If in addition (iv) holds,

$$
\text { i.e., (iii) and }\left\|\begin{array}{ll}
\phi_{x x}, & \phi_{x y} \\
\phi_{x y}, & \phi_{y y} \\
\phi_{t x}, & \phi_{t y}
\end{array}\right\|=0 \quad-\quad \text { (vi), }
$$

che envelope has a cusp with the same cuspidal tangent.
(6) If in addition to (iii)

$$
\phi_{t x}=0, \phi_{t y}=0, \quad-\quad-\quad-\quad(v i i)
$$

(i.e., (i) and (iii)) the branches of the discriminant have 3-pointic contact with those of the curve.
(7) If (ii) and (iii) hold, the envelope has a singularity of the form $\eta^{3}=\lambda \xi^{4}$, where $\eta=0$ is the tangent to $\phi_{t}=0$.
(8) But if this tangent should coincide with one of the two tangents to the curve at the double-point, i.e., (iv), the form is $\eta=\lambda \xi^{2}$ thrice.

A Proof of the Theorem that the Arithmetic Mean of n positive quantities is not less than their Harmonic Mean.

By W. A. Lindsay, M.A., B.Sc.

Two Theorems on the factors of $2^{p}-1$.
By George D. Valentine, M.A.

