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ON THE TOPOLOGICAL ENTROPY OF TRANSITIVE
MAPS OF THE INTERVAL

ETHAN M. COVEN AND MELISSA C. HIDALGO

The topological entropy of a continuous map of the interval is the supremum of the
topological entropies of the piecewise linear maps associated to its finite invariant
sets. We show that for transitive maps, this supremum is attained at some finite
invariant set if and only if the map is piecewise monotone and the set contains the
endpoints of the interval and the turning points of the map.

INTRODUCTION

This paper is concerned with finding lower bounds for the topological entropy of
transitive maps of the interval, and determining when such bounds can be attained.

Topological entropy [entropy for short), denoted ent(-), is a numerical conjugacy
invariant of continuous maps. A continuous map is transitive if some point has a dense
orbit. A map of the interval is a continuous map of a compact interval to itself.

We will determine lower bounds on entropy in terms of finite invariant sets. If
P — {pi < . . . < pn} is such a set, let fp be the map defined on [pi, pn] which agrees
with f on P and which is linear on [pi, Pi+i] (i — 1, ...,n — 1). Then ent (/) =
sup{ent(/p)} where the supremum is taken over all finite invariant sets [10].

In section 2, we find some fairly crude bounds for the entropy of a transitive map
of the interval in terms of the number and location of its fixed points.

In section 3 we show that for transitive maps of the interval, entropy bounds
obtained from finite invariant sets can be attained only in very restrictive circumstances.
A map of the interval is piecewise monotone if the ambient interval can be written
as a finite union of closed subintervals with disjoint interiors on which the map is
alternately strictly increasing and strictly decreasing. The critical points of such a map
are the endpoints of these subintervals, that is, the turning points of the map and the
endpoints of the ambient interval. We prove
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208 E.M. Coven and M.C. Hidalgo [2]

THEOREM 3 . 1 . Let f be a transitive map of the interval and let P be a finite
invariant set. Then ent(/) ^ ent(/p), with equality if and only if f is piecewise
monotone and P contains the critical points of f.

All that is new here is that the condition is necessary — see Lemma 1.1.
The reader is advised that, as far as this paper is concerned, the maxim "one

picture is worth a thousand words" greatly undervalues pictures.

1. BACKGROUND

For / : X —* X and x 6 X, orb (z) denotes the orbit of x, that is {fn[x): n ^ 0}.
A subset E of X is invariant (under f )\{ f(E) C E. (The inclusion may be proper.)

We will need the following standard facts about transitivity and entropy:

(1) / : X —» X is transitive if and only if the only closed invariant subset of
X with non-empty interior is X itself;

(2) en t ( / » )=nen t ( / ) (n^O);
(3) if / : Y U Z -> Y U Z and both Y and Z are closed and invariant, then

ent(/) = max{ent(/|y), ent(/ |2)}.

Let / be a map of the interval and let P = {pi < . . . < pn} be a finite subset of
the ambient interval. (Here P need not be invariant.) By a P-interval we mean one
of the n — 1 intervals [pi, Pi+i], i = 1, . . . , n — 1. The matrix of P {relative to / )
is the (n — 1) x (n — 1) matrix B, indexed by P-intervals, and defined by BJJ is the
largest non-negative integer k such that there are k subintervals 7j , . . . , / * of / with
pairwise disjoint interiors such that /(/j) = J, i — 1, ..., k.

The Perron-Frobenius Theorem [8] asserts that among the eigenvalues of maximal
modulus of a non-negative matrix B, there is one, denoted A(i?), which is non-negative.
In the sequel, we will abuse notation and declare log 0 = 0.

LEMMA 1 . 1 . ([4, 6]) Let f be a map of the interval, let P be a finite subset of
the ambient interval, and let A be the matrix of P. Then ent(/) ^ logA(i4), with
equality if P is invariant and contains the endpoints of the ambient interval, and f is
monotone (but not necessarily strictly monotone) on each P-interval.

An immediate consequence of Lemma 1.1 is

LEMMA 1.2. Let f be a map of the interval, let P be a finite invariant set, and
let A be the matrix of P. Then ent (fP) < log \{A).

2. ENTROPY AND FIXED POINTS

In this section, we find lower bounds on the entropy of a transitive map of the
interval in terms of the number and location of its fixed points.
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THEOREM 2 . 1 . [5, Lemma 1.2] Let / be a transitive map of the interval. Then
ent( / )^( log2)/2.

We say that / has an n-h.orsesh.oe if there is a finite invariant set P = {pi < . . . <
Pn+i} such that

/(P») — Pi if * is °dd

f(Pi) = Pn+i if » is even,

or f(pi) = p n + 1 if i is odd

/(p») = Pi if * is even.

The matrix of such a set P is the n x n matrix each of whose entries is 1. Thus
ent(/p) = logn.

THEOREM 2 . 2 . [3, Lemma 3.3] Let f be a transitive map of the interval. If f
has at least two fixed points, then it has a 2-horseshoe and hence ent (/) ^ log 2.

THEOREM 2 . 3 . Let f be a transitive map of the interval. If the endpoints
of the ambient interval are fixed points of f, then f has a 3-horseshoe and hence

PROOF: It is well-known that if

( • ) there exist w < x < y < z such that f(vj), f(y) ^ w and / ( x ) , f(z) ^ z,

then / has a 3-horseshoe.

Let the ambient interval be [a, b]. Suppose first that f~1(a) ^ {a} . Then / ( s ) = a
for some s > a. Let u = max / [a , s] and suppose that this maximum is attained at r.

If u — b, then a < r < s < b satisfy ( • ) . If u < b, let max/ [a , u] be attained at t.

Since [a, u] isn't invariant, f(t) > u and so t > s. Then a < r < s < t satisfy ( • ) .

(For the reader interested only in piecewise monotone maps, the proof is complete.
For it follows from [1, Lemma 2] that if / ( a ) = a and / is transitive, then f2 is
transitive, too. But if, in addition, / is piecewise monotone, then by [7, Theorem B],

Suppose then that f~1(a) = {a} . Then a is a limit of fixed points. If not and
p is the smallest fixed point greater than a, then f(x) > x for every x S (a, p). Let
T — min/ [p , 6]. Since f~1(a) — {a}, r > a, and since [p, b] isn't invariant, r < p . But
then [r, b] is invariant.

Define {yt} inductively as follows: let yo be a fixed point in (a, b) and let j/t+i =
min/[yjt, 6]. Then {j/t} is decreasing and yk —> a. For k ^ 1, /(zjt) = l/i+i for
some Xk, yk < s* < 2/t-i • Then zjt —• a, too. Since a is a limit of fixed points,
(a, Xi) contains a fixed point p . Let m be the smallest integer such that xm < p . We
may assume that there are no fixed points in (xm, p), and hence that f(x) < x for all
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3 S (xm, p) • Let max/[a , p] be attained at z. Since [a, p] isn't invariant, f(z) > p ,
and so z < xm. Thus for some k ^ m, i t + i < 2 < zjt < p , and these four points
satisfy ( • ) . D

3. ATTAINABILITY OF ENTROPY BOUNDS

In this section we prove

THEOREM 3 . 2 . Let f be a transitive map of the interval and let P be a Unite
invariant set. Then ent (/) ^ en t ( /p ) , with equality if and only if f is piecewise
monotone and P contains the critical points of f.

Recall that we need prove only that the condition is necessary. The following
lemma shows that we may restrict our attention to maps whose square is transitive.

LEMMA 3 . 2 . Suppose that f is transitive but f2 is not, and let P be a finite
invariant set. Then there is a map g such that g2 is transitive and ent (g) = 2 ent ( / ) ,
and a finite set Q, invariant under g, such that ent(<7,g) = 2 e n t ( / p ) . Furthermore,
g is piecewise monotone if and only if f is, and in this case, P contains the critical
points of f if and only if Q contains the critical points of g.

PROOF: Let the ambient interval be [a, b]. By [1, Lemma 2], there is a fixed point
c 6 (a, 6) such that f[a, c] = [c, b], f[c, b] = [a, c], and f2\[a, c] is transitive. Let
g = f2\[a, c]. [1, Lemma 2] applied to g shows that g2 is transitive. It is immediate
that ent (5) = 2 ent (/) and that g is piecewise monotone if and only if / is.

We may assume that c G P. If not, replace P by P' = P U {c}. Since P is
invariant under fpi, en t ( /p ) Sj ent( /p / ) . On the other hand, if pi < c < Pi+\, then
fp has a fixed point p £ [p,-, p,-+i]. Then P U {p} is a "copy" of P' which is invariant
under fp. Therefore ent ( /p / ) ^ en t ( /p ) .

Suppose that P = {pi < . . . < p n } and that c — pk- If / is piecewise monotone
and P contains the critical points of / , then it is easy to see that Q = [P U f~1{P)\ H
[a, c] is invariant under g and that Q contains the critical points of g. Since [pi, pjt] and
[pit, Pn] are invariant under fp and mapped to each other by fp, and gQ — fp \\pi, Pk],

it follows that ent(^Q) = 2 e n t ( / p ) .

Suppose that / is not piecewise monotone, or that it is but P does not contain the
critical points of / . In either case, Q will be PC\ [a, c] together with a carefully chosen
subset of f~x(P n [c, 6]). We define Q D (pj, pi+1) for i = 1, . . . , k - 1. If /(p.) =
/ ( p I + i ) , l e t Qn(p i ,p i+ i ) = 0. I f / ( P i ) < / ( p , + i ) and fP(Pi, Pi+i)n{Pk, . . . , pn} £ 0,
then this intersection is of the form {pj+i, ..., Pj+m} where fc + l ^ j + l ^ j + m ^
n — 1. In this case, let xo — Pi> a n <l define xT (r = 1, . . . , m) inductively by xr =

min{a; > z r _ i : f(x) - Pj+r}- Let (?n(p; ,p,-+ i) = {xx < ... < xm). Make the
obvious modification if f(pi) > /(Pt+i)- (If / is piecewise monotone and P contains
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the critical points of / , then this construction and the one in the preceding paragraph
yield the same set Q.)

Let / be piecewise monotone, and suppose that P does not contain the critical
points of / . We show that Q does not contain the critical points of g. First note
that c £ Q, and if a ^ P, then a £ Q. So we may assume that a £ P. Suppose
that b (£ P. Then f(a) =fi b a n d every member of f~1{b) is a turning point of g.
But f(Q) C P, so no member of f~1{b) can be in Q. Thus we may assume also that
b £ P. By examining cases, it can be seen that if / has a turning point in (a, c) which
is not in P, then / (and hence g) has a turning point in (a, c) which is not in Q. (For
example, if x € (pi, p ,+ i ) , /(p») < f(x) < f(pi+i), and / has a maximum at x, then
the next largest turning point y of / is also in (pi, Pi+i) and / has a minimum at y.
But then y ^ Q.) If / has a turning point x £ (c, 6) which is not in P, then every
y £ f~1(x) is a turning point of g and no such point can be in Q. U

LEMMA 3 . 3 . If f: [a, b] —> [a, b] and f2 is transitive, then

(*) for every interval J, there exists n such that fn(J) — [a, 6],

unless f is not piecewise monotone and one oi the following holds.

(1) f-1(a) = {a} andf-\b)?{b}.

(2) /-1(6) = {6} and f-'(a)? {a}.
(3) f-1{a,b} = {a,b}.

However, if (1) holds, then for every subinterval J and every closed subinterval K C
(a, b], there exists n such that fn{J) 2 K• Similar statements are true if (2) or (3)
hold.

PROOF: By [7, Theorem B], if / is piecewise monotone and f2 is transitive, then
(•) holds. On the other hand, if f2 is transitive but / is not piecewise monotone, then
by [2, Theorem 6], for every interval J and every closed interval K C (a, b), there
exists n such that fn(J) 2 K. The rest of the lemma now follows easily. U

LEMMA 3 . 4 . Let f be a map of the interval, let P be a finite invariant set, and
let A be the matrix of P. Let Q be a finite subset of the ambient interval and let B
be the matrix of Q relative to fn. If B > 0 and either B ^ An but B ^ An, or B
has a proper submatrix B' ^ An, then ent (/) > ent (fp).

PROOF: By standard Perron-Frobenius arguments [8], X(B) > X(An). Then we
have

nent (/) = ent (/n) > log A(B) > logX(An) ^ nlog A(>1) ^ nent (fP).

D
LEMMA 3 . 5 . Let f: [a, 6] -> [a, b]. If f2 is transitive but (*) does not hold,

then ent ( / ) > ent (fp) for every finite invariant set P.
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PROOF: By Lemma 3.3, one of (l)-(3) holds. Suppose (1) holds.

Let A be the matrix of P relative to fp and let P' = P — {a} and A' the matrix
of P' relative to fPi. Then ent(/P/) = ent (/p), for if a £ P, then P' - P, and if
a £ P, then A' is obtained from A by deleting the row and column corresponding to
[a, p], where p is the smallest member of P greater than a. (1) implies that each entry
in this column is zero except for the diagonal entry. Thus A(yl') = A(J4) and hence
e n t ( / P 0 = e n t ( / p ) .

Let c = min/[p, b]. Since (1) holds, c> a, and since [p, b] isn't invariant, c < p.
Let Q = (P - {a}) U {c}. By Lemma 3.3, there exists n such that fn(J) D [c, 6]
for every Q-interval J. Let B be the matrix of Q relative to / " . Then B > 0 and
its submatrix B', obtained by deleting the row and column corresponding to [c, p],
satisfies B' ^ (A')n. By Lemma 3.4, ent(/) >ent(/p/) .

Similar arguments work if (2) or (3) hold. U

PROOF OF THEOREM 3.1: As noted above, we need prove only that if / is tran-
sitive, P is a finite invariant set, and ent (/) = ent (fp), then / is piecewise monotone
and P contains the critical points of / .

Let the ambient interval be [a, 6]. By Lemma 3.2, we may assume that f2 is
transitive, and so by Lemma 3.5, (•) holds.

Suppose that a £ P. Let Q — P U {a}. By (*), there exists n such that
fn(J) = [a, b] for every Q-interval J. Let B be the matrix of Q relative to / " . Then
B > 0 and B contains a submatrix B' ^ An. By Lemma 3.4, ent(/) > ent(/p).
Therefore a £ P. Similarly, b £ P.

Suppose that a, b £ P, but that / is not one-to-one on some .P-interval [p, q].
There exist u < v in [p, q] with f(u) = /(«). Since / is transitive, it is not constant
on [u, v]. Therefore f[u, v] is a non-degenerate interval, and hence either f(u) <
max/[u, v] or f(u) > min/[u, v]. Without loss of generality, assume the former, and
let this maximum be attained at w.

It follows from a result of Sarkovskij [9] — the Birkhoff centre of a map of the
interval is the closure of its periodic points — that the periodic points of / are dense.
Let x £ (u, v) be a periodic point such that w £ orb(x) and there exists a point
y £ {u, v) such that x ^ y, f(x) — f(y), and no member of orb(z) lies between x
and y. Let Q = P U orb(z) U {y}, and let C be the matrix of Q relative to / Q . By
(•), there exists n such that fn(J) — [a, b] for every Q-interval J. Let B be the
matrix of Q relative to / " . Then B > 0, B ^ Cn, and Cn has a row (corresponding
to the Q-interval whose endpoints are x and y) consisting of zeros. By Lemma 3.4,
e n t ( / ) > e n t ( / Q ) .

Since P is invariant under / Q , it follows from Lemmas 1.1 and 1.2 that
en*(/<?) ^ ent(/p)> a n d hence ent(/) > ent(/p). This is a contradiction, and so
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/ is strictly monotone on every P-interval. Therefore / is piecewise monotone and P
contains all the turning points of / . D

An easy consequence of Theorems 2.2 and 3.1 is: if / is transitive and has at least

three fixed points, then e n t ( / ) > log 2. On the other hand, there axe transitive maps

with arbitrarily many fixed points and entropy arbitrarily close to log 2.
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