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Abstract
We introduce the point degree spectrum of a represented space as a substructure of the Medvedev degrees,
which integrates the notion of Turing degrees, enumeration degrees, continuous degrees and so on. The notion of
point degree spectrum creates a connection among various areas of mathematics, including computability theory,
descriptive set theory, infinite-dimensional topology and Banach space theory. Through this new connection, for
instance, we construct a family of continuum many infinite-dimensional Cantor manifolds with property C whose
Borel structures at an arbitrary finite rank are mutually nonisomorphic. This resolves a long-standing question by
Jayne and strengthens various theorems in infinite-dimensional topology such as Pol’s solution to Alexandrov’s old
problem.
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1. Introduction

Computability Theory

In computable analysis [51, 65], there has for a long time been an interest in how complicated the set
of codes of some element in a suitable space may be. Pour-El and Richards [51] observed that any real
number and, more generally, any point in a Euclidean space has a Turing degree. They subsequently raised
the question of whether the same holds true for any computable metric space. Miller [37] later proved
that various infinite-dimensional metric spaces such as the Hilbert cube and the space of continuous
functions on the unit interval contain points which lack Turing degrees; that is, have no simplest code
w.r.t. Turing reducibility. A similar phenomenon was also observed in algorithmic randomness theory.
Day and Miller [12] showed that no neutral measure has Turing degree by understanding each measure
as a point in the infinite-dimensional space consisting of probability measures on an underlying space.

These previous works convince us of the need for a reasonable theory of degrees of unsolvability of
points in an arbitrary represented space. To establish such a theory, we associate a substructure of the
Medvedev degrees with a represented space, which we call its point degree spectrum. A wide variety of
classical degree structures are realised in this way; for example, Turing degrees [61], enumeration degrees
[16], continuous degrees [37] and degrees of continuous functionals [20]. What is more noteworthy
is that the concept of a point degree spectrum is closely linked to infinite-dimensional topology. For
instance, we shall see that for a Polish space all points have Turing degrees if and only if the small
transfinite inductive dimension of the space exists.

In a broader context, there are various instances of smallness properties (i.e., 𝜎-ideals) of spaces
and sets that start making sense for points in an effective treatment; for example, arithmetical (Cohen)
genericity [14, 41], Martin–Löf randomness [14] and effective Hausdorff dimension [35]. In all of these
cases, individual points can carry some amount of complexity; for example, a Martin–Löf random point
is in some sense too complicated to be included in a computable 𝐺 𝛿 set having effectively measure
zero. A recent important example [50, 66] from forcing theory is genericity with respect to the 𝜎-
ideal generated by finite-dimensional compact metrisable spaces. Our work provides an effective notion
corresponding to topological invariants such as small inductive dimension or metrisability and, for
example, allows us to say that certain points are too complicated to be (computably) a member of a
(finite-dimensional) Polish space.

Additionally, the actual importance of point degree spectrum is not merely conceptual but also
applicative. Indeed, unexpectedly, our notion of point degree spectrum turned out to be a powerful tool
in descriptive set theory and infinite-dimensional topology, in particular in the study of restricted Borel
isomorphism problems, as explained in more depth below.

Descriptive Set Theory

A Borel isomorphism problem (see [6, 10, 19, 62]) asks to find a nontrivial isomorphism type in a certain
class of Borel spaces (i.e., topological spaces together with their Borel 𝜎-algebras). As is well known,
Kuratowski’s theorem tells us that every uncountable Polish space is Borel isomorphic to the real line
R. It is lesser known that what Kuratowski really showed is that an uncountable Polish space is unique
up to 𝜔th-level Borel isomorphism (cf. [33, Remark (ii) in p. 451]). Here, an 𝛼th-level Borel/Baire
isomorphism between X and Y is a bijection f such that 𝐸 ⊆ X is of additive Borel/Baire class 𝛼 (i.e.,
𝚺0

1+𝛼) if and only if 𝑓 [𝐸] ⊆ Y is of additive Borel/Baire class 𝛼. These restricted Borel isomorphisms
were also considered by Jayne [23] in Banach space theory, in order to obtain certain variants of the
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Banach–Stone theorem and the Gelfand–Kolmogorov theorem for Banach algebras of the forms B∗
𝛼 (X)

for realcompact spaces X. Here, B∗
𝛼 (X) is the Banach algebra of bounded real-valued Baire class 𝛼

functions on a space X with respect to the supremum norm and the pointwise operation [5, 11, 23]. The
first- and second-level Borel/Baire isomorphic classifications have been studied by several authors (see
[24, 25]). For instance, it is proved that there are at least two second-level Borel isomorphism types of
uncountable Polish spaces; that is, types of finite-dimensional Euclidean spaces R𝑛 and the Hilbert cube
[0, 1]N. However, it is not certain even whether more than two second-level Borel isomorphism types
exist:
Problem 1.1 (The Second-Level Borel Isomorphism Problem). Are all uncountable Polish spaces
second-level Borel isomorphic either to R or to RN?

Problem 1.1 and the nth-level analogues were recently highlighted by Motto Ros [54, Question 8.5]
and Motto Ros et al. [55, Question 4.29]. As already pointed out by Motto Ros [54], Jayne’s work [23]
mentioned above shows that Problem 1.1 is closely related to asking the following problem on Banach
algebras.
Problem 1.2. Is the Banach space B∗

2(X) of the Baire class 2 functions on an uncountable Polish space
X linearly isometric (or ring isomorphic) either to B∗

2([0, 1]) or to B∗
2([0, 1]

N)?

The very recent successful attempts to generalise the Jayne–Rogers theorem and the Solecki di-
chotomy (see [54, 47] and also [17] for a computability theoretic proof) have revealed the close connec-
tion between second-level Borel isomorphism and 𝜎-homeomorphism for Polish spaces (see Subsection
2.2.1). Here, a topological space X is 𝜎-homeomorphic to Y (written as X �𝔗𝜎 Y) if there are a bi-
jection 𝑓 : X → Y and countable covers {X𝑖}𝑖∈𝜔 and {Y𝑖}𝑖∈𝜔 of X and Y such that 𝑓 � X𝑖 gives a
homeomorphism between X𝑖 and Y𝑖 for every 𝑖 ∈ 𝜔.

Therefore, the second-level Borel isomorphism problem is closely related to the following problem.
Problem 1.3 (Motto Ros et al. [55]). Is any Polish space X either 𝜎-embedded into R or 𝜎-
homeomorphic to RN?

Unlike the classical Borel isomorphism problem, which is reducible to the same problem on zero-
dimensional Souslin spaces, the second-level Borel isomorphism problem is inescapably tied to infinite-
dimensional topology [64], since all transfinite-dimensional uncountable Polish spaces are mutually
second-level Borel isomorphic.

The study of 𝜎-homeomorphic maps in topological dimension theory dates back to a classical work
by Hurewicz–Wallman [22] characterising transfinite dimensionality. Alexandrov [2] asked whether
there exists a weakly infinite-dimensional compactum which is not 𝜎-homeomorphic to the real line.
Roman Pol [49] solved this problem by constructing such a compactum. Roman Pol’s compactum is
known to satisfy a slightly stronger covering property, called property C [1].

Our notion of degree spectrum on Polish spaces serves as an invariant under second-level Borel
isomorphism. Indeed, an invariant which we call degree co-spectrum, a collection of Turing ideals
realised as lower Turing cones of points of a Polish space, plays a key role in solving the second-level
Borel isomorphism problem. By utilising these computability-theoretic concepts, we will construct a
continuum many pairwise incomparable 𝜎-homeomorphism types of compact metrisable C-spaces;
that is:

There is a collection (X𝛼)𝛼<2ℵ0 of continuum many compact metrisable C-spaces such that, whenever
𝛼 ≠ 𝛽, X𝛼 cannot be written as a countable union of homeomorphic copies of subspaces of X𝛽 .

This also shows that there are continuum many second-level Borel isomorphism types of compact metric
spaces. More generally, a finite-level Borel embedding of X into Y is an nth-level Borel isomorphism
between X and a subset of Y of finite Borel rank for some 𝑛 ∈ N. Then, our result entails the following
as a corollary:

There is a collection (X𝛼)𝛼<2ℵ0 of continuum many compact metrisable C-spaces such that, whenever
𝛼 ≠ 𝛽, X𝛼 cannot be finite-level Borel embedded into X𝛽 .
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The key idea is measuring the quantity of all possible Scott ideals realised within the degree co-spectrum
of a given space. Our spaces are completely described in the terminology of computability theory (based
on Miller’s work on the continuous degrees [37]). Nevertheless, the first of our examples turns out to
be second-level Borel isomorphic to (the sum of countably many copies of) Roman Pol’s compactum
(but, of course, our remaining continuum many examples cannot be second-level Borel isomorphic to
Pol’s compactum). Hence, our solution can also be viewed as a refinement of Roman Pol’s solution to
Alexandrov’s problem.

Summary of Results

In Section 3, we introduce the notion of point degree spectrum and clarify the relationship with 𝜎-
continuity. In Section 4, we introduce the notion of an 𝜔-left-computably enumerable in-and-above
(CEA) operator (see Section 4.2) in the Hilbert cube as an infinite-dimensional analogue of an 𝜔-
CEA operator (in the sense of classical computability theory) and show that the graph of a universal
𝜔-left-CEA operator is an individual counterexample to Problems 1.1, 1.2 and 1.3. In Section 5, we
describe a general procedure to construct uncountably many mutually different compacta under 𝜎-
homeomorphism. In Section 6, we clarify the relationship between a universal 𝜔-left-CEA operator and
Roman Pol’s compactum.

Future work

The methods introduced in this article, in particular the notion of the point degree spectrum and the
associated connection between topology and computability theory (recursion theory), have already
inspired and enabled several other studies. Some additional results are found in the extended arXiv
version [31]. In [17], Gregoriades, Kihara and Ng made significant progress on the decomposability
conjecture from descriptive set theory. A core aspect of this work is whether certain degree-theoretic
results like the Shore–Slaman join theorem and the cone avoidance theorem for Π0

1 classes hold for the
point degree spectra of Polish spaces.

Building upon our work, Andrews et al. [3] used an effective metrisation argument to show that the
point degree spectrum of the Hilbert cube coincides with the almost total enumeration degrees, which
in turn is used to show the purely computability-theoretic consequence that PA above is definable in
the enumeration degrees. Our idea was also utilised by Kihara [29] to explain the relationship between
non-total continuous degrees and PA degrees in the context of reverse mathematics.

Kihara, Ng and Pauly [30] have embarked on the systematic endeavour to classify the point degree
spectra of second-countable spaces from Counterexample in Topology [63]. This has already proven
to be a rich source for the fine-grained study of the enumeration degrees, as both previously studied
substructures as well as new ones of interest to computability theorists appear in this fashion. Kihara
explored the truth-table reducibility variant of our generalised Turing degrees in [28].

Based on the results both in the present article and in the extension mentioned here, we are confident
that both directions of the link between topology and computability theory established here have
significant potential for applications. This work can also be considered as part of a general development
to study the descriptive theory of represented spaces [43], together with approaches such as synthetic
descriptive set theory proposed in [45, 46].

2. Preliminaries

2.1. Computability Theory

2.1.1. Basic Notations
We use the standard notations from modern computability theory and computable analysis. We refer
the reader to [41, 42, 61] for the basics on computability theory and to [51, 65, 44] for the basics on
computable analysis.
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By 𝑓 :⊆ 𝑋 → 𝑌 , we mean a function from a subset of X into Y. Such a function is called a partial
function. We fix a pairing function (𝑚, 𝑛) ↦→ 〈𝑚, 𝑛〉, which is a computable bijection from N2 onto N
such that 〈𝑚, 𝑛〉 ↦→ 𝑚 and 〈𝑚, 𝑛〉 ↦→ 𝑛 are also computable. For 𝑥, 𝑦 ∈ NN, the join 𝑥⊕ 𝑦 ∈ NN is defined
by (𝑥 ⊕ 𝑦) (2𝑛) = 𝑥(𝑛) and (𝑥 ⊕ 𝑦) (2𝑛 + 1) = 𝑦(𝑛). An oracle is an element of {0, 1}N or NN. By the
notation Φ𝑧

𝑒 we denote the computation of the eth Turing machine with oracle z. We often view Φ𝑧
𝑒 as a

partial function on {0, 1}N or NN. More precisely, Φ𝑧
𝑒 (𝑥) = 𝑦 if and only if given an input 𝑛 ∈ N with

oracle 𝑥 ⊕ 𝑧, the eth Turing machine computation halts and outputs 𝑦(𝑛). The terminology ‘c.e.’ stands
for ‘computably enumerable.’ For an oracle z, by ‘z-computable’ and ‘z-c.e.’, we mean ‘computable
relative to z’ and ‘c.e. relative to z’. For an oracle x, we write 𝑥′ for the Turing jump of x; that is, the
halting problem relative to x. Generally, for a computable ordinal 𝛼, we use 𝑥 (𝛼) to denote the 𝛼th Turing
jump of x. Here, regarding the basics on computable ordinals and transfinite Turing jumps, see [9, 58].

One of the most fundamental observations in computable analysis is that a partial function on the
space {0, 1}N or NN (topologised as the product of the discrete space {0, 1} or N) is continuous if and
only if it is computable relative to an oracle (cf. [65]). This fundamental ‘relativisation argument’ will
be repeatedly utilised.

We will also use the following fact, known as the Kleene recursion theorem or the Kleene fixed point
theorem.

Fact 2.1 (The Kleene Recursion Theorem; see [41, Theorem II.2.10]). Given a computable function
𝑓 : N → N, one can effectively find an index 𝑒 ∈ N such that for all oracles 𝑧 ∈ {0, 1}N the partial
functions Φ𝑧

𝑒 and Φ𝑧
𝑓 (𝑒)

are identical.

2.1.2. Represented spaces
A represented space is a pair X = (𝑋, 𝛿𝑋 ) of a set X and a partial surjection 𝛿𝑋 :⊆ NN → 𝑋 . Informally
speaking, 𝛿𝑋 (called a representation) gives names of elements in X by using infinite words. It enables
tracking of a function f on abstract sets by a function on infinite words (called a realiser of f ). This is
crucial for introducing the notion of computability on abstract sets because we already have the notion
of computability on infinite words.

Formally, a 𝛿𝑋 -name or simply a name of 𝑥 ∈ X is any 𝑝 ∈ NN such that 𝛿𝑋 (𝑝) = 𝑥. A function
between represented spaces is a function between the underlying sets. For 𝑓 : X → Y and 𝐹 :⊆ NN →
NN, we call F a realiser of f, iff 𝛿𝑌 (𝐹 (𝑝)) = 𝑓 (𝛿𝑋 (𝑝)) for all 𝑝 ∈ dom( 𝑓 𝛿𝑋 ); that is, if the following
diagram commutes:

NN
𝐹

−−−−−−→ NN

𝛿X
⏐⏐� ⏐⏐� 𝛿Y

X
𝑓

−−−−−−→ Y

A map between represented spaces is called computable (continuous), iff it has a computable (con-
tinuous) realiser. In other words, a function f is computable (continuous) iff there is a computable
(continuous) function F on infinite words such that, given a name p of a point x, 𝐹 (𝑝) returns a name of
𝑓 (𝑥). We also use the same notation Φ𝑧

𝑒 to denote a function on represented spaces realised by the eth
partial z-computable function. Similarly, we call a point 𝑥 ∈ X computable, iff there is some computable
𝑝 ∈ NN with 𝛿𝑋 (𝑝) = 𝑥; that is, x has a computable name. In this way, we think of a represented space
as a kind of space equipped with the notion of computability.

If a set X is already topologised, the above notion of continuity (= relative computability, by the fun-
damental ‘relativisation argument’ mentioned in Subsection 2.1.1) can be inconsistent with topological
continuity. To eliminate such an undesired situation, we shall consider a restricted class of representa-
tions which are consistent with a given topological structure, so-called admissible representations. An
admissible representation is a partial continuous surjection 𝛿 :⊆ NN → 𝑋 such that for any partial con-
tinuous function 𝑓 :⊆ NN → 𝑋 there is a partial continuous function 𝜃 on NN such that 𝑓 = 𝛿 ◦ 𝜃. We
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will not go into the details of admissibility here but just mention that if a 𝑇0-space has a countable cs-
network (a.k.a. a countable sequential pseudo-base), then it always has an admissible representation (see
Schröder [59]). Hence, in this article, we can assume that the ‘relativisation argument’ always works.

A particularly relevant subclass of represented spaces are the computable Polish spaces, which are
derived from complete computable metric spaces by forgetting the details of the metric and just retaining
the representation (or, rather, the equivalence class of representations under computable translations).
Forgetting the metric is relevant when it comes to compatibility with definitions in effective descriptive
set theory as shown in [18].

Example 2.2. The following are examples of admissible representations:

1. The representation of N is given by 𝛿N(0𝑛10N) = 𝑛. It is straightforward to verify that the com-
putability notion for the represented space N coincides with classical computability over the natural
numbers.

2. A computable metric space is a tuple M = (𝑀, 𝑑, (𝑎𝑛)𝑛∈N) such that (𝑀, 𝑑) is a metric space and
(𝑎𝑛)𝑛∈N is a dense sequence in (𝑀, 𝑑) such that the relation

{(𝑡, 𝑢, 𝑣, 𝑤) | 𝜈Q(𝑡) < 𝑑 (𝑎𝑢 , 𝑎𝑣 ) < 𝜈Q(𝑤)}

is recursively enumerable, where 𝜈Q is the standard numbering of the rationals. The Cauchy repre-
sentation 𝛿M :⊆ NN → 𝑀 associated with the computable metric space M = (𝑀, 𝑑, (𝑎𝑛)𝑛∈N) is
defined by

𝛿M(𝑝) = 𝑥 : ⇐⇒

{
𝑑 (𝑎𝑝 (𝑖) , 𝑎𝑝 (𝑘) ) ≤ 2−𝑖 for 𝑖 < 𝑘

and 𝑥 = lim
𝑖→∞

𝑎𝑝 (𝑖) .

3. Another, more general, subclass is the quasi-Polish spaces introduced by de Brecht [13]. A space X
is quasi-Polish if it is countably based and has a total admissible representation 𝛿X : NN → 𝑋 . These
include the computable Polish spaces as well as 𝜔-continuous domains.

4. Generally, a topological 𝑇0-space X with a countable base B = 〈𝐵𝑛〉𝑛∈N is naturally represented
by defining 𝛿 (X,B) (𝑝) = 𝑥 iff p enumerates the code of a neighbourhood basis for x; that is,
range(𝑝) = {𝑛 ∈ N : 𝑥 ∈ 𝐵𝑛}. One can also use a network to give a representation of a space as
suggested above.

We always assume that {0, 1}N, R𝑛 and [0, 1]N are admissibly represented by the Cauchy represen-
tations obtained from their standard metrics.

A real 𝑥 ∈ R is left-c.e. if there is a computable sequence (𝑞𝑛)𝑛∈N of rationals such that 𝑥 = sup𝑛 𝑞𝑛
(cf. [14]). Generally, a real 𝑥 ∈ R is left-c.e. relative to 𝑦 ∈ X if there is a partial computable function
𝑓 :⊆ X → QN such that 𝑥 = sup𝑛 𝑓 (𝑦) (𝑛). If (𝑀, 𝑑, (𝑎𝑛)𝑛∈N) is a computable metric space, there is a
computable list (𝐵𝑒)𝑒∈N of open balls of the form 𝐵(𝑎𝑛; 𝑞), where 𝐵(𝑎𝑛; 𝑞) is the open ball of radius
q centred at 𝑎𝑛. We say that a set U is c.e. open if there is a c.e. set 𝑊 ⊆ N such that 𝑈 =

⋃
𝑒∈𝑊 𝐵𝑒.

The complement of a c.e. open set is called Π0
1. By Π0

1 (𝑧), we mean Π0
1 relative to an oracle z, whose

complement is defined using a z-c.e. set W instead of a c.e. set.

2.1.3. Degree structures
The Medvedev degrees 𝔐 [36] are a cornerstone of our framework. These are obtained by taking
equivalence classes from Medvedev reducibility ≤𝑀 , defined on subsets A, B of Baire space NN via
𝐴 ≤𝑀 𝐵 iff there is a partial computable function 𝐹 :⊆ NN → NN such that 𝐵 ⊆ dom(𝐹) and
𝐹 [𝐵] ⊆ 𝐴. Important substructures of 𝔐 also relevant to us are the Turing degrees D𝑇 , the continuous
degrees D𝑟 and the enumeration degrees D𝑒; these satisfy D𝑇 � D𝑟 � D𝑒 � 𝔐.

Turing degrees are obtained from the usual Turing reducibility ≤T defined on points 𝑝, 𝑞 ∈ NN

with 𝑝 ≤T 𝑞 iff there is a computable function 𝐹 :⊆ NN → NN with 𝐹 (𝑞) = 𝑝. We thus see
𝑝 ≤T 𝑞 ⇔ {𝑝} ≤𝑀 {𝑞} and can indeed understand the Turing degrees to be a subset of the Medvedev
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degrees. The continuous degrees were introduced by Miller in [37]. Enumeration degrees have received
a lot of attention in computability theory and were originally introduced by Friedberg and Rogers [16]
(see also [42, Chapter XIV]). In both cases, we can provide a simple definition directly as a substructure
of the Medvedev degrees later on.

A further reducibility notion is relevant, although we are not particularly interested in its degree
structure. This is Muchnik reducibility ≤𝑤 [40], defined again for sets 𝐴, 𝐵 ⊆ NN via 𝐴 ≤𝑤 𝐵 iff, for
any 𝑝 ∈ 𝐵, there is 𝑞 ∈ 𝐴 such that 𝑞 ≤T 𝑝. Clearly, 𝐴 ≤𝑀 𝐵 implies 𝐴 ≤𝑤 𝐵, but the converse is false
in general.

2.2. Topology and Dimension

2.2.1. Isomorphism and Classification
We are now interested in isomorphisms of a particular kind; this always means a bijection in that function
class, such that the inverse is also in that function class. For instance, consider the following morphisms.
For a function 𝑓 : X → Y,

1. f is 𝜎-computable (𝜎-continuous, respectively) if there are sets (𝑋𝑛)𝑛∈N such that X =
⋃

𝑛∈N 𝑋𝑛 and
each 𝑓 |𝑋𝑛 is computable (continuous, respectively)

2. f is 𝚪-piecewise continuous if there are 𝚪-sets (𝑋𝑛)𝑛∈N such that X =
⋃

𝑛∈N 𝑋𝑛 and each 𝑓 |𝑋𝑛 is
continuous.

3. f is nth-level Borel measurable if 𝑓 −1 [𝐴] is 𝚺0
𝑛+1 for every 𝚺0

𝑛+1 set 𝐴 ⊆ Y.

In particular, f is second-level Borel measurable iff 𝑓 −1 [𝐴] is 𝐺 𝛿𝜎 for every 𝐺 𝛿𝜎 set 𝐴 ⊆ Y. We also
say that f is finite-level Borel measurable if it is nth-level Borel measurable for some 𝑛 ∈ N. Note that
𝜎-continuity is also known as countable continuity. A 𝜎-homeomorphism is a bijection 𝑓 : X → Y such
that both f and 𝑓 −1 are 𝜎-continuous. Similarly, a 𝜎-embedding of X into Y is a 𝜎-homeomorphism
between X and a subspace of Y.

Remark 2.3. Note that if 𝑓 : X → Y is a 𝜎-homeomorphism, then f is a countable union of partial
homeomorphisms: By definition, we can write f as the union of continuous injections 𝑓𝑖 : 𝑋𝑖 → Y
and, similarly, 𝑓 −1 as the union of 𝑔 𝑗 : 𝑌 𝑗 → X. Then, the restriction 𝑓𝑖 𝑗 of 𝑓𝑖 up to 𝑋𝑖 ∩ 𝑔 𝑗 [𝑌 𝑗 ] is a
homeomorphism between 𝑋𝑖 ∩ 𝑔 𝑗 [𝑌 𝑗 ] and 𝑓𝑖 [𝑋𝑖] ∩𝑌 𝑗 . Clearly, f is the union of 𝑓𝑖 𝑗s. It is clear that the
converse is also true.

By recent results from descriptive set theory (cf. [17, 27, 54, 47]), we have the following implication
for functions on Polish spaces:

𝚺0
𝑛+1-piecewise continuous ⇐⇒ 𝚷0

𝑛-piecewise continuous
=⇒ nth-level Borel measurable =⇒ 𝜎-continuous.

The last implication was recently proved by [54, 47] and, more recently, an alternative computability
theoretic proof was given by [17] using our framework of point degree spectra of Polish spaces.

Observation 2.4. Let X and Y be Polish spaces. Then, N × X and N × Y are 𝜎-homeomorphic if and
only if N × X and N × Y are second-level Borel isomorphic.

Proof. For the ‘if’ direction, assume that X and Y are second-level Borel isomorphic; that is, there is
a bijection 𝑓 : X → Y such that both f and 𝑓 −1 are second-level Borel measurable. From the above
argument, both f and 𝑓 −1 are 𝜎-continuous and, therefore, f is a 𝜎-homeomorphism.

To show the ‘only if’ direction, recall (from Remark 2.3) that a 𝜎-homeomorphism of X into Y
is a countable union of partial homeomorphisms. Then, note that, by the Lavrentiev theorem (cf.
[26, Theorem 3.9]), every homeomorphism between subsets of Polish spaces can be extended to a
homeomorphism between 𝐺 𝛿 sets. Therefore, we have homeomorphisms ℎ𝑛 between 𝐺 𝛿 sets 𝑋𝑛 ⊆ X
and 𝑌𝑛 ⊆ Y such that

⋃
𝑛 𝑋𝑛 = X and

⋃
𝑛 𝑌𝑛 = Y. Then, by defining ℎ∗𝑛 : 𝑋𝑛 \

⋃
𝑚<𝑛 𝑋𝑚 → {𝑛} × Y
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with ℎ∗𝑛 (𝑥) = (𝑛, ℎ𝑛 (𝑥)), we obtain a 𝚫0
3-piecewise embedding of X into N × Y whose image is 𝚫0

3.
Hence, whenever Polish spaces X and Y are 𝜎-homeomorphic, we get second-level Borel embeddings
𝑓 : X → N × Y and 𝑔 : Y → N × X with 𝚫0

3 images. Then, using a finer version (see [25, Lemma 5.2])
of the Cantor–Bernstein argument, one can construct a second-level Borel isomorphism between N×X
and N × Y. This verifies our assertion since N � N2. �

Consequently, the second-level Borel isomorphic classification and the 𝜎-homeomorphic classifica-
tion of Polish spaces are almost the same. Hence, three classification problems, Problems 1.1, 1.2 and
1.3 in Section 1, are almost equivalent.

Hereafter, for notation, let � be computable isomorphism, �𝔗 continuous isomorphism (i.e., home-
omorphism), �𝜎 isomorphism by 𝜎-computable functions and �𝔗𝜎 𝜎-continuous isomorphism (i.e.,
𝜎-homeomorphism).

For any of these notions, we write X ≤ Y with the same decorations on ≤ if X is isomorphic to a
subspace of Y (i.e., X is embedded into Y) in that way. If X ≤ Y holds, but Y ≤ X does not, then we
also write X < Y, again with the suitable decorations on <. If neither X ≤ Y nor Y ≤ X, we write X | Y
(again, with the same decorations). Again, the Cantor–Bernstein argument shows the following.

Observation 2.5. Let X and Y be represented spaces. Then, X �𝜎 Y if and only if X ≤𝜎 Y and Y ≤𝜎 X.

2.2.2. Topological Dimension theory
As a general source for topological dimension theory, we point to Engelking [15]. See also van Mill [64]
for infinite-dimensional topology. A topological space X is countable dimensional if it can be written as
a countable union of finite-dimensional subspaces. Recall that a Polish space is countable dimensional
if and only if it is transfinite dimensional; that is, its transfinite small inductive dimension is less than
𝜔1 (see [22, pp. 50–51]). One can see that a Polish space X is countable dimensional if and only if
X ≤𝔗

𝜎 {0, 1}N.
To investigate the structure of uncountable dimensional spaces, Alexandrov introduced the notion

of weakly/strongly infinite-dimensional space. We say that C is a separator (usually called a partition
in dimension theory) of a pair (𝐴, 𝐵) in a space X if there are two pairwise disjoint open sets 𝐴′ ⊇ 𝐴
and 𝐵′ ⊇ 𝐵 such that 𝐴′ � 𝐵′ = X \ 𝐶. A family {(𝐴𝑖 , 𝐵𝑖)}𝑖∈Λ of pairwise disjoint closed sets in X
is essential if whenever 𝐶𝑖 is a separator of (𝐴𝑖 , 𝐵𝑖) in X for every 𝑖 ∈ N,

⋂
𝑖∈N 𝐶𝑖 is nonempty. An

infinite-dimensional space X is said to be strongly infinite-dimensional if it has an essential family of
infinite length. Otherwise, X is said to be weakly infinite-dimensional.

We also consider the following covering property for topological spaces. Let O[X] be the collection
of all open covers of a topological space X and O2 [X] = {U ∈ O[𝑋] : |U| = 2}; that is, the collection of
all covers by two open sets. For A,B ∈ {O2,O}, we write X ∈ S𝑐 (A,B) if and only if for any sequence
(U𝑛)𝑛∈N ∈ A[X]N, there is a sequence (V𝑛)𝑛∈N of pairwise disjoint open sets such that V𝑛 refines U𝑛

for each 𝑛 ∈ N and
⋃

𝑛∈N V𝑛 ∈ B[X].
Note that a topological space X is weakly infinite-dimensional if and only if X ∈ S𝑐 (O2,O). We say

that X is a C-space [1] or selectively screenable [4] if X ∈ S𝑐 (O,O). For a topological property P, we
say that X is hereditarily P if every subspace of X is P. We have the following implications:

countable-dimensional ⇒ 𝐶-space ⇒ weakly infinite-dimensional.

Alexandrov’s old problem was whether there exists a weakly infinite-dimensional compactum which
is not countable dimensional; that is, X >𝔗

𝜎 {0, 1}N. This problem was solved by R. Pol [49] by
constructing a compact metrisable space of the form 𝑅 ∪ 𝐿 for a strongly infinite-dimensional totally
disconnected subspace R and a countable dimensional subspace L. Such a compactum is a C-space but
not countable dimensional. Namely, R. Pol’s theorem says that there are at least two 𝜎-homeomorphism
types of compact metrisable C-spaces.

There are previous studies on the structure of continuous isomorphism types (Fréchet dimension
types) of various kinds of infinite-dimensional compacta; for example, strongly infinite-dimensional
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Cantor manifolds (see [7, 8]). For instance, by combining the Baire category theorem and the result by
Chatyrko-Pol [8], one can show that there are continuum many first-level Borel isomorphism types of
strongly infinite-dimensional Cantor manifolds. However, there is an enormous gap between first and
second level and, hence, such an argument never tells us anything about second-level Borel isomorphism
types. Concerning weakly infinite-dimensional Cantor manifolds, Elz̈bieta Pol [48] (see also [7]) con-
structed a compact metrisable C-space in which no separator of nonempty subspaces can be hereditarily
weakly infinite-dimensional. We call such a space a Pol-type Cantor manifold.

3. Point Degree Spectra

3.1. Generalised Turing Reducibility

Recall that the notion of a represented space involves the notion of computability. More precisely,
every point in a represented space is coded by an infinite word, called a name. Then, we estimate how
complicated a given point is by considering the degree of difficulty of calling a name of the point. Of
course, it is possible for each point to have many names, and this feature yields the phenomenon that
there is a point with no easiest names with respect to Turing degree.

Formally, we associate analogies of Turing reducibility and Turing degrees with an arbitrary repre-
sented space in the following manner.

Definition 3.1. Let X and Y be represented spaces. We say that 𝑦 ∈ Y is point-Turing reducible to 𝑥 ∈ X
if there is a partial computable function 𝑓 :⊆ X → Y such that 𝑓 (𝑥) = 𝑦. In other words, the set 𝛿−1

𝑌 (𝑦)
of names of y is Medvedev reducible to the set 𝛿−1

𝑋 (𝑥) of names of x. In this case, we write 𝑦Y ≤T 𝑥
X,

or simply 𝑦 ≤T 𝑥.

Roughly speaking, by the condition 𝑦 ≤T 𝑥 we mean that if one knows a name of x, one can compute
a name of y, in a uniform manner. This pre-ordering relation ≤T clearly yields an equivalence relation
≡T on points 𝑥X of represented spaces, and we then call each equivalence class [𝑥X]≡T the point-Turing
degree of 𝑥 ∈ X, denoted by deg(𝑥X). In other words,

deg(𝑥X) = [𝛿−1
𝑋 (𝑥)]≡𝑀 = ‘the Medvedev degree of the set of all 𝛿𝑋 -names of x’.

Then, we introduce the notion of point degree spectrum of a represented space as follows.

Definition 3.2. For a represented space X, define

Spec(X) = {deg(𝑥X) | 𝑥 ∈ X} ⊆ 𝔐.

We call Spec(X) the point degree spectrum of X. Given an oracle p, we also define the p-relativised point
degree spectrum by replacing a partial computable function in Definition 3.1 with a partial p-computable
function. Equivalently, define deg𝑝 (𝑥X) = [{𝑝} × 𝛿−1

X (𝑥)]≡𝑀 and Spec𝑝 (X) = {deg𝑝 (𝑥X) : 𝑥 ∈ X}.

Clearly, one can identify the Turing degrees D𝑇 , the continuous degrees D𝑟 and the enumeration
degrees D𝑒 with degree spectra of some spaces as follows:

◦ Spec({0, 1}N) = Spec(NN) = Spec(R) = D𝑇 ,
◦ (Miller [37]) Spec([0, 1]N) = Spec(C([0, 1], [0, 1])) = D𝑟 ,
◦ Spec(O(N)) = D𝑒, where O(N) is the space of all subsets of N where a basic open set is the set of

all supersets of a finite subset of N. Note that O(N) is (computably) homeomorphic to SN, where S
is the Sierpiński space.

As any separable metric space embeds into the Hilbert cube [0, 1]N, we find in particular that
Spec(X) ⊆ D𝑟 for any computable metric space X. As any second-countable 𝑇0 space embeds into the
Scott domain O(N), we also have that Spec(X) ⊆ D𝑒 for any computable second-countable 𝑇0 space X.
In the latter case, the point degree of 𝑥 ∈ X corresponds to the enumeration degree of neighbourhood
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basis as in Example 2.2 (4). The Turing degrees will be characterised in Subsection 3.2 in the context
of topological dimension theory.

In computable model theory, the degree spectrum of a countable structure S is defined as the collection
of Turing degrees of isomorphic copies of S coded inN (see [21, 53]). The notion of degree spectrum on
a cone (i.e., degree spectrum relative to an oracle) also plays an important role in (computable) model
theory (see [38, 39]). One can define the space of countable structures as done in invariant descriptive
set theory; however, from this perspective, a countable structure is a point and, therefore, the degree
spectrum of a structure corresponds to the degree spectrum of a point rather than that of a space.

Given a point 𝑥 ∈ X, we define Spec(𝑥X) as the set of all oracles 𝑧 ∈ {0, 1}N which can compute a
name of x and Spec𝑝 (𝑥X) as its relativisation by an oracle 𝑝 ∈ {0, 1}N. Then, the weak point degree
spectrum Spec𝑤 (X) is the collection of all degree spectra of points of 𝑥 ∈ X and Spec𝑝

𝑤 (X) is its
relativisation by an oracle p; that is,

Spec(𝑥X) = {𝑧 ∈ {0, 1}N : 𝑥 ≤T 𝑧}, Spec𝑝 (𝑥X) = {𝑧 ∈ {0, 1}N : 𝑥 ≤T (𝑧, 𝑝)},

Spec𝑤 (X) = {Spec(𝑥X) : 𝑥 ∈ X}, Spec𝑝
𝑤 (X) = {Spec𝑝 (𝑥X) : 𝑥 ∈ X}.

Note that this notion can be described in terms of Muchnik reducibility [40]; that is, we can think of
the degree spectrum of 𝑥 ∈ X as

Spec(𝑥X) ≈ [𝛿−1
𝑋 (𝑥)]≡𝑤 = ‘the Muchnik degree of the set of all 𝛿𝑋 -names of x’.

Observation 3.3. If X and Y are admissibly represented second-countable 𝑇0-spaces, then there is an
oracle p such that for all 𝑞 ≥𝑇 𝑝,

Spec𝑞 (X) ⊆ Spec𝑞 (Y) ⇐⇒ Spec𝑞𝑤 (X) ⊆ Spec𝑞𝑤 (Y).

Proof. It is known that enumeration reducibility coincides with its nonuniform version (see [60] or [37,
Theorem 4.2]); that is, for 𝐴, 𝐵 ⊆ N, the condition 𝐴 ≤𝑒 𝐵 is equivalent to the following: For any
𝑍 ∈ {0, 1}N, if B is Z-c.e., then A is also Z-c.e. In our terminology, for C = {0, 1}N and D = O(N), the
abovementioned equivalence says that for any 𝑎, 𝑏 ∈ D,

𝑎D ≤T 𝑏
D ⇐⇒ (∀𝑧 ∈ C) [𝑏D ≤T 𝑧

C =⇒ 𝑎D ≤T 𝑧
C]

⇐⇒ Spec(𝑏D) ⊆ Spec(𝑎D).

In particular, 𝑎D ≡T 𝑏D if and only if Spec(𝑏D) = Spec(𝑎D). Let X and Y be subspaces of D. Note
that Spec(X) ⊆ Spec(Y) iff for any 𝑥 ∈ X there is 𝑦 ∈ Y such that 𝑥X ≡T 𝑦Y. Since 𝑥X ≡T 𝑦Y is
equivalent to Spec(𝑥X) = Spec(𝑦Y), we get that Spec𝑤 (X) ⊆ Spec𝑤 (Y).

As in Example 2.2 (4), every second-countable 𝑇0-space can be embedded into the Scott domain
O(N). Use the relativisation argument to get an oracle p such that there are p-computable embeddings
of X and Y into O(N). Then, the desired assertion can be verified by relativising the above argument to
any oracle 𝑞 ≥𝑇 𝑝. �

3.2. Degree Spectra and Dimension Theory

One of the main tools in our work is the following characterisation of the point degree spectra of
represented spaces.

Theorem 3.4. The following are equivalent for admissibly represented spaces X and Y:

1. Spec𝑟 (X) = Spec𝑟 (Y) for some oracle 𝑟 ∈ {0, 1}N.
2. N × X is 𝜎-homeomorphic to N × Y; that is, N × X �𝔗𝜎 N × Y.

Moreover, if X and Y are Polish, then the following assertions (3) and (4) are also equivalent to the
above assertions (1) and (2).
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3. N × X is second-level Borel isomorphic to N × Y.
4. The Banach algebra B∗

2(N × X) is linearly isometric (ring isomorphic and so on) to B∗
2(N × Y).

One can also see that the following assertions are equivalent:

2′. N × X is 𝐺 𝛿-piecewise homeomorphic to N × Y.
3′. N × X is nth-level Borel isomorphic to N × Y for some 𝑛 ≥ 2.
4′. The Banach algebra B∗

𝑛 (N × X) is linearly isometric (ring isomorphic and so on) to B∗
𝑛 (N × Y) for

some 𝑛 ≥ 2.

By Observation 2.4 and its proof, the assertions (2), (2′) and (3) are equivalent. Obviously, the
assertions (3) and (4) imply (3′) and (4′), respectively. The equivalence between (3) and (4) (and the
equivalence between (3′) and (4′)) has already been shown by Jayne [23] for second-countable (or, more
generally, real compact) spaces X and Y. Consequently, all assertions from (2) to (4′) are equivalent.

To see the equivalence between (1) and (2), we characterise the point degree spectra of represented
spaces in the context of computable 𝜎-embedding.

Lemma 3.5. The following are equivalent for represented spaces X and Y:

1. Spec(X) ⊆ Spec(Y)
2. X ≤𝜎 N × Y; that is, X is a countable union of subspaces that are computably isomorphic to

subspaces of Y.

Proof. We first show that the assertion (1) implies (2). By assumption, for any 𝑥 ∈ X we find 𝑥X ≡𝑀 𝑦Y
𝑥

for some 𝑦𝑥 ∈ Y. For any 𝑖, 𝑗 ∈ N, let X𝑖 𝑗 be the set of all points where the reductions are witnessed byΦ𝑖

and Φ 𝑗 . More precisely, put X𝑖 𝑗 = {𝑥 ∈ X : Φ 𝑗Φ𝑖 (𝑥) = 𝑥}, where we recall that Φ𝑒 is a partial function
on represented spaces realised by the eth partial computable function. Let Y𝑖 𝑗 = {Φ𝑖 (𝑥) | 𝑥 ∈ X𝑖 𝑗 } ⊆ Y.
Then Φ𝑖 and Φ 𝑗 also witness X𝑖 𝑗 � Y𝑖 𝑗 . Obviously, X =

⋃
〈𝑖, 𝑗 〉∈N X𝑖 𝑗 since 𝑥X ≡𝑀 𝑦Y

𝑥 is witnessed by
some Φ𝑖 and Φ 𝑗 ; that is, Φ𝑖 (𝑥) = 𝑦𝑥 and Φ 𝑗 (𝑦𝑥) = 𝑥. Then, the union of computable homeomorphisms
X𝑖 𝑗 � {〈𝑖, 𝑗〉} × Y𝑖 𝑗 gives a 𝜎-computable embedding of X into N × Y.

Conversely, the point degree spectrum is preserved by computable isomorphism and, clearly,
Spec(

⋃
𝑛∈NX𝑛) =

⋃
𝑛∈N Spec(X𝑛), so the claim follows. �

Proof of Theorem 3.4 (1) ⇔ (2). It follows from relativisations of Lemma 3.5 and Observation 2.5.
Here, it is easy to see that the assertion (2) is equivalent to N × X ≤𝜎 N × Y. �

This simple argument completely solves a mystery about the occurrence of non-Turing degrees in
proper infinite-dimensional spaces. Concretely speaking, by relativising Lemma 3.5, we can characterise
the Turing degrees in terms of topological dimension theory as follows.1

Corollary 3.6. The following are equivalent for a separable metrisable space X endowed with an
admissible representation:

1. Spec𝑝 (X) ⊆ D𝑇 for some oracle 𝑝 ∈ {0, 1}N
2. X is countable dimensional.

By a dimension-theoretic fact (see Subsection 2.2.2), if X is Polish, transfinite dimensionality is also
equivalent to the condition for X in which any point has a Turing degree relative to some oracle.

By definition, Spec(X) can be considered as a degree structure (i.e., a substructure of the enumeration
degrees or the Medvedev degrees). Hence, by Theorem 3.4, 𝜎-homeomorphic classification can be
viewed as a kind of degree theory dealing with the order structure on degree structures (on a cone).
Thus, from the viewpoint of degree theory, it is natural to ask whether Post’s problem (of whether
there is an intermediate degree structure strictly between the bottom {0, 1}N and the top [0, 1]N),
the Friedberg–Muchnik theorem (there is a pair of incomparable degree structures), the Sacks density

1The same observation was independently made by Hoyrup. Brattka and Miller had conjectured that dimension would be the
crucial demarkation line for spaces with only Turing degrees (all personal communication).
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theorem (given two comparable, but different, degree structures, there is an intermediate degree structure
strictly between them) and so on are true for the order of degree structures of uncountable Polish spaces.

More details of the structure of degree spectra of Polish spaces will be investigated in Sections 4
and 5.

4. Intermediate Point Degree Spectra

4.1. Intermediate Polish Spaces

In this section, we investigate the structure of 𝜎-homeomorphic types or, (almost) equivalently, point
degree spectra (up to relativisation) of uncountable Polish spaces.

It is well-known that for every uncountable Polish space X:

{0, 1}N ≤𝔗
𝑐 𝑋 ≤𝔗

𝑐 [0, 1]N,

where, recall that ≤𝔗
𝑐 is the topological embeddability relation (i.e., the ordering of Fréchet dimension

types). In this section, we focus on Problem 1.3 asking whether there exists a Polish space X satisfying
the following:

{0, 1}N <𝔗
𝜎 X <𝔗

𝜎 [0, 1]N.

One can see that there is no difference between the structures of 𝜎-homeomorphism types of
uncountable Polish spaces and uncountable compact metric spaces.

Fact 4.1. Every Polish space is 𝜎-homeomorphic to a compact metrisable space.

Proof. If a pair of countable spaces has the same cardinality, then they are clearly 𝜎-homeomorphic.
Moreover, there are compact metrisable spaces of all countable cardinalities.

So let X be an uncountable Polish space. Lelek [34] showed that every Polish space X has a
compactification 𝛾X such that 𝛾X \ X is countable dimensional. Clearly, X ≤𝑐 𝛾X. Then, we have
𝛾X \ X ≤𝔗

𝜎 {0, 1}N ≤𝔗
𝜎 X, since X is uncountable Polish and 𝛾X \ X is countable dimensional.

Consequently, X, 𝛾X \ X ≤𝔗
𝜎 X, and this implies 𝛾X = X ∪ (𝛾X \ X) ≤𝔗

𝜎 X. �

4.2. The Graph Space of a Universal 𝜔-Left-CEA Operator

Now, we provide a concrete example having an intermediate degree spectrum. We say that a point
(𝑟𝑛)𝑛∈N ∈ [0, 1]N is 𝜔-left-CEA in 𝑥 ∈ NN if 𝑟𝑛+1 is left-c.e. in 〈𝑥, 𝑟0, 𝑟1, . . . , 𝑟𝑛〉 uniformly in 𝑛 ∈ N.
In other words, there is a computable function Ψ : NN × [0, 1]<𝜔 × N2 → Q≥0 such that

𝑟𝑛 = sup
𝑠∈N

Ψ(𝑥, 𝑟0, . . . , 𝑟𝑛−1, 𝑛, 𝑠)

for every 𝑥, 𝑛, 𝑠, where Q≥0 denotes the set of all nonnegative rationals. If, moreover, we have 𝑟0 ≥𝑀 𝑥,
then we say that (𝑟𝑛)𝑛∈N is 𝜔-left-CEA over 𝑥 ∈ NN.

Whenever 𝑟𝑛 ∈ [0, 1] for all 𝑛 ∈ N, such a computable function Ψ generates an operator 𝐽𝜔Ψ : NN →

[0, 1]N with 𝐽𝜔Ψ (𝑥) = (𝑥, 𝑟0, 𝑟1, . . . ), which is called an 𝜔-left-CEA operator. An 𝜔-left-CEA operator
𝐽𝜔 is universal if for any 𝜔-left-CEA operator J, there is 𝑒 ∈ N such that 𝐽𝜔 (〈𝑒, 𝑥〉) = 𝐽 (𝑥).

Proposition 4.2. A universal 𝜔-left-CEA operator exists.

Proof. We first give an effective enumeration (𝐽𝜔𝑒 )𝑒∈N of all 𝜔-left-CEA operators. It is not hard to see
that 𝑦 ∈ [0, 1] is left-c.e. in 𝑥 ∈ NN × [0, 1]𝑘 if and only if there is a c.e. set 𝑊 ⊆ N × Q such that

𝑦 = 𝐽𝑘𝑊 (𝑥) := sup{min{|𝑝 |, 1} : 𝑥 ∈ 𝐵𝑘
𝑖 for some (𝑖, 𝑝) ∈ 𝑊},
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where 𝐵𝑘
𝑖 is the ith rational open ball in NN × [0, 1]𝑘 . Thus, we have an effective enumeration of all

left-c.e. operators 𝐽 : NN × [0, 1]𝑘 → [0, 1] by putting 𝐽𝑘𝑒 = 𝐽𝑘𝑊𝑒
, where 𝑊𝑒 is the eth c.e. subset of

N × Q. Then, we define

𝐽𝜔𝑒 (𝑥) = (𝑥, 𝐽0
〈𝑒,0〉 (𝑥), 𝐽

1
〈𝑒,1〉 (𝑥, 𝐽

0
〈𝑒,0〉 (𝑥)), . . . );

that is, 𝐽𝜔𝑒 is the 𝜔-left-CEA operator generated by the uniform sequence (𝐽𝑘
〈𝑒,𝑘 〉

)𝑘∈N of left-c.e.
operators. Clearly, (𝐽𝜔𝑒 )𝑒∈N is an effective enumeration of all 𝜔-left-CEA operators. Then, define
𝐽𝜔 (〈𝑒, 𝑥〉) = 𝐽𝜔𝑒 (𝑥). It is not hard to check that 𝐽𝜔 is a universal 𝜔-left-CEA operator. �

Definition 4.3. The 𝜔-left-computably enumerable in-and-above space 𝜔CEA is a subspace of N ×
{0, 1}N × [0, 1]N defined by

𝜔CEA = {(𝑒, 𝑥, 𝑟) ∈ N × NN × [0, 1]N : 𝐽𝜔𝑒 (𝑥) = (𝑥, 𝑟)}

� ‘the graph of a universal 𝜔-left-CEA operator’.

Note that in classical recursion theory, an operator Ψ is called a CEA-operator (also known as an
REA-operator, a pseudojump, or a hop) if there is a c.e. procedure W such that Ψ(𝐴) = 〈𝐴,𝑊 (𝐴)〉 for
any 𝐴 ⊆ N (see Odifreddi [42, Chapters XII and XIII]). An 𝜔-CEA operator (also called an 𝜔-hop)
is the 𝜔th iteration of a uniform sequence of CEA-operators. In general, computability theorists have
studied 𝛼-CEA operators for computable ordinals 𝛼 in the theory of Π0

2 singletons. We will also use a
generalisation of the notion of a Π0

2 singleton in Section 5.
We say that a continuous degree is 𝜔-left-CEA if it contains a point 𝑟 ∈ [0, 1]N which is 𝜔-left-CEA

over an oracle 𝑧 ∈ {0, 1}N. The point degree spectrum of the space 𝜔CEA (as a subspace of [0, 1]N)
can be described as follows:

Spec(𝜔CEA) = {a ∈ D𝑟 : a is 𝜔-left-CEA}.

This is because 𝐽𝜔𝑒 (𝑥) is always 𝜔-left-CEA over x and, conversely, if r is 𝜔-left-CEA over x, then
by universality of 𝐽𝜔 (Proposition 4.2) there is e such that 𝐽𝜔𝑒 (𝑥) = (𝑥, 𝑟), which is equivalent to r as
𝑥 ≤T 𝑟 . Clearly,

Spec({0, 1}N) ⊆ Spec(𝜔CEA) ⊆ Spec([0, 1]N).

The following is an analog of the well-known fact from classical computability theory that every
𝜔-CEA set is a Π0

2-singleton (see Odifreddi [42, Proposition XIII.2.7]).

Lemma 4.4. The 𝜔-left-CEA space 𝜔CEA is Polish.

Proof. It suffices to show that 𝜔CEA is Π0
2 (hence 𝐺 𝛿) in NN × [0, 1]N since a 𝐺 𝛿 subset of a Polish

space is Polish. The stage s approximation to 𝐽𝑘𝑒 is denoted by 𝐽𝑘𝑒,𝑠; that is, 𝐽𝑘𝑒,𝑠 (𝑧) = max{min{|𝑝 |, 1} :
(∃〈𝑖, 𝑝〉 ∈ 𝑊𝑒,𝑠) 𝑧 ∈ 𝐵

𝑘
𝑖 }, where𝑊𝑒,𝑠 is the stage s approximation to the eth computably enumerable set

𝑊𝑒. Note that the function (𝑒, 𝑠, 𝑘, 𝑧) ↦→ 𝐽𝑘𝑒,𝑠 (𝑧) is computable. We can easily see that (𝑒, 𝑥, 𝑟) ∈ 𝜔CEA
if and only if

(∀𝑛, 𝑘 ∈ N) (∃𝑠 > 𝑛) 𝑑
(
𝜋𝑘 (𝑟), 𝐽

𝑘
𝑒,𝑠 (𝑥, 𝜋0 (𝑟), 𝜋1 (𝑟), . . . , 𝜋𝑘−1(𝑟))

)
< 2−𝑛,

where d is the Euclidean metric on [0, 1] and 𝜋𝑖 is the ith projection (i.e., 𝜋𝑖 (𝑟) = 𝑟𝑖 for 𝑟 = (𝑟 𝑗 ) 𝑗∈N).
The above formula is clearly Π0

2. �

We devote the rest of this section to a proof of the following theorem.
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Theorem 4.5. The space 𝜔CEA has an intermediate 𝜎-homeomorphism type; that is,

{0, 1}N <𝔗
𝜎 𝜔CEA <𝔗

𝜎 [0, 1]N.

Consequently, the space 𝜔CEA is a concrete counterexample to Problem 1.3.

4.3. Proof of Theorem 4.5

The key idea is to measure how similar the space X is to a zero-dimensional space by approximating
each point in a space X by a zero-dimensional space. Recall from (the proof of) Observation 3.3 that, for
points in represented spaces which computably embed into O(N), there is a one-to-one correspondence
between the point-Turing degree deg(𝑥) = [𝑥]≡𝑀 and the spectrum Spec(𝑥). Via this correspondence,
the point-Turing degree deg(𝑥) of a point 𝑥 ∈ X can be identified with its Turing upper cone; that is,

deg(𝑥) ≈ Spec(𝑥) = {𝑧 ∈ {0, 1}N : 𝑥 ≤T 𝑧}.

We think of the spectrum Spec(𝑥) as the upper approximation of 𝑥 ∈ X by the zero-dimensional
space {0, 1}N. Now, we need the notion of the lower approximation of 𝑥 ∈ X by the zero-dimensional
space {0, 1}N. We introduce the co-spectrum of a point 𝑥 ∈ X as its Turing lower cone

coSpec(𝑥) = {𝑧 ∈ {0, 1}N : 𝑧 ≤T 𝑥},

and, moreover, we define the degree co-spectrum of a represented space X as follows:

coSpec(X) = {coSpec(𝑥) : 𝑥 ∈ X}.

As we will see below, the degree spectrum of a represented space fully determines its co-spectrum,
while the converse is not true. For every oracle 𝑝 ∈ {0, 1}N, we may also introduce relativised co-
spectra coSpec𝑝 (𝑥) = {𝑧 ∈ {0, 1}N : 𝑧 ≤T (𝑥, 𝑝)} and the relativised degree co-spectra coSpec𝑝 (X) in
the same manner.

Observation 4.6. Let X and Y be admissibly represented spaces. If Spec𝑝 (X) ⊆ Spec𝑝 (Y), then we
also have coSpec𝑝 (X) ⊆ coSpec𝑝 (Y).

Therefore, by Theorem 3.4, the cospectrum of an admissibly represented space up to an oracle is
invariant under 𝜎-homeomorphism. Indeed, by relativising Lemma 3.5, one can see that X ≤𝔗

𝜎 Y
implies coSpec𝑝 (X) ⊆ coSpec𝑝 (Y) for some p.

Proof. Clearly, [𝑥X]≡T = [𝑦Y]≡T implies that {𝑧 ∈ {0, 1}N : 𝑧 ≤T 𝑥
X} = {𝑧 ∈ {0, 1}N : 𝑧 ≤T 𝑦Y}. This

observation can be relativised to any oracle p. This verifies the first assertion. �

We say that a collection I of subsets of N is realised as the co-spectrum of x if coSpec(𝑥) = I. A
countable set I ⊆ P(N) is a Scott ideal if it is the standard system of a countable nonstandard model
of Peano arithmetic or, equivalently, a countable 𝜔-model of the theory WKL0. We will not go into the
details of a Scott ideal (see Miller [37, Section 9] for a more explicit definition); we will only use the
fact that every jump ideal is a Scott ideal. Here, a jump ideal I is a collection of subsets of natural
numbers which is closed under the join ⊕, downward Turing reducibility ≤T and the Turing jump; that
is, 𝑝, 𝑞 ∈ I implies 𝑝 ⊕ 𝑞 ∈ I; 𝑝 ≤T 𝑞 ∈ I implies 𝑝 ∈ I; and 𝑝 ∈ I implies 𝑝′ ∈ I. Miller [37,
Theorem 9.3] showed that every countable Scott ideal (hence, every countable jump ideal) is realised
as a co-spectrum in [0, 1]N.

Example 4.7. The spectra and co-spectra of Cantor space {0, 1}N, the space 𝜔CEA and the Hilbert
cube [0, 1]N are illustrated as follows (see also Figure 1):

1. The co-spectrum coSpec(𝑥) of any point 𝑥 ∈ {0, 1}N is principal and meets with Spec(𝑥) exactly at
deg𝑇 (𝑥). The same is true up to some oracle for an arbitrary Polish spaces X such that X �𝔗𝜎 {0, 1}N.
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Figure 1. The upper and lower approximations of {0, 1}N, 𝜔CEA and [0, 1]N

2. For any point 𝑧 ∈ 𝜔CEA, the ‘distance’ between Spec(𝑧) and coSpec(𝑧) has to be at most the 𝜔th
Turing jump (see the proof of Theorem 4.5 below).

3. (Miller [37, Theorem 9.3]) An arbitrary countable Scott ideal is realised as coSpec(𝑦) of some point
𝑦 ∈ [0, 1]N. Hence, Spec(𝑦) and coSpec(𝑦) can be separated by an arbitrary distance. (Consider
countable Scott ideals closed under the 𝛼th Turing jump, the hyperjump, the Δ1

𝑛-jump, etc.)

This upper/lower approximation method clarifies the differences of 𝜎-homeomorphism types
of spaces because both relativised point-degree spectra and co-spectra are invariant under 𝜎-
homeomorphism by Theorem 3.4 and Observation 4.6.

Proof of Theorem 4.5. We first show that 𝜔CEA <𝔗
𝜎 [0, 1]N. This follows from the following claim:

For any oracle 𝑝 ∈ {0, 1}N, there is a countable Scott ideal which cannot be realised as a p-co-spectrum
of an 𝜔-left-CEA continuous degree.

To see this, let 𝑦 = (𝑒, 𝑥, 𝑟) ∈ 𝜔CEA be an arbitrary point. Clearly, 𝑥 ≤T (𝑒, 𝑥, 𝑟), and this means that
𝑥 ∈ coSpec(𝑦) since 𝑥 ∈ {0, 1}N. However, as 𝑟 = (𝑟𝑛)𝑛∈N is 𝜔-left-CEA in x, we know that 𝑟0 is c.e. in
x (so computable in the Turing jump of x) and 𝑟𝑛+1 is c.e. in (𝑥, 𝑟0, . . . , 𝑟𝑛). By induction, this implies
that 𝑟𝑛 is computable in the (𝑛 + 1)th jump of x uniformly in n and, therefore, r is computable in the
𝜔th jump of x; hence, 𝑦 = (𝑒, 𝑥, 𝑟) ≤T 𝑥

(𝜔) ; that is, 𝑥 (𝜔) ∈ Spec(𝑦). In particular, coSpec(𝑦) does not
contain the (𝜔 + 1)-st Turing jump of the second entry x of given any 𝑦 ∈ 𝜔CEA. Thus, for any oracle
p, the jump ideal A𝑝 = {𝑥 ∈ {0, 1}N : (∃𝑛 ∈ N) 𝑥 ≤T 𝑝 (𝜔 ·𝑛) } cannot be realised as a co-spectrum in
𝜔CEA. This verifies the claim.

By the above claim and Miller’s result on Scott ideals mentioned in Example 4.7 (3), we have
coSpec𝑝 (𝜔CEA) � coSpec𝑝 ([0, 1]N) for any oracle p. Therefore, by Theorem 3.4 and Observation
4.6, we conclude that the 𝜔-left-CEA space is not 𝜎-homeomorphic to the Hilbert cube; that is,
𝜔CEA <𝔗

𝜎 [0, 1]N.
We next show {0, 1}N <𝔗

𝜎 𝜔CEA. In other words, we have to show that the 𝜔-left-CEA space is not
countable-dimensional. For a compact set 𝑃 ⊆ [0, 1]N, we inductively define min 𝑃 ∈ 𝑃 as follows:

𝜋𝑛 (min 𝑃) = min 𝜋𝑛 [{𝑧 ∈ 𝑃 : (∀𝑖 < 𝑛) 𝜋𝑖 (𝑧) = 𝜋𝑖 (min 𝑃)}],

where 𝜋𝑛 : [0, 1]N → [0, 1] is the projection onto the nth coordinate. We call the point min 𝑃 the
leftmost point of P. Kreisel’s basis theorem (see [41, Proposition V.5.31]) in classical computability
theory says that the leftmost element of a Π0

1 subset of {0, 1}N or [0, 1] is always left-c.e. We consider
the following infinite-dimensional version of Kreisel’s basis theorem: For any oracle 𝑝 ∈ {0, 1}N, the
leftmost point of a Π0

1 (𝑝) subset of [0, 1]N is 𝜔-left-CEA in p.
To see this, one can easily check that the Hilbert cube [0, 1]N is computably compact in the sense

that there is a computable enumeration of all finite collections D of basic open sets which covers the
whole space; that is,

⋃D = [0, 1]N. In particular, given a Π0
1 set 𝑃 ⊆ [0, 1]N, the predicate 𝑃 = ∅ is Σ0

1
uniformly in a Π0

1 code of P.
Fix a Π0

1 (𝑝) set 𝑃 ⊆ [0, 1]N. It suffices to show that 𝜋𝑛+1 (min 𝑃) is left-c.e. in 〈𝜋𝑖 (min 𝑃)〉𝑖≤𝑛
uniformly in n relative to p. Given a finite sequence a = (𝑎0, 𝑎1, . . . , 𝑎𝑛) of reals and a real q, we denote
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by 𝐶 (a, 𝑞) the set of all points in P of the form (𝑎0, 𝑎1, . . . , 𝑎𝑛, 𝑟, . . . ) for some 𝑟 ≤ 𝑞; that is,

𝐶 (a, 𝑞) = 𝑃 ∩
⋂
𝑖≤𝑛

𝜋−1
𝑖 {𝑎𝑖} ∩ 𝜋−1

𝑛+1 [0, 𝑞] .

It is easy to check that 𝐶 (a, 𝑞) is a Π0
1 subspace of [0, 1] relative to a and q. By computable com-

pactness of the Hilbert cube, one can see that 𝐶∗(a) := {𝑞 ∈ [0, 1] : 𝐶 (a, 𝑞) = ∅} is p-c.e. open
uniformly relative to a (since 𝐶 (a, 𝑞) = ∅ is Σ0

1 uniformly relative to a and q). Therefore, sup𝐶∗(a) is
p-left-c.e. uniformly relative to a. Finally, we claim that 𝜋𝑛+1 (min 𝑃) is exactly sup𝐶∗(〈𝜋𝑖 (min 𝑃)〉𝑖≤𝑛).
By definition, 𝜋𝑛+1 (min 𝑃) is the least 𝑞 ∈ [0, 1] such that there exists (𝑟𝑚)𝑚≥𝑛+2 such that
(𝜋0 (min 𝑃), . . . , 𝜋𝑛 (min 𝑃), 𝑞, 𝑟𝑛+2, 𝑟𝑛+3, . . . ) ∈ 𝑃. This is equal to the least 𝑞 ∈ [0, 1] such that
𝐶 (〈𝜋𝑖 (min 𝑃)〉𝑖≤𝑛, 𝑞) is nonempty. This is exactly the same as sup𝐶∗(〈𝜋𝑖 (min 𝑃)〉𝑖≤𝑛).

We use the following relativised versions of Miller’s lemmas.

Lemma 4.8 (Miller [37, Lemma 6.2]). For every 𝑝 ∈ {0, 1}N, there is a multivalued function Ψ𝑝 :
[0, 1]N ⇒ [0, 1]N with a Π0

1 (𝑝) graph and nonempty, convex images such that, for all 𝑒 ∈ N, 𝛼 ∈ [0, 1]N

and 𝛽 ∈ Ψ𝑝 (𝛼), if for every name 𝜆 of 𝛼, 𝜑𝜆⊕𝑝
𝑒 is a name of 𝑥 ∈ [0, 1], then 𝛽(𝑒) = 𝑥.

Note that Kakutani’s fixed point theorem ensures the existence of a fixed point of Ψ𝑝. If 𝛼 is
a fixed point of Ψ𝑝 – that is – 𝛼 ∈ Ψ𝑝 (𝛼), then coSpec𝑝 (𝛼) = {𝛼(𝑛) : 𝑛 ∈ N} (to be more
precise, coSpec𝑝 (𝛼) is the set of all binary expansions of reals in {𝛼(𝑛) : 𝑛 ∈ N} or, equivalently,
coSpec𝑝 (𝛼) = {𝛼(𝑛) : 𝑛 ∈ N} ∩ {0, 1}N when {0, 1}N is regarded as the canonical Cantor set in [0, 1]).
Therefore, such an 𝛼 has no Turing degree relative to p (see [37, Proposition 5.3]).

Lemma 4.9 (Miller [37, Lemma 9.2]). For every 𝑝 ∈ {0, 1}N, there is an index 𝑒 ∈ N such that for any
𝑥 ∈ [0, 1], there is a fixed point 𝛼 of Ψ𝑝 such that 𝛼(𝑒) = 𝑥.

We show the following: For any oracle 𝑝 ∈ {0, 1}N, there is an 𝜔-left-CEA continuous degree which
is not contained in Spec𝑝 ({0, 1}N).

Let Fix(Ψ𝑝) be the set of all fixed points of Ψ𝑝 . Then, Fix(Ψ𝑝) is Π0
1 (𝑝) since it is the intersection of

the graph of Ψ𝑝 (which is a Π0
1 (𝑝) set) and the diagonal set. Let e be an index as in Lemma 4.9. Clearly,

𝐴 = {𝛼 ∈ Fix(Ψ𝑝) : 𝛼(𝑒) = 𝑝} is again a Π0
1 (𝑝) subset of [0, 1]N and A is nonempty by Lemma 4.9.

Given 𝛼 ∈ [0, 1]N, define 𝛼∗ as the result of swapping the values of the 0th and eth entries of 𝛼; that is,
𝛼∗(0) = 𝛼(𝑒), 𝛼∗(𝑒) = 𝛼(0) and 𝛼∗(𝑛) = 𝛼(𝑛) for 𝑛 ∉ {0, 𝑒}. It is clear that 𝛼 ↦→ 𝛼∗ is a computable
homeomorphism. Thus, 𝐴∗ = {𝛼 ∈ [0, 1] : 𝛼∗ ∈ 𝐴} is computably homeomorphic to A; hence, 𝐴∗ is
also a nonempty Π0

1 (𝑝) set. By our infinite-dimensional version of Kreisel’s basis theorem, 𝐴∗ contains
an element 𝛼 which is 𝜔-left-CEA in p. Indeed, 𝛼 is 𝜔-left-CEA over p since 𝛼(0) = 𝛼∗(𝑒) = 𝑝. By
the property of an element of 𝐴 ⊆ Fix(Ψ𝑝) discussed above, 𝛼∗ ∈ 𝐴 has no Turing degree relative to p.
Moreover, since moving the eth entry of 𝛼 to the first entry does not affect the degree, the degree of 𝛼 is
equal to that of 𝛼∗. Hence, 𝛼 has a 𝜔-left-CEA continuous degree but has no Turing degree relative to p.

By this claim, Spec𝑝 ({0, 1}N) � Spec𝑝 (𝜔CEA) for any oracle p. Again by Theorem 3.5 and
Observation 4.6, we conclude {0, 1}N <𝔗

𝜎 𝜔CEA. �

5. Structure of 𝜎-Homeomorphism Types

In this section, we will show that there are continuum many 𝜎-homeomorphism types of compact
metrisable spaces.

Theorem 5.1. There exists a collection (X𝛼)𝛼<2ℵ0 of continuum many compact metric spaces such that
if 𝛼 ≠ 𝛽, X𝛼 cannot be 𝜎-embedded into X𝛽 .

We devote the rest of this section to prove Theorem 5.1. Actually, we will show the following:

There is an embedding of the inclusion ordering ([𝜔1]
≤𝜔 , ⊆) of countable subsets of the smallest

uncountable ordinal 𝜔1 into the 𝜎-embeddability ordering of compact metric spaces.
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As a corollary, there are an uncountable chain and a continuum antichain of 𝜎-homeomorphism
types of compact metric spaces.

5.1. Almost Arithmetical Degrees

In Section 4, we used the co-spectrum as a 𝜎-topological invariant. More explicitly, in our proof, it
was essential to examine closure properties of co-spectra to obtain an intermediate 𝜎-homeomorphism
type of Polish spaces. In this section, we will develop a method for controlling closure properties of
co-spectra. As a result, we will construct a compact metrisable space whose co-spectra realise a given
well-behaved family of ‘almost’ arithmetical degrees.

First, we introduce a notion which estimates the strength of closure properties of functions up to the
arithmetical equivalence.

Definition 5.2. Let g and h be total Borel measurable functions from {0, 1}N into {0, 1}N.

1. We inductively define 𝑔0(𝑥) = 𝑥 and 𝑔𝑛+1(𝑥) = 𝑔𝑛 (𝑥) ⊕ 𝑔(𝑔𝑛 (𝑥)).
2. For every oracle 𝑟 ∈ {0, 1}N, consider the following jump ideal defined as

J𝑎 (𝑔, 𝑟) = {𝑧 ∈ {0, 1}N : (∃𝑛 ∈ N) 𝑧 ≤𝑎 𝑔
𝑛 (𝑟)},

where ≤𝑎 denotes the arithmetical reducibility; that is, 𝑝 ≤𝑎 𝑞 is defined by 𝑝 ≤T 𝑞 (𝑚) for some
𝑚 ∈ N (see Odifreddi [42, Section XII.2 and Chapter XIII]).

3. A function g is almost arithmetical reducible to a function h (written as 𝑔 ≤𝑎𝑎 ℎ) if for any 𝑟 ∈ {0, 1}N
there is 𝑥 ∈ {0, 1}N with 𝑥 ≥𝑇 𝑟 such that

J𝑎 (𝑔, 𝑥) ⊆ J𝑎 (ℎ, 𝑥).

4. Let G and H be countable sets of total functions. We say that G is 𝑎𝑎-included in H (written as
G ⊆𝑎𝑎 H) if for all 𝑔 ∈ G, there is ℎ ∈ H such that 𝑔 ≡𝑎𝑎 ℎ (i.e., 𝑔 ≤𝑎𝑎 ℎ and ℎ ≤𝑎𝑎 𝑔).

A function 𝑔 : {0, 1}N → {0, 1}N is said to be monotone if 𝑥 ≤T 𝑦 implies 𝑔(𝑥) ≤T 𝑔(𝑦).

Remark 5.3. Although it will not be used later, one can show that ≤𝑎𝑎 is transitive on monotone Borel
measurable functions using Borel determinacy: First note that the condition J𝑎 (𝑔, 𝑥) ⊆ J𝑎 (ℎ, 𝑥) is
equivalent to saying that for any i there is j such that 𝑔𝑖 (𝑥) ≤𝑎 ℎ 𝑗 (𝑥). Thus, this is a Borel property.
Given Borel measurable functions g and h, consider the following game: Player I plays r (bit by bit),
Player II responds with x and Player II wins this game if 𝑥 ≥𝑇 𝑟 and J𝑎 (𝑔, 𝑥) ⊆ J𝑎 (ℎ, 𝑥). If 𝑔 ≤𝑎𝑎 ℎ,
then Player I cannot have a winning strategy, so by Borel determinacy, II has a winning strategy 𝛼.
This strategy yields an 𝛼-computable transformation 𝑟 ↦→ 𝑥, which implies 𝑥 ≤T 𝑟 ⊕ 𝛼. In particular,
if 𝑟 ≥𝑇 𝛼, then there is 𝑥 ≡T 𝑟 such that J𝑎 (𝑔, 𝑥) ⊆ J𝑎 (ℎ, 𝑥). By monotonicity of g, if 𝑧 ≡T 𝑥, then
J𝑎 (𝑔, 𝑥) = J𝑎 (𝑔, 𝑧) and the same property holds for h. Thus, using monotonicity of g and h, for any
𝑥 ≥𝑇 𝛼 we get J𝑎 (𝑔, 𝑥) ⊆ J𝑎 (ℎ, 𝑥). Using this characterisation, it is now easy to show that ≤𝑎𝑎 is
transitive.

An oracle 𝚷0
2-singleton is a total function 𝑔 : {0, 1}N → {0, 1}N whose graph is 𝐺 𝛿 . Clearly, every

oracle 𝚷0
2-singleton is Borel measurable, whereas there is no upper bound of Borel ranks of oracle

𝚷0
2-singletons. For instance, if 𝛼 is a computable ordinal, then the 𝛼th Turing jump 𝑗𝛼 (𝑥) = 𝑥 (𝛼) is a

monotone oracle𝚷0
2-singleton for every computable ordinal 𝛼 (see Odifreddi [42, Proposition XII.2.19],

Sacks [58, Corollary II.4.3] and Chong-Yu [9, Theorem 2.1.4]). The following is the key lemma in our
proof, which will be proved in Subsection 5.2.

Lemma 5.4 (Realisation Lemma). There is a map Rea transforming each countable set of monotone
oracle 𝚷0

2-singletons into a Polish space such that

Rea(G) ≤𝔗
𝜎 Rea(H) =⇒ G ⊆𝑎𝑎 H.
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5.2. Construction

We construct a Polish space whose co-spectrum codes almost arithmetical degrees contained in a given
countable set G of oracle 𝚷0

2-singletons. For notational simplicity, given 𝑥 ∈ [0, 1]N, we write 𝑥𝑛 for the
nth coordinate of x and, moreover, 𝑥<𝑛 and 𝑥≤𝑛 for (𝑥𝑖)𝑖<𝑛 and (𝑥𝑖)𝑖≤𝑛, respectively. We also consider a
sequence like (𝑟, 𝑥<𝑖 , 𝑥ℓ) and, in this case, for sake of simplicity, we assume that any name of (𝑟, 𝑥<𝑖 , 𝑥ℓ)
codes information for i and ℓ.

Our idea comes from the construction by Miller [37, Lemma 9.2]. Our purpose is constructing a
Polish space such that given 𝑔 ∈ G and oracle r the space has a point 𝑥 = (𝑥𝑖)𝑖∈N whose co-spectrum
is not very different from J𝑎 (𝑔, 𝑟). Then, at least, such a point should compute 𝑔𝑖 (𝑟) for all 𝑖 ∈ N.
We can achieve this by requiring 𝑥𝑖 = 𝑔𝑖 (𝑟) for infinitely many 𝑖 ∈ N; however, we need to control the
co-spectrum simultaneously and, therefore, we have to choose such coding locations i very carefully.
The actual construction is that, from r and 𝑥<𝑣 , we will find a finite set (ℓ(𝑢))𝑢≤𝑣 of candidates of safe
coding locations and then we define 𝑥ℓ (𝑢) = 𝑔ℓ (𝑢) (𝑟) at a genuine safe coding location ℓ(𝑢). Then, for
each i with 𝑣 ≤ 𝑖 < ℓ(𝑢), we define 𝑥𝑖 from (𝑟, 𝑥<𝑖 , 𝑥ℓ (𝑢) ) in a left-c.e. manner. This idea yields the
following definition.

Definition 5.5. Let G = (𝑔𝑛)𝑛∈N be a countable collection of oracle 𝚷0
2-singletons. The space𝜔CEA(G)

consists of (𝑛, 𝑑, 𝑒, 𝑟, 𝑥) ∈ N3 × {0, 1}N × [0, 1]N such that for every i,

1. either 𝑥𝑖 = 𝑔𝑖𝑛 (𝑟) or
2. there are 𝑢 ≤ 𝑣 ≤ 𝑖 such that 𝑥𝑖 ∈ [0, 1] is the eth left-c.e. real relative to 〈𝑟, 𝑥<𝑖 , 𝑥ℓ (𝑢) 〉 and

𝑥ℓ (𝑢) = 𝑔ℓ (𝑢)𝑛 (𝑟), where ℓ(𝑢) = Φ𝑑 (𝑢, 𝑟, 𝑥<𝑣 ) ≥ 𝑖 (recall that Φ𝑑 is the dth partial computable
function).

Moreover, for a set 𝑃 ⊆ {0, 1}N×[0, 1]N, define𝜔CEA(G, 𝑃) to be the set of all points (𝑛, 𝑑, 𝑒, 𝑟, 𝑥) ∈
𝜔CEA(G) with (𝑟, 𝑥) ∈ 𝑃.

Lemma 5.6. Suppose that G is a countable collection of oracle 𝚷0
2-singletons and P is a 𝚷0

2 subset of
{0, 1}N × [0, 1]N. Then, 𝜔CEA(G, 𝑃) is Polish.

Proof. It suffices to show that 𝜔CEA(G) is 𝚷0
2. The condition (1) in Definition 5.5 is clearly 𝚷0

2. Let
∀𝑎∃𝑏 > 𝑎 𝐺 (𝑎, 𝑏, 𝑛, ℓ, 𝑟, 𝑥) be a 𝚷0

2 condition representing 𝑥 = 𝑔ℓ𝑛 (𝑟), where G is open and let ℓ(𝑢) [𝑠]
be the stage s approximation of Φ𝑑 (𝑢, 𝑟, 𝑥<𝑣 ). The condition (2) is equivalent to the statement that there
are 𝑢 ≤ 𝑣 ≤ 𝑖 such that

(∀𝑡 ∈ N) (∃𝑠 > 𝑡) ℓ(𝑢) [𝑠] ↓≥ 𝑖, 𝑑 (𝑥𝑖 , 𝐽
𝑖+1
𝑒,𝑠 (𝑟, 𝑥<𝑖 , 𝑥ℓ (𝑢) [𝑠] )) < 2−𝑡 ,

and 𝐺 (𝑡, 𝑠, 𝑛, ℓ(𝑢) [𝑠], 𝑟, 𝑥ℓ (𝑢) [𝑠] ).

Clearly, this condition is 𝚷0
2. �

Remark 5.7. The space𝜔CEA(G) is totally disconnected for any countable setG of oracle𝚷0
2 singletons,

since for any fixed (𝑛, 𝑑, 𝑒, 𝑟) ∈ N3 × {0, 1}N, its extensions form a finite-branching infinite tree
𝑇 ⊆ [0, 1]<𝜔 .

Recall from Lemma 4.8 that Miller [37, Lemma 6.2] constructed a Π0
1 set Fix(Ψ) ⊆ [0, 1]N =

[0, 1] × [0, 1]N such that coSpec(𝑥) = {𝑥𝑖 : 𝑖 ∈ N} for every 𝑥 = (𝑥𝑖)𝑖∈N ∈ Fix(Ψ). By Lemma 4.9,
without loss of generality, we may assume that Fix(Ψ) ∩ 𝜋−1

0 {𝑟} ≠ ∅ for every 𝑟 ∈ [0, 1]. Define
Fix∗(Ψ) = Fix(Ψ) ∩ 𝜋−1

0 [{0, 1}N] = Fix(Ψ) ∩ ({0, 1}N × [0, 1]N), where {0, 1}N is always thought of
as a subset of [0, 1] (as a Cantor set). Now, consider the space Rea(G) = 𝜔CEA(G, Fix∗(Ψ)). To state
properties of Rea(G), for an oracle 𝚷0

2-singleton g and an oracle 𝑟 ∈ {0, 1}N, we use the following
Turing ideal:

J𝑇 (𝑔, 𝑟) = {𝑧 ∈ {0, 1}N : (∃𝑛 ∈ N) 𝑧 ≤T 𝑔
𝑛 (𝑟)}.

https://doi.org/10.1017/fms.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.7


Forum of Mathematics, Sigma 19

The following is the key lemma, which states that any collection of jump ideals generated by
countably many oracle 𝚷0

2-singletons has to be the degree co-spectrum of a Polish space up to the
almost arithmetical equivalence!

Lemma 5.8. Suppose that G = (𝑔𝑛)𝑛∈N is a countable set of oracle 𝚷0
2-singletons.

1. For every 𝑥 ∈ Rea(G), there are 𝑟 ∈ {0, 1}N and 𝑛 ∈ N such that

J𝑇 (𝑔𝑛, 𝑟) ⊆ coSpec(𝑥) ⊆ J𝑎 (𝑔𝑛, 𝑟).

2. For every 𝑟 ∈ {0, 1}N and 𝑛 ∈ N, there is 𝑥 ∈ Rea(G) such that

J𝑇 (𝑔𝑛, 𝑟) ⊆ coSpec(𝑥) ⊆ J𝑎 (𝑔𝑛, 𝑟).

Proof of Lemma 5.8 (1). We have (𝑟, 𝑥) ∈ Fix(Ψ) for every 𝑦 = (𝑛, 𝑑, 𝑒, 𝑟, 𝑥) ∈ Rea(G). For every
𝑖 ∈ N, we inductively assume that for every 𝑗 < 𝑖, 𝑥 𝑗 is arithmetical in 𝑔𝑘𝑛 (𝑟) for some 𝑘 ∈ N. Now,
either 𝑥𝑖 = 𝑔𝑖𝑛 (𝑟) or 𝑥𝑖 is left-c.e. in (𝑟, 𝑥<𝑖 , 𝑔

ℓ
𝑛 (𝑟)) for some ℓ. In both cases, 𝑥𝑖 is arithmetical in 𝑔𝑘𝑛 (𝑟)

for some k. Since (𝑟, 𝑥) ∈ Fix(Ψ), by Lemma 4.8, coSpec(𝑦) = {𝑟} ∪ {𝑥𝑖 : 𝑖 ∈ N}. This shows that
coSpec(𝑦) ⊆ J𝑎 (𝑔𝑛, 𝑟). Moreover, 𝑥𝑖 = 𝑔𝑖𝑛 (𝑟) for infinitely many 𝑖 ∈ N, since either 𝑥𝑖 = 𝑔𝑖𝑛 (𝑟) holds
or there is ℓ ≥ 𝑖 such that 𝑥ℓ = 𝑔ℓ𝑛 (𝑟) by the condition (2) in Definition 5.5. Therefore, 𝑔𝑘𝑛 (𝑟) ≤T 𝑥 for
all 𝑘 ∈ N; that is, J𝑇 (𝑔𝑛, 𝑟) ⊆ coSpec(𝑦). �

To verify the assertion (2) in Lemma 5.8 – indeed, for any 𝑛 ∈ N – we will construct indices d and
e such that for every 𝑟 ∈ {0, 1}N, there is 𝑥 = (𝑥𝑖)𝑖∈N with (𝑛, 𝑑, 𝑒, 𝑟, 𝑥) ∈ Rea(G), where 𝑥𝑖 = 𝑔𝑖𝑛 (𝑟)
for infinitely many 𝑖 ∈ N. Let e be an index of a left-c.e. procedure 𝐽𝑖+1

𝑒 (𝑟, 𝑥<𝑖 , 𝑥ℓ (𝑢) ) which is a simple
procedure extending 𝑟, 𝑥<𝑖 , 𝑥ℓ (𝑢) to the leftmost 𝑟, 𝑥≤𝑖 , 𝑥ℓ (𝑢) which is extendable to a fixed point of Ψ
(as in Kreisel’s basis theorem in the proof of Theorem 4.5). The function Φ𝑑 searches for a safe coding
location 𝑐(𝑛) from a given name of 𝑥≤𝑐 (𝑛−1) , where 𝑐(𝑛 − 1) is the previous coding location.

To make sure the search of the next coding location is bounded, as in Definition 5.5, we have to restrict
the set of names of a v-tuple 𝑥<𝑣 to at most 𝑣 + 1 candidates. It is known that a separable metrisable
space is at most n-dimensional if and only if it is the union of 𝑛 + 1 many zero-dimensional subspaces
(see [15, Theorem 1.5.8] or [64, Corollary 3.1.7]). We say that an admissibly represented Polish space
is computably at most n-dimensional if it is the union of 𝑛 + 1 many subspaces that are computably
homeomorphic to subspaces of NN.

Lemma 5.9. Suppose that (X, 𝜌𝑋 ) is a computably at most n-dimensional admissibly represented space.
Then, there is a partial computable injection 𝜈𝑋 :⊆ (𝑛 + 1) × X → NN such that for every 𝑥 ∈ X, there
is 𝑘 ≤ 𝑛 such that (𝑘, 𝑥) ∈ dom(𝜈𝑋 ) and 𝜌𝑋 ◦ 𝜈𝑋 (𝑘, 𝑥) = 𝑥.

Proof. By definition, X is divided into 𝑛 + 1 many subspaces 𝑆0, . . . , 𝑆𝑛 such that 𝑆𝑘 is homeomorphic
to 𝑁𝑘 ⊆ NN via computable maps 𝜏𝑘 : 𝑆𝑘 → 𝑁𝑘 and 𝜏−1

𝑘 : 𝑁𝑘 → 𝑆𝑘 . Then, 𝜏−1
𝑘 can also be viewed

as a partial computable injection 𝜏−1
𝑘 :⊆ NN → X and then it has a computable realiser 𝜏∗𝑘 ; that is,

𝜏−1
𝑘 = 𝜌𝑋 ◦ 𝜏∗𝑘 . Define 𝜈𝑋 (𝑘, 𝑥) = 𝜏∗𝑘 ◦ 𝜏𝑘 (𝑥) for 𝑥 ∈ 𝑆𝑘 . Then, we have 𝜌𝑋 ◦ 𝜈𝑋 (𝑘, 𝑥) = 𝜏−1

𝑘 ◦ 𝜏𝑘 (𝑥) = 𝑥
for 𝑥 ∈ 𝑆𝑘 . �

The Euclidean n-space R𝑛 is clearly computably n-dimensional; for example, for 𝑘 ≤ 𝑛, let 𝑆𝑘 be
the set of all points 𝑥 ∈ R𝑛 such that exactly k many coordinates are irrationals. Furthermore, one
can effectively find an index of 𝜈𝑛 := 𝜈R𝑛 in Lemma 5.9 uniformly in n. Hereafter, let 𝜌𝑖 be the usual
Euclidean admissible representation of R𝑖 (cf. [65]). One can use Miller’s argument [37, Lemma 9.2]
to ensure the existence of a safe coding location 𝑐(𝑛) as a fixed point in the sense of Kleene’s recursion
theorem. Therefore, as Kleene’s recursion theorem is uniform (see Fact 2.1), one can effectively find
such a location in the following sense:

Lemma 5.10 (Miller [37, Lemma 9.2]). Suppose that (𝑟, 𝑥<𝑖) can be extended to a fixed point of Ψ and
fix a partial computable function 𝜈 which sends 𝑥<𝑖 to its name; that is, 𝜌𝑖 ◦ 𝜈(𝑥<𝑖) = (𝑥<𝑖). From an
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index t of 𝜈 and the sequence 𝑥<𝑖 , one can effectively find a location 𝑝 = Γ(𝑡, 𝑟, 𝑥<𝑖) such that for every
real y, the sequence (𝑟, 𝑥<𝑖) can be extended to a fixed point (𝑟, 𝑥) of Ψ such that 𝑥𝑝 = 𝑦.

Note that, in Lemma 5.10, we always have 𝑝 ≥ 𝑖 since an arbitrary 𝑥𝑝 is allowed. Let 𝑡 (𝑛, 𝑘) be
an index of the partial computable function 𝑥 ↦→ 𝜈𝑛 (𝑘, 𝑥) for 𝑘 ≤ 𝑛 and let d be an index such that
Φ𝑑 (𝑢, 𝑟, 𝑥<𝑣 ) is equal to Γ(𝑡 (𝑣, 𝑢), 𝑟, 𝑥<𝑣 ) for every 𝑢 ≤ 𝑣. Note that indices d and e do not depend on
𝑔𝑛 (where e is an index chosen in the paragraph after the proof of Lemma 5.8 (1)).

Proof of Lemma 5.8 (2). Now, we claim that for every 𝑟 ∈ {0, 1}N and 𝑛 ∈ N, there is x with
(𝑛, 𝑑, 𝑒, 𝑟, 𝑥) ∈ Rea(G), where 𝑥𝑖 = 𝑔𝑖𝑛 (𝑟) for infinitely many 𝑖 ∈ N. We follow the argument by Miller
[37, Lemma 9.2]. Suppose that i is a coding location of 𝑔𝑖𝑛 (𝑟) and (𝑟, 𝑥≤𝑖) is extendible to a fixed point
of Ψ. Here, for the base case, consider 𝑖 = −1 and 𝑥−1 is the empty sequence. Then, there is a genuine
𝑘 ≤ 𝑖 + 1; that is, 𝜈𝑖+1(𝑘, 𝑥≤𝑖 ) returns a name of 𝑥≤𝑖 . For such a k, 𝑝 = Φ𝑑 (𝑘, 𝑟, 𝑥≤𝑖) is defined and then
we set 𝑥𝑝 = 𝑔𝑝

𝑛 (𝑟), where we have 𝑝 ≥ 𝑖 + 1 as mentioned in the paragraph below Lemma 5.10. By the
property of Φ𝑑 (Lemma 5.10), (𝑟, 𝑥≤𝑖 , 𝑥𝑝) can be extended to a fixed point of Ψ. Then, the eth left-c.e.
procedure automatically produces 𝑥≤𝑝 which extends 𝑥≤𝑖 and is extendible to a fixed point of Ψ. Note
that the condition (2) in Definition 5.5 is ensured via 𝑢 = 𝑘 , 𝑣 = 𝑖 + 1 and ℓ(𝑢) = 𝑝. Eventually, we
obtain (𝑟, 𝑥) ∈ Fix(Ψ) such that 𝑧 = (𝑛, 𝑑, 𝑒, 𝑟, 𝑥) ∈ Rea(G).

Clearly, 𝑔𝑘𝑛 (𝑟) ∈ coSpec(𝑧) for every 𝑘 ∈ N, since coSpec(𝑧) is a Turing ideal and 𝑔𝑘𝑛 (𝑟) ≤T 𝑔
𝑘+1
𝑛 (𝑟).

Consequently, J𝑇 (𝑔𝑛, 𝑟) ⊆ coSpec(𝑧). The inclusion coSpec(𝑧) ⊆ J𝑎 (𝑔𝑛, 𝑟) can be shown as in the
proof of Lemma 5.8 (1). �

Proof of Lemma 5.4. Suppose that Rea(G) ≤𝔗
𝜎 Rea(H). Then, N × Rea(G) ≤𝔗

𝜎 N × Rea(H) and by
Lemma 3.5 and Observation 4.6, the degree cospectrum of Rea(G) is a sub-cospectrum of that of
Rea(H) up to an oracle p. Fix enumerations G = (𝑔𝑛)𝑛∈N and H = (ℎ𝑛)𝑛∈N.

Claim. For any n and 𝑢 ≥𝑇 𝑝, there are m and v such that J𝑎 (𝑔𝑛, 𝑢) = J𝑎 (ℎ𝑚, 𝑣).

By Lemma 5.8 (2), for any n and 𝑢 ≥𝑇 𝑝, there is 𝑥 ∈ Rea(G) such that J𝑇 (𝑔𝑛, 𝑢) ⊆ coSpec(𝑥) ⊆
J𝑎 (𝑔𝑛, 𝑢). Note that 𝑝 ≤T 𝑢 implies 𝑝 ∈ J𝑇 (𝑔𝑛, 𝑢) ⊆ coSpec(𝑥); that is, p is x-computable and,
therefore, coSpec(𝑥) = coSpec𝑝 (𝑥). By our assumption, there is 𝑦 ∈ Rea(H) such that coSpec𝑝 (𝑥) =
coSpec𝑝 (𝑦).

We claim that 𝑝 ≤T 𝑦: Otherwise, (𝑦, 𝑝) has Turing degree by almost totality of continuous degrees
(cf. [3]); that is, if q = deg(𝑞) ∈ Spec([0, 1]N) \ Spec(NN), then, for any 𝑝 ∈ NN, the condition
deg(𝑝, 𝑞) ∈ Spec(NN) is equivalent to 𝑝 �T 𝑞. However, that (𝑦, 𝑝) has a Turing degree means
that coSpec𝑝 (𝑦) forms a principal ideal. Then, coSpec𝑝 (𝑦) = coSpec(𝑥) implies that coSpec(𝑥) is
principal, which is equivalent to saying that x has a Turing degree. However, it is impossible since
𝑥 ∈ Rea(G) ⊆ N3 × Fix(Ψ) implies that x has no Turing degree by Lemma 4.8.

Thus, we have coSpec(𝑦) = coSpec𝑝 (𝑦). Then, by Lemma 5.8 (1), there exist m and v such that
J𝑇 (ℎ𝑚, 𝑣) ⊆ coSpec(𝑦) ⊆ J𝑎 (ℎ𝑚, 𝑣). Now, coSpec(𝑥) = coSpec(𝑦) holds and note that J𝑇 (ℎ𝑚, 𝑣) ⊆
J𝑎 (𝑔𝑛, 𝑢) implies J𝑎 (ℎ𝑚, 𝑣) ⊆ J𝑎 (𝑔𝑛, 𝑢). This verifies the claim.

For a fixed n, 𝛽𝑛 (𝑢) chooses m fulfilling the above claim for some v. It is not hard to see that there is
𝑚(𝑛) such that 𝛽𝑛 (𝑢) = 𝑚(𝑛) for cofinally many u.

We will show that, for cofinally many u, there is v such that J𝑎 (𝑔𝑛, 𝑢⊕ 𝑣) = J𝑎 (ℎ𝑚(𝑛) , 𝑢⊕ 𝑣): By our
proof of the above claim, such u and v involve some x and y such that 𝑢 ∈ coSpec(𝑥) = coSpec(𝑦) � 𝑣.
This x also has the property coSpec(𝑥) ⊆ J𝑎 (𝑔𝑛, 𝑢). Thus, 𝑣 ∈ J𝑎 (𝑔𝑛, 𝑢); that is, 𝑣 ≤𝑎 𝑔

𝑖
𝑛 (𝑢) for some

i and, therefore, by monotonicity of 𝑔𝑛, we get 𝑔 𝑗
𝑛 (𝑢 ⊕ 𝑣) ≤𝑎 𝑔

𝑖+ 𝑗
𝑛 (𝑢). Thus, J𝑎 (𝑔𝑛, 𝑢 ⊕ 𝑣) = J𝑎 (𝑔𝑛, 𝑢).

Similarly, we have J𝑎 (ℎ𝑚(𝑛) , 𝑢 ⊕ 𝑣) = J𝑎 (ℎ𝑚(𝑛) , 𝑣).
Therefore, 𝑔𝑛 ≡𝑎𝑎 ℎ𝑚(𝑛) . Consequently, G ⊆𝑎𝑎 H. �

Proof of Theorem 5.1. Let S be a countable subset of𝜔1. Note that sup 𝑆 is countable by regularity of𝜔1.
Then, there is an oracle p such that sup 𝑆 < 𝜔CK, 𝑝

1 , where 𝜔CK, 𝑝
1 is the smallest noncomputable ordinal

relative to p. Now, the 𝛼th Turing jump operator 𝑗 𝑝𝛼 for 𝛼 < 𝜔CK, 𝑝
1 is defined via a p-computable coding

of 𝛼. By Spector’s uniqueness theorem (see Sacks [58, Corollary II.4.6] or Chong-Yu [9, Section 2.3]),
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the Turing degree of 𝑗 𝑝𝛼 (𝑥) for 𝑥 ≥𝑇 𝑝 is independent of the choice of coding of 𝛼 and so is J𝑎 ( 𝑗
𝑝
𝛼 , 𝑥).

Therefore, we simply write 𝑗𝛼 for 𝑗 𝑝𝛼 .
Define G𝑆 = { 𝑗𝜔1+𝛼 : 𝛼 ∈ 𝑆}. We show that 𝑆 ⊆ 𝑇 if and only if G𝑆 ⊆𝑎𝑎 G𝑇 . Suppose 𝛼 ≠ 𝛽,

say, 𝛼 < 𝛽. Clearly, 𝑗𝜔𝛼 ≤𝑎𝑎 𝑗𝜔𝛽 . Suppose for the sake of contradiction that 𝑗𝜔𝛽 ≤𝑎𝑎 𝑗𝜔𝛼 . Then, in
particular, for every 𝑥 ≤𝑎 ∅(𝜔

𝛽 ·𝑡) with 𝑡 ∈ N, we must have ∅(𝜔
𝛽 · (𝑡+1)) ≤𝑎 𝑥

(𝜔𝛼 ·𝑚) for some 𝑚 ∈ N.
Thus, there is n such that ∅(𝜔𝛽 ·𝑡+𝜔𝛽) ≤T ∅(𝜔

𝛽 ·𝑡+𝜔𝛼 ·𝑚+𝑛) <𝑇 ∅(𝜔
𝛽 ·𝑡+𝜔𝛼+1) . This is a contradiction.

Now, given countable sets 𝑆, 𝑇 ⊆ 𝜔1, if 𝑆 ⊆ 𝑇 , then Rea(G𝑆) clearly embeds into Rea(G𝑇 ). If 𝑆 � 𝑇 ,
then the above argument shows that G𝑆 �𝑎𝑎 G𝑇 and, therefore, by Lemma 5.4, we have Rea(G𝑆) �

𝔗
𝜎

Rea(G𝑇 ). Consequently, 𝑆 ↦→ 𝛾Rea(G𝑆) is an order-preserving embedding of ([𝜔1]
≤𝜔 , ⊆) into the

𝜎-embeddability order ≤𝔗
𝜎 on compact metrisable spaces, where 𝛾X is Lelek’s compactification of X

in Fact 4.1. �

Corollary 5.11. There exists a collection (X𝛼)𝛼<2ℵ0 of continuum many compact metrisable spaces
satisfying the following conditions:

1. If 𝛼 ≠ 𝛽, then X𝛼 does not finite-level Borel embed into X𝛽 .
2. If 𝛼 ≠ 𝛽, then the Banach algebra B∗

𝑛 (X𝛼) is not linearly isometric (not ring isomorphic etc.) to
B∗
𝑛 (X𝛽) for all 𝑛 ∈ N.

Proof. By Theorems 3.4 and 5.1. Here, we note that if X is nth-level Borel isomorphic to Y, then N×X
is again nth-level Borel isomorphic to N × Y. �

6. Infinite-Dimensional Topology

6.1. Pol’s Compactum

In this section, we will shed light on dimension-theoretic perspectives of the 𝜔-left-CEA space. Note
that 𝜔CEA is a totally disconnected infinite-dimensional space. We first compare our space 𝜔CEA
and a totally disconnected infinite-dimensional space RSW which is constructed by Rubin, Schori and
Walsh [57]. A continuum is a connected compact metric space and a continuum is nondegenerated if it
contains at least two points.

It is known that the hyperspace CK(X) of continua in a compact metrisable space X equipped with
the Vietoris topology forms a Polish space. Hence, we may think of CK(X) as a represented space,
which corresponds to a positive and negative representation of the hyperspace in computable analysis.
We consider the closed subspace S of CK([0, 1]N) consisting of all continua connecting opposite faces
𝜋−1

0 {0} and 𝜋−1
0 {1}. Then, fix a total Cantor representation of S; that is, a continuous surjection 𝛿CK

from the Cantor set 𝐶 ⊆ [0, 1] onto S.

Remark 6.1. If we are interested in effectivity, we can give a more explicit construction of 𝛿CK: Let 𝛿
be the standard positive-and-negative representation of the hyperspace A([0, 1]N) of all closed subsets
of the Hilbert cube. Then, one can see that S is a Π0

1 subspace of A([0, 1]N) as follows.
A 𝛿-name of 𝐴 ∈ A([0, 1]N) can be thought of as an enumeration of all finite open coversU = {𝑈𝑖}𝑖<𝑛

of A such that 𝐴 ∩ 𝑈𝑖 ≠ ∅ for each 𝑖 < 𝑛. If A is disconnected, then there are disjoint open sets 𝑈,𝑉
in [0, 1]N such that 𝐴 ⊆ 𝑈 ∪ 𝑉 . Thus, by compactness of A, such disjoint open sets U and V can be
replaced with finite unions 𝑈𝑠 , 𝑉𝑠 of basic open sets. Note that, if U and V are finite unions of basic
open sets, one can effectively decide whether U and V are disjoint. This means that, if p is a name of a
disconnected set, then some 𝑝(𝑠) witnesses this fact.

Next, assume that A does not connect 𝜋−1
0 {0} and 𝜋−1

0 {1}. First consider the case that 𝐴 ∩ 𝜋−1
0 {𝑦} is

empty for some 𝑦 ∈ {0, 1}. By compactness, 𝐴 ∩ 𝜋−1
0 {𝑦} = ∅ is a Σ0

1 property relative to a name of A.
Thus, this fact is witnessed after reading a finite amount of information of the name. Now, assume that
𝐴 ∩ 𝜋−1

0 {𝑦} is nonempty for each 𝑦 ∈ {0, 1}. Then, that A does not connect 𝜋−1
0 {0} and 𝜋−1

0 {1} means
that there are disjoint open sets U and V such that 𝐴 ∩ 𝜋−1

0 {0} ⊆ 𝑈 and 𝐴 ∩ 𝜋−1
0 {1} ⊆ 𝑉 . As in the

previous argument, this fact is also witnessed by some 𝑝(𝑠).
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Consequently, S is Π0
1 – that is, if p is a name of some 𝐴 ∉ 𝑆 – then one can obtain this information

from p by some finite stage. As usual, one can consider a partial name (𝑝(0), 𝑝(1), . . . , 𝑝(𝑠 − 1)) as a
closed set 𝐴𝑝

𝑠 and it converges to 𝐴𝑝 := 𝛿(𝑝). By the above argument, if 𝐴𝑝 ∉ 𝑆, then 𝐴𝑝
𝑠 ∉ 𝑆 for some

s. If s is the least such number, then 𝐴𝑝
𝑠−1 ∈ 𝑆 and we define 𝛿CK (𝑝) = 𝐴𝑝

𝑠−1. If it does not happen, then
𝛿CK (𝑝) = 𝛿(𝑝). Then, 𝛿CK is a total representation of S.

We define the Rubin–Schori–Walsh space RSW [57] (see also [64, Theorem 3.9.3]) as follows:

RSW = {min(𝛿CK (𝑝)
[𝑝] ) : 𝑝 ∈ 𝐶},

= {min 𝐴 [𝑝] : 𝐴 is the pth continuum of [0, 1]N with [0, 1] ⊆ 𝜋0 [𝐴]},

where 𝐴 [𝑝] = 𝐴∩𝜋−1
0 {𝑝} = {𝑧 ∈ 𝐴 : 𝜋0 (𝑧) = 𝑝} and recall that min 𝑃 is the leftmost point of P defined

in the proof of Theorem 4.5. For notational convenience, without loss of generality, we may assume that
the eth z-computable continuum is equal to the 〈𝑒, 𝑧〉th continuum, where recall that 〈·, ·〉 is a pairing
function.

A compactification of RSW is well-known in the context of Alexandrov’s old problem in dimension
theory. Pol’s compactum RP is given as a compactification in the sense of Lelek of the space RSW.
Hence, we can see that RP and RSW have the same point degree spectra (modulo an oracle) as in the
proof of Fact 4.1. Surprisingly, these spaces have the same degree spectra as the space 𝜔CEA up to an
oracle.2

Theorem 6.2. All of the following spaces have the same point degree spectra relative to some oracle:

1. The 𝜔-left-CEA space 𝜔CEA.
2. Rubin–Schori–Walsh’s totally disconnected strongly infinite-dimensional space RSW.
3. Roman Pol’s counterexample RP to Alexandrov’s problem.

Indeed, we will show that RP �𝔗
𝜎 RSW ≤𝑐 𝜔CEA ≤𝜎RSW. As a corollary, N × 𝜔CEA, N × RSW

and N × RP are all 𝜎-homeomorphic (hence second-level Borel isomorphic) to each other. To prove
Theorem 6.2, we show two lemmata.

Lemma 6.3. Every point of RSW is 𝜔-left-CEA.

Proof. As we have seen in the proof of Theorem 4.5, min 𝐴 [𝑝] is 𝜔-left-CEA in p, since 𝐴 [𝑝] is Π0
1 (𝑝)

(see also Remark 6.1 on 𝛿CK). Moreover, clearly, 𝑝 ≤T min 𝐴 [𝑝] . Thus, min 𝐴 [𝑝] is 𝜔-left-CEA. �

For 𝜔CEA ≤𝔗
𝜎 RSW, we need to show that every 𝜔-left-CEA point is realised as a leftmost point

of a computable continuum in a uniform manner. Indeed, we will show the following.

Lemma 6.4. Suppose that 𝑥 ∈ [0, 1]N is 𝜔-left-CEA in a point 𝑧 ∈ {0, 1}N. Then, there is a nonde-
generated z-computable continuum 𝐴 ⊆ [0, 1]N such that [0, 1] ⊆ 𝜋0 [𝐴] and min 𝐴 [𝑝] = (𝑝, 𝑥) for a
name p of A.

Proof. Given 𝑝 = 〈𝑒, 𝑧〉, we will effectively construct a name Ψ(𝑝) of a continuum A. We can view
this construction as defining a computable function 𝑓 : N → N such that Φ𝑧

𝑓 (𝑒)
= Ψ(𝑝). By Kleene’s

recursion theorem (Fact 2.1), we may fix e such that, for 𝑝 = 〈𝑒, 𝑧〉, the pth continuum is equal to the
Ψ(𝑝)th continuum.

We first describe how to obtain the negative information about Ψ(𝑝). Fix an 𝜔-left-CEA operator J
generated by 〈𝑊𝑛〉𝑛∈N such that 𝐽 (𝑧) = 𝑥. Here, as in the proof of Proposition 4.2, each 𝑊𝑛 is a c.e.
list of pairs (𝑖, 𝑞), which indicates that ‘if a given n-tuple (𝑧0, . . . , 𝑧𝑛−1) is in the ith ball 𝐵𝑛

𝑖 ⊆ [0, 1]𝑛,
then 𝐽𝑛𝑊𝑛

(𝑧0, . . . , 𝑧𝑛−1) ≥ 𝑞’. Since 𝑝 = 〈𝑒, 𝑧〉 for some 𝑒 ∈ N, we have a computable function 𝜋 with
𝜋(𝑝) = 𝑧 and then redefine 𝑊0 to be 𝑊0 ◦ 𝜋. In this way, we may assume that 𝐽 (𝑝) = 𝑥.

2According to an anonymous referee, Motto Ros had independently conjectured that Roman Pol’s compactum would have an
intermediate 𝜎-homeomorphism type.
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At stage 0, Ψ constructs 𝐴0 = [0, 1] × [0, 1]N. At stage 𝑠 + 1, if we find some rational open ball
𝐵𝑛
𝑖 ⊆ [0, 1]𝑛 and a rational 𝑞 ∈ Q such that 𝑊𝑛,𝑠 declares that ‘if a given n-tuple (𝑧0, . . . , 𝑧𝑛−1) is in

the ith ball 𝐵𝑛
𝑖 , then 𝐽𝑛𝑊𝑛

(𝑧0, . . . , 𝑧𝑛−1) ≥ 𝑞’, by enumerating (𝑖, 𝑞), then Ψ removes 𝜋−1
0 [𝐵(𝑝; 2−𝑠)] ∩

(𝐵𝑛
𝑖 × [0, 𝑞) × [0, 1]N) from the previous continuum 𝐴𝑠−1, where 𝐵(𝑝; 2−𝑠) is the rational open ball

with centre p and radius 2−𝑠 .
Now, we show min 𝐴 [𝑝] = 𝑥 := (𝑥0, 𝑥1, . . . ). Assume that 𝑥0, . . . , 𝑥𝑛−1 is an initial segment of

min 𝐴 [𝑝] . We will show that 𝑥𝑛 = 𝜋𝑛 (min 𝐴 [𝑝] ) = min 𝜋𝑛 [{𝑧 ∈ 𝐴 [𝑝] : (∀𝑖 < 𝑛) 𝜋𝑖 (𝑧) = 𝑥𝑖}]. Since
𝐽𝑛𝑊𝑛

(𝑝, 𝑥0, . . . , 𝑥𝑛−1) = 𝑥𝑛, 𝑊𝑛 declares this fact at some point; that is, for any rational 𝑞 < 𝑥𝑛, there is
i such that (𝑖, 𝑞) ∈ 𝑊𝑛 and (𝑝, 𝑥0, . . . , 𝑥𝑛−1) ∈ 𝐵𝑛

𝑖 . Therefore, 𝐴 ∩ (𝜋−1
0 [𝐵(𝑝; 2−𝑠)] ∩ (𝐵𝑛

𝑖 × [0, 𝑞) ×
[0, 1]N)) = ∅. Hence, if 𝑦 < 𝑥𝑛, then no extension of (𝑝, 𝑥0, . . . , 𝑥𝑛−1, 𝑦) is contained in A. Moreover,
if (𝑝, 𝑥0, . . . , 𝑥𝑛−1) ∈ 𝐵

𝑛
𝑖 and 𝑞 < 𝑥𝑛, then (𝑖, 𝑞) ∉ 𝑊𝑛. Hence, 𝑥𝑛 = 𝜋𝑛 (min 𝐴 [𝑝] ) as desired.

Now, clearly, min 𝐴 [𝑝] = (𝑝, 𝑥). Note that Ψ defines a z-computable continuum A in a uniform
manner. We can obtain the positive information, too, as we remove only subsets of 𝜋−1

0 [𝐵(𝑝; 2−𝑠)]
after stage s. Thus, to ascertain that a ball of radius greater than 2−𝑠 intersects A, we only need to
perform the construction up to stage s. For the connectivity, assume that 𝐴 ⊆ 𝑈 ∪𝑉 for some open sets
𝑈,𝑉 ⊆ [0, 1]N. By compactness, one can assume that U and V mention only finitely many coordinates;
that is, there is 𝑛0 such that if 𝑦 = (𝑦𝑛)𝑛∈N ∈ 𝑈 (V, respectively) then (𝑦0, . . . , 𝑦𝑛0 , 𝑧𝑛0+1, 𝑧𝑛0+2, . . . ) ∈ 𝑈

(V, respectively) for any (𝑧𝑛0+𝑚)𝑚∈N. Given 𝑦 = (𝑦𝑛)𝑛∈N, define 𝑦∗ = (𝑦0, . . . , 𝑦𝑛0 , �1). By our choice of
𝑛0 and our definition of A, 𝑦 ∈ 𝐴 ∩𝑈 implies 𝑦∗ ∈ 𝐴 ∩𝑈. By our construction of A, if 𝑘 ≤ 𝑛0, then any
(𝑦0, . . . , 𝑦𝑘 , �1) ∈ 𝐴 ∩𝑈 is connected to (𝑦0, . . . , 𝑦𝑘−1, 1, �1) ∈ 𝐴 ∩𝑈 by a line segment inside 𝐴 ∩𝑈.
Therefore, for any point 𝑦 ∈ 𝐴 ∩𝑈, 𝑦∗ is connected to �1 by a polygonal line inside 𝐴 ∩𝑈. The same
holds true for V. Hence, if 𝐴 ∩𝑈 and 𝐴 ∩ 𝑉 are nonempty, 𝑦 ∈ 𝐴 ∩𝑈 and 𝑧 ∈ 𝐴 ∩ 𝑉 say, 𝑦∗ ∈ 𝐴 ∩𝑈
and 𝑧∗ ∈ 𝐴 ∩𝑉 and they are connected to 1 and, therefore, there is a path from 𝑦∗ to 𝑧∗ in 𝐴 ∩ (𝑈 ∪𝑉).
By connectivity of the path, 𝐴∩𝑈 and 𝐴∩𝑉 have an intersection in the path. This shows that A cannot
be written as a union of disjoint open subsets. Consequently, A is connected. �

Proof of Theorem 6.2. By Theorem 3.4 and Lemmata 6.3 and 6.4. �

The properness of RSW <𝔗
𝜎 [0, 1]N can also be obtained by some relatively recent work

on infinite-dimensional topology: the Hilbert cube (indeed, any strongly infinite-dimensional com-
pactum) is not 𝜎-hereditary-disconnected (see [52]). However, such an argument does not go any
further for constructing second-level Borel isomorphism types and, indeed, to the best of our knowl-
edge, no known topological technique provides us four or more second-level Borel isomorphism
types.

On a side note, one can also define the graph 𝑛CEA ⊆ N × {0, 1}N × [0, 1]𝑛 of a universal n-left-
CEA operator (as an analogy of an n-REA operator) in a straightforward manner. The space 𝑛CEA is
an example of a finite-dimensional Polish space whose infinite product has again the same dimension.
The first such examples were constructed by Kulesza in [32].

Proposition 6.5. The space 𝑛CEA is a totally disconnected n-dimensional Polish space. Moreover, the
countable product 𝑛CEAN is again n-dimensional.

Proof. Clearly, 𝑛CEA is totally disconnected and Polish. To check the n-dimensionality, we think of
𝑛CEA as a subspace of [0, 1]𝑛+1 by identifying (𝑒, 𝑥) ∈ N × {0, 1}N with 𝜄(0𝑒1𝑥) ∈ [0, 1], where 𝜄
is a computable embedding of {0, 1}N into [0, 1]. We claim that 𝑛CEA intersects with all continua
𝐴 ⊆ [0, 1]𝑛+1 such that [0, 1] ⊆ 𝜋0 [𝐴]. We have a computable function d such that the 𝑑 (𝑒)th
n-left-CEA procedure 𝐽𝑛

𝑑 (𝑒)
(𝑥) for a given input 𝑥 ∈ {0, 1}N outputs the value 𝑦 ∈ [0, 1]𝑛 such

that (𝜄(0𝑒1𝑥), 𝑦) = min 𝐴 [ 𝜄 (0𝑒1𝑥) ]
𝑒,𝑥 , where 𝐴𝑒,𝑥 is the eth x-computable continuum in [0, 1]𝑛+1 such

that [0, 1] ⊆ 𝜋0 [𝐴𝑒,𝑥]. By Kleene’s recursion theorem (Fact 2.1), there is r such that 𝐽𝑛
𝑑 (𝑟 )

= 𝐽𝑛𝑟 .
Hence, (𝜄(0𝑟1𝑥), 𝐽𝑛𝑟 (𝑥)) ∈ 𝑛CEA ∩ 𝐴𝑒,𝑥 , which verifies the claim. The claim implies that 𝑛CEA is
n-dimensional (see van Mill [64, Corollary 3.7.5]).
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To verify the second assertion, consider the (computably) continuous map g from the square 𝑛CEA2

into {0, 1}N × [0, 1]𝑛 such that for two points x = (𝑒, 𝑟, 𝑥0, . . . , 𝑥𝑛−1) and y = (𝑑, 𝑠, 𝑦0, . . . , 𝑦𝑛−1) in
𝑛CEA,

𝑔(x, y) = (〈𝑒, 𝑑〉, 𝑟 ⊕ 𝑠, (𝑥0 + 𝑦0)/2, . . . , (𝑥𝑛−1 + 𝑦𝑛−1)/2).

To verify that 𝑔−1 is also (computably) continuous, using given left r- and s-computable approximations
of 𝑥0 and 𝑦0, one can compute 𝑥0 and 𝑦0 from (𝑥0 + 𝑦0)/2. By induction, one can computably recover
x and y from 𝑔(x, y). Hence, 𝑛CEA2 is computably embedded into {0, 1}N × [0, 1]𝑛. In particular, it
is n-dimensional. The same argument shows that 𝑛CEA𝑘 is n-dimensional for any 𝑘 ∈ N. Then, we
can conclude that 𝑛CEAN is also n-dimensional (by the same argument as in van Mill [64, Theorem
3.9.5]). �

6.2. Nondegenerated Continua and 𝜔CEA Degrees

We may extract computability-theoretic contents from the construction of Rubin–Schori–Walsh’s
strongly infinite-dimensional totally disconnected space RSW. The standard proof of noncountable
dimensionality of RSW (hence, the existence of a non-Turing degree in RSW) indeed implies the fol-
lowing computability theoretic result.

Proposition 6.6. There exists a nondegenerated continuum 𝐴 ⊆ [0, 1]N in which no point has Turing
degree.

Proof. Define H〈𝑖, 𝑗 〉 ⊆ [0, 1]N to be the set of all points which can be identified with an element in
{0, 1}N via the witnesses Φ𝑖 and Φ 𝑗 (as in the proof of Lemma 3.5). Then,

⋃
𝑛 H𝑛 is the set of all points

in [0, 1]N having Turing degrees. Note that each H𝑛 is zero-dimensional since it is homeomorphic to a
subspace of {0, 1}N.

Consider the hyperplane 𝑃𝑖
𝑛 = [0, 1]𝑛 × {𝑖} × [0, 1]N for each 𝑛 ∈ N and 𝑖 ∈ {0, 1}. It is well known

that {(𝑃0
𝑛, 𝑃

1
𝑛)}𝑛∈N is essential in [0, 1]N. Then, by using the dimension-theoretic fact (see van Mill [64,

Corollary 3.1.6]), we can find a separator 𝐿𝑛 of (𝑃0
𝑛+1, 𝑃

1
𝑛+1) in [0, 1]N such that 𝐿𝑛 ∩H𝑛 = ∅ since H𝑛

is zero-dimensional.
Put 𝐿 =

⋂
𝑛 𝐿𝑛. Then, L contains no point having Turing degree, since 𝐿 ∩ H𝑛 = ∅ for every 𝑛 ∈ N.

Moreover, L contains a continuum A from 𝑃0
0 to 𝑃1

0 (see van Mill [64, Proposition 3.7.4]). �

Recall that our infinite-dimensional version of Kreisel’s basis theorem (shown in the proof of
Theorem 4.5) says that every Π0

1 subset P of the Hilbert cube has a point of an 𝜔-left-CEA continuous
degree. Surprisingly, we do not need any effectivity assumption on P to prove this if P is a nontrivial
connected compact set.

Proposition 6.7. Every nondegenerated continuum 𝐴 ⊆ [0, 1]N contains a point of an 𝜔-left-CEA
continuous degree.

Proof. Note that there is 𝑛 ∈ 𝜔 such that 𝑃 [0, 𝑝]
𝑛 and 𝑃 [𝑞,1]

𝑛 with some rationals 𝑝 < 𝑞 ∈ Q intersect with
A, since A is nondegenerated, where 𝑃 [𝑎,𝑏]

𝑛 = [0, 1]𝑛 × [𝑎, 𝑏] × [0, 1]N. Clearly, there is no separator
C of 𝑃 [0, 𝑝]

𝑛 and 𝑃 [𝑞,1]
𝑛 with 𝐶 ∩ 𝐴 = ∅ (i.e., the pair (𝑃 [0, 𝑝]

𝑛 , 𝑃 [𝑞,1]
𝑛 ) is essential in A), since A is not

zero-dimensional. Therefore, the pair (𝑃𝑝
𝑛 , 𝑃

𝑞
𝑛) is essential in the compact subspace 𝐴∩ 𝑃 [𝑝,𝑞]

𝑛 . Hence,
𝐴 ∩ 𝑃 [𝑝,𝑞]

𝑛 contains a continuum B intersecting with 𝑃𝑝
𝑛 and 𝑃𝑞

𝑛 (see van Mill [64, Proposition 3.7.4]).
Consider a computable homeomorphism ℎ : 𝑃 [𝑝,𝑞]

𝑛 � [0, 1]N mapping 𝑃𝑝
𝑛 and 𝑃𝑞

𝑛 to 𝑃0
0 = 𝜋−1

0 (0) and
𝑃1

0 = 𝜋−1
1 (1), respectively. Then ℎ[𝐵] is a continuum intersecting with 𝜋−1

0 (0) and 𝜋−1
0 (0) and therefore

[0, 1] ⊆ 𝜋0 [ℎ[𝐵]]. Let s be a name of ℎ[𝐵]. Then, by definition, min ℎ[𝐵] [𝑠] ∈ RSW, which has an
𝜔-left-CEA continuous degree by Lemma 6.3. In particular, ℎ[𝐵] contains a point of an 𝜔-left-CEA
continuous degree and so does A since h is a computable homeomorphism and 𝐵 ⊆ 𝐴. �
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As a corollary, we can see that every compactum 𝐴 ⊆ [0, 1]N of positive dimension contains a point
of an 𝜔-left-CEA continuous degree. Our proof of Theorem 6.6 is essentially based on the fact that for
any sequence of zero-dimensional spaces {𝑋𝑖}𝑖∈N, there exists a continuum avoiding all 𝑋𝑖s. Contrary
to this fact, Theorem 6.7 says that {𝑋𝑖}𝑖∈N cannot be replaced with a sequence of totally disconnected
spaces. We say that a space is 𝜎-totally disconnected if it is a countable union of totally disconnected
subspaces. Note that the complement of a 𝜎-totally-disconnected subset of the Hilbert cube is infinite-
dimensional.

Corollary 6.8. There exists a 𝜎-totally-disconnected set 𝑋 ⊆ [0, 1]N such that any compact subspace
of the complement 𝑌 = [0, 1]N \ 𝑋 is zero-dimensional.

Proof. Define 𝑋〈𝑖, 𝑗 〉 to be the set of all points which can be identified with an element in 𝜔CEA via
the witnesses Φ𝑖 and Φ 𝑗 . Then, 𝑋〈𝑖, 𝑗 〉 is totally disconnected since it is homeomorphic to a subspace
of 𝜔CEA. Clearly, no point 𝑌 = [0, 1]N \

⋃
𝑖, 𝑗∈N 𝑋〈𝑖, 𝑗 〉 has an 𝜔-left-CEA continuous degree. Assume

that Z is a compact subspace of Y of positive dimension. Then Z has a nondegenerated subcontinuum
A. However, by Theorem 6.7, A contains a point of an 𝜔-left-CEA continuous degree. �

6.3. Weakly Infinite-Dimensional Cantor Manifolds

Recall that a Pol-type Cantor manifold is a compact metrisable C-space which cannot be disconnected
by a hereditarily weakly infinite-dimensional compact subspaces. By combining a known construction
in infinite-dimensional topology, we can slightly extend Theorem 5.1 as follows.

Proposition 6.9. There exists a collection (X𝛼)𝛼<2ℵ0 of continuum many Pol-type Cantor manifolds
satisfying the following conditions:

1. if 𝛼 ≠ 𝛽, X𝛼 does not 𝜎-embed into X𝛽 .
2. If 𝛼 ≠ 𝛽, then X𝛼 does not finite-level Borel embed into X𝛽 .
3. If 𝛼 ≠ 𝛽, then the Banach algebra B∗

𝑛 (X𝛼) is not linearly isometric (not ring isomorphic etc.) to
B∗
𝑛 (X𝛽) for all 𝑛 ∈ N.

Lemma 6.10. For any G, there exists a Pol-type Cantor manifold Z(G) such that 𝜔CEA ⊕ Rea(G) ≡𝔗
𝜎

Z(G).

Proof. Recall from Theorem 6.2 that 𝜔REA is 𝜎-homeomorphic to a strongly infinite-dimensional
space RSW. Let R0 and R1 be homeomorphic copies of RSW and let X be a compactification of
R0 ⊕ R1 ⊕ Rea(G) in the sense of Lelek (recall from Fact 4.1). Then, X is 𝜎-homeomorphic to
𝜔CEA ⊕ Rea(G).

We follow the construction of Elz̈bieta Pol [48, Example 4.1]. Now, R0 has a hereditarily strongly
infinite-dimensional subspace Y [56]. Choose a point 𝑝 ∈ Y and a closed set 𝐹 ⊆ Y containing p such
that every separator between p and clX𝐹 is strongly infinite-dimensional as in [48, Example 4.1 (A)].

Define K = X/clX𝐹 as in [48, Example 4.1 (A)]. To see that K is 𝜎-homeomorphic to X, we note
that clX𝐹 ∩ (R1 ∪Rea(G)) = ∅ since R0, R1 and Rea(G) are separated in X. Therefore, clX𝐹 is covered
by the union of R0 (which is homeomorphic to R1) and a countable dimensional space. Define Z as a
Pol-type Cantor manifold in [48, Example 4.1 (C)]. Then, Z(G) := Z is the union of a finite-dimensional
space and countably many copies of K. Consequently, Z(G) is 𝜎-homeomorphic to Rea(G). �

Proof of Proposition 6.9. Combine Theorem 5.1, Corollary 5.11 and Lemma 6.10. �
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