/)=/+7r for t e (— oo, oo). 
In Example 6,f0(t,y)= — l + ( l / ( l+ j 2 ) )> — 1 for all y. Hence this equation is 

disconjugate on [t, rjxit)]. This is unlike the linear case where it is well known that 
there always exists distinct solutions whose difference has at least n zeros on 

It, m(t)l 
Sherman [11] showed that if equation (1) is a linear homogeneous differential 

equation then for every £>0 there exists a solution z of (1) such that z has at least 
n zeros in [t, rj^+s) the first n of which are simple zeros and the first being at 
x=t. Since r\1{t)=rls{t), given e>0 there exist distinct solutions y, z of (1) such 
thaty—zhas at leastn distinct zeros in [t, ^ i (0+s) . With the aid of certain addi­
tional hypotheses we will show for the nonlinear case (1) that for every e > 0 
there exist distinct solutions y, z of (1) such that y—z has at least n simple zeros in 
[t, ^ i ( 0 + e ) the first n zeros of y—z in [t, ^ i ( 0 + £ ) being simple zeros. In the 
case n=2we further show that the first of these zeros is at x=t. In the case n=3 
if we assume tha t /has continuous partial derivatives with respect to y, y\ y" we 
also show that the first of these zeros occurs at x=t by working with the linear 
equations of variation along solutions of equation (1). 

A somewhat lengthy proof of the following lemma is given in the second author's 
doctoral thesis [14]. To save journal space we merely state this result. 
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LEMMA 7. If equation (1) satisfies (A) and (B) and ^i(0<°°> then for every e>0 
there exist distinct solutions y{x) and z(x) of (I) such that y(x)—z(x) has at least n 
odd ordered zeros in [t, rjtiO+e). 

THEOREM 8. Assume that equation (1) satisfies (A) and (B). Then r}x{t) is upper 
semicontinuous. 

Proof. Since rj^t) is a nondecreasing function of t it suffices to show that there 
does not exist a sequence {tk} and an e>0 such that tk>t, k>\, and l i m ^ ^ tk=t 
with ?7i(ffc)>?7i(0+€ f ° r every k. Assume that on the contrary there exists such a 
sequence {tk} and an £>0 such that ^ i ( ^ > ^ i ( 0 + e f ° r aU £• For this e it follows 
by Lemma 7 that there must exist distinct solutions y(x) and z(x) of (1) such that 
y(x)—z(x) has at least « exact odd ordered zeros in [t, ^ i (0+ e ) -

If the first zero of y(x)—z(x) were to occur at x± where x±>t9 then tk<x1 for 
/: sufficiently large and hence y(x)—z(x) must have at least n distinct odd ordered 
zeros in [tk, rj^tjj) which is not possible. Hence the first zero of y(x)-~z(x) must 
occur at t. Let yô(x) be the solution of (1) such that 

yà(t+à) = z(t+ô) 

y{5l\t+ô) = y{l\t+ô), 1 = 1 , . . .,#1 — 1. 

By the continuous dependence of solutions of (1) on initial conditions, if ô is 
sufficiently small, then y(x)—z(x) must have a zero at t+d together with at least 
n—1 other odd ordered zeros in (t+ô, rjxiO+s). However, again we can choose k 
large enough that tk<t+ô and have that y(x)—z(x) must have at least n distinct 
zeros in [tk, rj^tjj). Again this is clearly not possible and we conclude that r}x(t) 
must be upper semicontinuous. 

THEOREM 9. Assume that ^<^ i (0<^ i (^ i (0 )<°° and that equation (1) satisfies 
(A) and (B). Then for every £>0 there exist distinct solutions y(x) andz(x) of (I) such 
that y{x)—z{x) has at least n distinct zeros in [t, r]i(t)-{-e) the first n of which 
are simple zeros. 

Proof. Let e>0 be given such that ^i(0+£<^i(?7i(0)- By Lemma 7 there exist 
distinct solutionsy(x) and z(x) of (1) such thaty(x)—z(x) has at least n odd ordered 
zeros in [/, rj^+e). Assume that y(x)—z(x) has a multiple zero in [f, ^ i (0+ e ) -
We apply Lemma 2.11 [13] to obtain a solution ux(x) of (1) such that u1(x)—y(x) 
has at least n+l odd ordered zeros in (t, rj^O+e). If u1(x)—y(x) has a multiple 
zero in [t, rj^+s) we apply the same argument to u1(x)—y(x) to obtain a solution 
u2(x) of (1) such that u2(x)— y(x) has at least « + 2 odd ordered zeros in [t, r}x(t)+e). 
Since the difference of two distinct solutions of (1) cannot have more than In—1 
zeros, counting multiplicities, on [/, ^ i (0+ e ) there is a k, 0<k<n9 such that 
uk(x)—y(x) has at least n+k simple zeros in [t, ^i(0+ f i) and no other zeros. 
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THEOREM 10. If n=2 and (A) and (B) are satisfied then for every s > 0 there exist 
distinct solutions y(x) and z(x) of (1) such that y(x)—z(x) has at least two zeros 
(which must be simple zeros) in [t, ^ i ( 0 + £ ) the first being at x=t. 

Proof. Suppose that for some £>0 the conclusion of the theorem is not true. 
Let y(x) and z(x) be distinct solutions of (1) such that y(x)—z(x) has a zero at 
xi e (*> rJi(t)+s) a n ( i a z e r o a t x2 e (*i> Vi(t)+£). Without loss of generality we 
will assume that y(x)<z(x) for x e (xl5 x2). Let ux(x) be the solution of (1) such 
that 

ux(i) = y(t) 

<(i) = y\t)+X 

where A>0. It follows that ux(x)>y(x) for xe [t, ^ ( O + ^ b y the way that e was 
chosen. If X is sufficiently small then there are points sx, rxe (xl9 x2) such that 
SX<T*, UX(SX)=Z(SX), t4À(rx)=z(rx) and ux(x)<z(x) for x e (sx, rx). Furthermore, 
if sx exists then rx exists and s^ exists for 0<JU<L Let A=sup{A>0:^A exists}. 
If 0<Ax<A2<A then sXi<sX%<TXZ<TV Let sA=sup{sx:X e (0, A) and r A = 
mî{rx:X G (0, A). It is clear that sA<rA. 

If A < + oo and .S A <T A then by the continuous dependence of solutions of (1) 
on initial conditions and continuity we have that uA(sA)=z(sA)9 WA(7A) a n d wA(;c)< 
z(x) for x e (sA9 rA). Hence by the uniqueness of solutions of IVP's for (1) it 
follows that uA(x)<z(x) for xe(sA, TA). Again by continuous dependence of 
solutions of (1) on initial conditions it follows that sx exists for A>A and A—A 
sufficiently small. But this contradicts the definition of A. 

If A < + oo and SA=TA it follows by continuous dependence of solutions of (1) 
on initial conditions and continuity that uA(sA)=z(sA) and wA'(^A)=z'(5A). But 
this contradicts the uniqueness of solutions of IVP's for (1). 

If A = + oo we let {AJ be a sequence of real numbers such that l i m ^ ^ Afc= + oo. 
By Rolle's Theorem there exists for each fc>0 a /^ E (sXk, rXk) such that uXk'(/j,k)= 
z'(/j,k). The sequence {uXk(/Ltk)} is a bounded sequence of numbers hence we will 
assume without loss of generality that l i m ^ ^ iaA:=^ where fxe[sA, rA] and 
l i m , ^ uXk([xk)=u0. By the continuity of z'(x) we have that l i m ^ ^ t/Ajfc

,(^)=z'(^). 
Let u(x) be the solution of (1) such that 

//(//) = z'O). 

By the continuous dependence of solutions of (1) on inital conditions it follows 
that linifc.^ uXk'(x)=u'(x) uniformly on compact subintervals of [a, /?)• This 
clearly is not possible since l i m ^ ^ ux '(t)= + oo j£u'(i). 

In the next theorem we will make the following compactness assumption on 
solutions of (1) 

(C) If {yk(x)} is a sequence of solutions of (1) which is uniformly bounded 
on a compact subinterval [c, d] of [a, /8), then there is a subsequence 
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{yk.(x)} such that {y^^x)} converges uniformly on each compact subinterval 
of [oc, /?) for each /=0 , 1 , . . . , n—1. 

THEOREM 11. Let n=3 and assume that in addition to (A) and (B), condition 
(C) is satisfied. If rji(t)<rlz(t) then for every e>0 there exist distinct solutions 
y(x) and z(x) of (1) such that y(x)—z(x) has at least 3 zeros in [t, ?h(0+e)> the 
first three of which are simple zeros and the first of these being at x—t. 

Proof. Let e>0 be given such that ?]i(t)+s<r12(t). % Lemma 7 there exist 
distinct solutions y(x) and z(x) of (1) such that y(x)—z(x) has at least three odd 
ordered zeros in [t, ??i(0+e)- Let t<x1<x2<x3<.r}1(t)-{-e and assume that 
y(xj)=z(xj),j= 1,2,3. It is clear thaty(x)—z(x) has simple zeros at xi9j= 1, 2, 3 if 
these zeros are odd ordered zeros. If x1=t we have the desired result so assume 
that x{>t. We will consider only the case wherey(i)<z(t) and assume that j ( x ) > 
z(x) for x E (xl9 x2) and that y(x)<z(x) for x e (x29 x3). Let u^x) be the solution 
of (1) such that 

" £ W = yU)(x3), 1 = 0,1 

<(*3) = y"(x3)+p. 

By Theorem 2.7 [15], {u^ty./x e R1} is an open interval, say (A, y). If z(t) e (X9 y) 
then there must exist jw1>0 such that wMi(f)=z(/). Furthermore uH(x)—z(x) has 
a simple zero at some point s e (x29 x3) and a simple zero at x3. If ufli(x)—z(x) 
has a simple zero at t we have the desired result. If the zero of u^ (x)—z(x) at t 
is a double zero then a simple application of Lemma 2.11 [13] produces the desired 
result. 

If z(r)>y then there must exist sequences {sk} and {si} such that t<sl<sl<x39 

]im^m sl=t, l i m ^ ^ ss
k=x39 uk(s

1
k)=z(s1

k) and uk(s
3
k)=z(s)9 k>\. By Rolle's 

Theorem there exists s\ e (si, x3) for each k such that % /(4)=^'(4)- Furthermore, 
l i m ^ ^ uk(sl)=z(x3). Since * < 4 < 4 < r i 2 ( 0 f° r each &> 1 it follows from Corollary 
2.5 [15] that linifc.^ u(/)(x)=z{^)(x) uniformly on compact subintervals of [a, /?), 
*f=0, 1, 2. This is clearly not possible since l i n v ^ uk(x3)=-\-co. 

DEFINITION. Let y(x; x0,yl,yl,. . . , yl) be the solution of equation (1) which 
satisfies the initial conditions 

y M ) (x 0 ) = yl I = 1, . . . , n. 

DEFINITION. Let {uj(x;x0,y0(x))}^=1 be the fundamental set of solutions of 
equation (2) which satisfy the conditions 

w(/_1)(^o; x0, y0(x)) = ôij9 i9 j = 1,. . . , n 

where di5 is the Kronecker delta. We will sometimes denote the solution u^x; 
x09y0(x)) of the variational equation (2) by u§(x'9xQ9y\9.. . 9yl) where y0(x) 
is the solution of (1) such thatjo^ - 1 )=j^, / = ! , . . . , « . 
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THEOREM 12. Let n=3 and assume that f(x,y,yr,y,f) has continuous partial 
derivatives with respect to y, y', and y" on [a, fi)xRz. Then for every £>0 there 
exist distinct solutions y(x) and z(x) of equation (1) such that y(x)—z(x) has at 
least 3 zeros in [t, rji(t)+s), the first three being simple zeros and the first occurring 
at x=t. 

Proof. Since 

Vl(i) = intuit; y0(x)) 
Vo(x) 

where y0(x) is a solution of (1), we have given e>0. There is a solution y0(x) of 
(1) such that rj^t; J 0(*))<?h(0+ e- Let v(x) [11] be a solution of the variational 
equation (2) which has consecutive zeros at si9 f = l , 2, 3, which are simple and 
where t=s1<s2<sz<r]1(t)+&. There are constants A, B such that 

v(x) = Au2(x; t, y0(x))+Buz(x; t, yQ(x)). 
Define Hh(x) by 

Hh(x) = 7 [y(x; t, yl yl+hA, yl+hB)-y(x; t, yl yl yl)]. 
h 

Then 

Hh(x) = - [y(x; t9 yl yl+hA, yl+hB)-y(x; t, yl, yl yl+hB) 
h 

+y(xi t, yl yl yl+hB)-y(x; t, yl yl yl)] 
= Au2(x; t, yl yl+p, yl+hB)+Buz(x; t, yl yl yl+v) 

where [i is between 0 and hA and v is between 0 and hB. It follows that H^\x) 
converges uniformly to v{i)(x) as h->0 on compact subintervals of [t, rj^+s). 
Hence for h sufficiently small it follows that 

y(x; t, yl yl+hA, yl+hB)-y(x; t, yl yl yl) 
has a simple zero at x=t together with an odd ordered zero in a neighborhood of 
each of the points s2 and s3. Pick <5>0 sufficiently small that (5<{^1(0+e—sz, 
\ min{s2—t, sz—s2}} and such that f'(x) 7^0 for * eK=[t, t+ô] U [s2—ô, s2+ô] U 
[s3—(5, Sg+d]. We can pick h sufficiently small that H'h(x)^Q for x e K&nd Hh(x)j£ 
0 for x e [t+ô, s2— ô] U [s2+<3, s3—ô]. Hence for h sufficiently small Hh(x) has 
a simple zero at x=t, a simple zero in [s2—ô,s2+ô], a simple zero in [s3—ô, 
sz+ô] and no other zeros in [t, s3+ô]. 

REMARK 13. It is easy to see that if for « > 3 it is true that 

%(0 =infih(*;j>o(*)) 
VQ(X) 

as conjectured in [12], then Theorem 12 generalizes to the nth order case. 
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