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1. Introduction

If L is a distributive. lattice with 0 then it is shown that each prime ideal
contains a unique minimal prime ideal if and only if, for any x and y in L, x A y = 0
implies (x]* V 00* = L. A distributive lattice with 0 is called normal if it satisfies
the conditions of this result. This terminology is appropriate for the following
reasons. Firstly the lattice of closed subsets of a 7\ -space is normal if and only
if the space is normal. Secondly lattices satisfying the above annihilator condition
are sometimes called normal by those mathematicians interested in (Wallman-)
compactications, for example see [2].

The above result is applied to give (1) a very simple and natural proof of
known characterizations of Stone lattices and generalized Stone lattices as dis-
cussed in [4], [11], [13] and [5], (2) clarification and extensions of Mandelker's
([8]) results on distributive lattices in which any pair of incomparable prime ideals
is comaximal and (3) a discussion of necessary and sufficient conditions for
the space of ultrafilters of a distributive lattice to be either Hausdorff or totally
disconnected.

2. The basic theorem

Throught this paper all lattices are assumed to be distributive.
For an ideal / in a lattice L with 0,

J* = {yeL:y /\x = 0 for all xeJ}.

(*] = {yeL'-y = x) denotes the principal ideal generated by x; it is clear that

(x]* = {yeL: yAx = 0}.

Ideals I and J of lattice L are said to be comaximal iil \J J = L.

If P is a prime ideal in lattice L with 0 then 0(P) is used to donte the ideal

{yeL; y/\x = 0 for some xeL\P}.

Clearly 0(P)s P.
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[2] Normal lattices 201

A prime ideal P is said to be a minimal prime ideal belonging to ideal I, if
(1) J g P and (2) there exists no prime ideal Q such that Q^P and IzQ^P.
A minimal prime ideal belonging to the zero ideal of a lattice with 0 is called a
minimal prime ideal.

LEMMA 2.1 Let P be a prime ideal in lattice L with 0. Then each minimal
prime ideal belonging to 0(P) is contained in P.

PROOF. Let Q be a minimal prime ideal belonging to 0(P). If Q^Pthen
choose yeQ\P. From [6, Lemma 3.1] and the distributivity of Lit follows that
y t\ze 0(P) for some z £Q. Hence y f\ z A x = 0 for a suitable x £ P. As P is prime
y/\x$P so ze 0(P) £ Q. This is a contradiction. Hence Q s P.

PROPOSITION 2.2. / / P is a prime ideal in a lattice with 0 then the ideal
0(P) is the intersection of all the minimal prime ideals contained in P.

PROOF. It is clear that 0(P) is contained in any prime ideal which is contained
in P. Hence 0(P) is contained in the intersection of all minimal prime ideals con-
tained in P. As L is distributive 0(P) is the intersection of all minimal primes
belonging to it. As each prime contains a minimal prime ideal these remarks and
Lemma 2.1 establish the proposition.

DEFINITION 2.3. A lattice with 0 is called normal if each prime ideal contains
a unique minimal prime ideal.

THEOREM 2.4. For a lattice L with 0 the following conditions are equivalent:
(a) any two distinct minimal prime ideals are comaximal
(b) L is normal,
(c) for each prime ideal P, 0(P) is a prime ideal,
(d) for any xyeL,x/\y = 0 implies (x~\* and (y]* are comaximal
(e) for any x,y e L, (x A y]* = (*]* V (>>]*•
Moreover, when L has a largest element 1, each of the above conditions is

equivalent to:
(f) each maximal ideal contains a unique minimal prime ideal,
(g) for each maximal ideal M, 0(M) is a prime ideal,
(h) for any x,yeL,x/\ j> = 0 implies there exist xl5 v't eL such that x,\ xl

~ 0 = yf\ yx and xi\/yl = 1.

PROOF, (a) => (b) is trivial, and (b) => (c) is a direct consequence of
Proposition 2.2.

(c) => (d). Suppose (c) holds and yet (d) does not. Then there exist x, y e L
with x A y = 0 and such that (**] V Cv]* T6 L. AS L is distributive there is a prime
ideal P such that (x]* V(y]*£P. Then (x]*sP and (>]*gP imply x£0(P) and
y$0(P). But 0(P) is prime and so x f\y = 0e0(P) is contradictory. Thus (c) implies
(d).
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(d) => (e). The inequality (x]* V0>]*£(* Vy]* always holds. Thus suppose
w e (x A v]*. Then w A x A y — 0, so by (d),

(w,\x),\r = 0 = y/\s

and r \/ s = w for suitable r and s. Also y/\s = 0 implies that there exist p and
q such that

p/\y = 0 = q/\s and p\/ q = w.

Then w = (wAr) V(wA s) so wA 4 = wf\rf\q. Thus

w = (n'A />) V(wA <?) = (w/\ p) VOA r/\ g)

and w l\r /\q /\x = 0 as (wAf)AJC = " a nd w f\ p /\ y = 0. Hence w e (x*]
V (y~\* and (e) follows.

The rest is either obvious or follows in a manner similar to the above.

Varlet [13, section 3, p.82] has shown that conditions (a) and (b) of the
above theorem are equivalent by a different method; the rest of the theorem seems
to be novel.

3. Relatively normal lattices

The terminology used in the following definitions follows current usage in
lattice theory. For x < y in a lattice L [x, y~\ denotes the interval {z e L; x ^ z ^
y}; it is considered to be a sublattice of L.

DEFINITION 3.1. A lattice L with 0 is called sectionally normal if each interval
[0,x] with 0 < x is a normal lattice.

DEFINITION 3.2. A lattice L is called relatively normal if each interval [x,y]
with x < y is a normal lattice.

Katrinak [5, lemma 9,p.l35] has shown that a normal lattice is sectionally
normal. The next theorem both improves and yields an alternative proof of his
result.

THEOREM 3.3. Let L be a lattice with 0. Then the following are equivalent
(a) L is normal,
(b) each ideal J 5̂  L is a normal sublattice,
(c) L is sectionally normal.

PROOF, (a) => (b), If J is an ideal and x,yeJ with x A y = 0 then (x]*
V(y]* = L because of Theorem 2.3 providing (a) holds. Hence

j = jnL = (/n(x]*) vC/n(y]*)

as the lattice of ideals of a distributive lattice is itself distributive. But /O(x]* and
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[4] Normal lattices 203

jr\(y~\* are respectively {zeJ; z /\x = 0} and {zeJ: z [\y = 0} and it follows
from theorem 2.3 that J is normal, (b) => (c) trivial and (c) => (a) follows from
Theorem 2.4 (d).

The following theorem and its accompanying lemma were inspired by a result
of Gratzer and Schmidt [4, Theorem 3, p.459] and our proofs are related to theirs.
The lemma which is of independent interest does not seem to appear in the
literature.

LEMMA 3.4. If Lv is a sublattice of lattice L and Px is a prime ideal in Lt

then there exists a prime ideal P in L such that P t = L1C\ P.

PROOF. Let / be the ideal generated by Px in L. Clearly

I = {zeL: z ^ x for some x e P j .

Clearly I^L^P^ = 0. Then as L1\P1 is closed under A, a modification of
Stone's theorem (for Stone's theorem see [8, p. 379]) or Krull's lemma [6, Lemma
1.2] stated for distributive lattices implies that there is a prime ideal P in L such
that / £ P and

t andPnLj cp 1 soPi = POL.

THEOREM 3.5. A lattice is relatively normal if and only if any two in-
comparable prime ideals are comaximal.

PROOF. Suppose L has a pair of prime ideals P and Q such that P $ Q and
Q $ P and yet P.yQ^L. We can then construct an interval which is not normal
as follows. Choose aeL\{P\jQ), beP\Q and ceQ\P and consider the interval

/ = [b/\c, a V b\/c].

b Ac is the zero of / , a \Jb\Jc is the unit and b, ce / is the unit and b,ce I with

b/\c = the zero of/. Now if/ were normal there would exist (by Theorem 2.4)

x,y e / such that

xf\b = bA c = yf\ c and x\j'y = a\Jb\jc.

Then x A b = bf\ c e Q, as c e Q, as c e Q, so x e Q is prime and b $ Q. Similarly,
ye P. Hence,

a <L a\jb\J c = x\l yeP\J Q

This is contradictory, so the interval / is not normal.
Suppose each pair of incomparable prime ideals is comaximal Let M-^Mi

be minimal prime ideals in the interval \x,y]. By Lemma 3.4, there are prime ideals
Pt and P2 in L such that M; = [x,y]nP; , for i = 1,2. Clearly Px and P2 are
incomparable so Pt\/P2 = L. Now let a e [x,y]. Then a = c \/ d where
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204 W. H. Cornish [5]

ceP1,deP2. So c, d g a <; y and c\jx,d \ xe[x,y~\. But xeMt and

M2 so x e P t and i>2>
 s o cVxeM, and d \J xeM2. Thus

a = (c v x) V (d V x) e Mx V M2.

Thus Mi and M2 are comaximal in [x,_y].
Theorem 3.5 should be compared with condition (a) of Theorem 2.4. Also

Theorem 3.5 shows that relatively normal lattice are well-known objects. In fact
combining the theorem with results due to Varlet [13, section 5, p. 83] and Mandel-
ker [8, Theorem 4, p. 380] we see that the following are equivalent for a lattice
L: (1) L is relatvely normal, (2) the prime idelas contained in a given prime ideal
form a chain, (3) <a, b} V <&, a} = L for any a and b in L (there <a, b} is the
ideal {xeL: x,\a g b}). The second condition should be compared with con-
dition (b) of Theorem 2.4. In an effort to obtain an extension of condition (e)
of Theorem 2.4 to relatively normal lattices we extend Mandelker's concept of
relative annihilator.

For non-empty subsets A and B of lattice L (A, B} denotes

{xeL: x/\aeB for all aeA}.

<a,6> denotes <{a},{6}>. As observed by Mandelker <a,b> is an ideal due to the
distributivity of L. When A and B are ideals it is also clear that (A,B} is an ideal.
Clearly <(a], (6]> = <a, b}. The following lemma summarizes some useful in-
formation,

LEMMA 3.6. Let Lbe a lattice. Then the following hold
(a) {x \/y, x> = <y,x> for any x,yeL,
(b) <(x],J> = \J yeJ(x,yy,the supremum of ideals (x,y} in the lattice

of ideals of L, for any xeL and any ideal J in L,
(c) {<x,a> yC,a>}n[a,b] = {<x,a>n[a,6] \f{(y,a}n [a,fc]},/or any

x, ye [a, b], a < b.

PROOF, (a) and (b) are easily proved.

Let z be a member of the left hand side of (c). Then

a ^ z = c\'d £ b

with c A x ^ a and d/\ y £ a. Then

(c ya) A x = (cA x) V(a A x) = (cA x) Vfl ^ a V« ^ «

and similarly (d \/a) A y ^ a. Thus

c Vae<x,a>n[a, 6] and(d Va)e<^,a>n[a,b]

so z = (cV a) \'(d \'a) is a member of the right hand side of (c). The reverse
inequality is clear and (c) follows.
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[6] Normal lattices 205

THEOREM 3.7. Let a, b and c be arbitary elements of a lattice L. Let A, B
and C be arbitrary ideals in L. Then the following are equivalent:

(a) L is relatively normal
(b) <fl,6>V<6,fl> = L.,
(c) (c,
(d) <(c
(e) <a/\fc,c> = <a,c>

n (6], C> = <(d], C>

PROOF, (a) => (b). Let z e L be arbitrary. Consider the interval

/ = [aAiiAz.flVfcV z].

Then a /\(b A z) is the smallest element of J. As / is normal by (a), Theorem 2.4(h)
implies that there are r,s e 1 such that

a As = aA bf\z = b/\zt\ r

and z = s Vf- fl As ^ fc so

so re<6,a>. Hence z = s y re (a,by \/{b,ay and (b) follows.
(b) => (c). Let z e <c, a V b>. Then zAc ^ a\/b. Also, as (b) holds, z = x

Vy where x A o ^ i and y A b ^ a. Then

xAc = x A z A c g xA(a V^) = i.x/\a) V(xAb) g b V (xAb) = />.

Similarly y A c g a . Hence z = x VJ' 6 <c, fe> V <c,a> and <c, aV by s <c, b>
V <c, a>. Since the reverse inequality always hclds (c) is proved.,

(c) => (d). This implication follows immediately from part (b) of Lemma 3.6.
(d) => (c) trivially and (c) => (b) follows immediately from part of (a) of

Lemma 3.6 if we put c = a\j b.

(b) => (e). Let z e < a A ,c>. Then z = x \Jy where xAa^b and >'A 6

g a. Also

xAa = xAaAb ^ z AaAb S c.

Similarly ye<6,c>. It follows that <aA ^,c> £ <a,c> V<^>c>. The reverse
inequality always holds so (e) is established.

(e) => (f) is a trivial consequence of lemma 3.6.
(f) => (e) is clear so we show that (e) => (a). For x e [ a , i ] , a < b, let

x+ = {ye[a,b~\:yA x = a, the zero of [a, ft]}.

Clearly x+ = <x,a>n[a,b]. (a) now follows (b), due to part (c) of Lemma 3.6.

The theorem is proved.
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206 W. H. Cornish [7]

4. Homomorphic images

The first theorem in this section derives from a scrutiny of the proof of a
result by Gratzer and Schmidt [4, Theorem 1].

For a filter F in a distributive lattice a congurence relation ^(F) is defined by
x = y{*¥(F)} if there exist teF such that xf\ t = y /\ t. The associated quotient
lattice is denoted by Lj^iF) and \p denotes the canonical epimorphism of L
onto the quotient lattice. For x eL, \j/(x) = x = the congruence class of x modulo
*F(F). As is well-known the elements of F are all congruent under V(iO and the
equivalence class of F is the largest element in Lj'i'(F). This congruence has been
studied in detail by Speed [12J. Though some of the following results can be proved
with the aid of Speed's results we proceed by alternative methods.

Recall that a filter F is prime if x V y eF implies xeF or yeF. A lattice L
with 0 is dense if (x]* = (0] for each x ^ 0 in L.

We shall also make use of the fact that a prime ideal P is a minimal prime if
and only if for each xeP there is y $P such that x/\ y = 0. This follows from
[6, Lemma 3.1].

THEOREM 4.1 (a). If F is a filter in a normal lattice L then Lj*¥{F) is a
normal lattice.

(b) A lattice L with 0 is normal if and only if, for each prime filter F,
L/*F(F) is a dense lattice.

PROOF, (a) Let Q be a prime ideal in Ljy¥{F) and let Q be its inverse image
under \J/. Patently Q is a prime ideal. If Q is a minimal prime ideal then Q is a
minimal prime. For suppose qeQ then qeQ so there exists F£Q(reL) such
that

qAr = q A f = 0.

So for some xeF,
q / \ r / \ x = 0 A x = 0.

Now x <£ Q, otherwise x e Q and then Q would be an improper ideal. As Q is prime
we have r /\ x$Q and q A (r A x) = 0 so Q is a minimal prime.

Now suppose L is normal, and let Q,R be distinct minimal primes in Lj¥(F).
Then their complete inverse images Q and R, respectively, are distinct mini-
mal primes in L, so Q \/ R = L. Whence Q yR = L^^F) so the quotient
lattice is normal.

(b) Suppose F is a prime filter in a normal lattice L. To prove that L/*F(F)
is dense it suffices to show that the quotient lattice contains a unique minimal
prime, for then {0} is a (minimal) prime as the intersection of the minimal primes
in {0}. Thus, assume Q and R are distinct minimal primes in L/^iF). By part (a)
of this theorem, Q yR = Lj"¥(F). Hence if feF t hen /= q \'f where qeQ,
feR and q,reL. Thus, there exists g eF such that
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/ A g = (q V ) A g-

As F is a filter it follows that q\/reF and the primeness of F implies qeF or reF.
But then either <2 or R is improper. The contradiction shows the quotient lattice
possesses a unique minimal prime ideal.

Now assume L is a lattice with 0 for which L/^P^) is dense for each prime
filter F. Let P a prime ideal in L. Suppose x,yeL and that xA ye 0(P). By defini-
tion of this ideal x A y A z = 0 for some zeL\P. Now L\P is a prime filter hence in
LI*¥(L\P), x A jA £ = 0. i.e. x/\y = 0 as z is the identity of the quotient lattice
lattice as it is in L\P. As the quotient is dense, x = 0 or y = 0. Thus either

for some w e L\P i.e. either x or y is in 0(P). Thus, 0(P) is prime so, by Theorem
2.4, L is normal. •

From Theorem 3.7 and [8, Theorem 4] we have the following result.

LEMMA 4.2. A lattice L is relatively normal if and only if, for any prime
filter F and any elements a and b in L, there exists an tlement x in F such that
a A x and b /\ x are comparable.

THEOREM 4.3. (a) If F is a filter in a relatively normal lattice thenLjyV(F)
is relatively normal.

(b) A lattice L is relatively normal if and only if Lj^ViF) is a chain for
each prime filter in L.

PROOF, (a) follows from Theorem 3.5.
(b) is an easy consequence of Lemma 4.2.
From Theorem 2.4 part (/z), we immediately obtain

PROPOSITION 4.4. Let X be a 7\-space. ^{X) is its lattice of closed sets.
Then the following are equivalent

(a) X is normal
(b) &{X) is normal.

THEOREM 4.5. A homomorphic image of normal lattice with 0 is not
necessarily normal.

PROOF. Let X be a normal space with a subspace A which is not normal
(e.g. X can be the Stone-Cech compatification of a non-normal completely
regular space A). ^(X) is normal and ^(A) is not normal by Proposition 4.4. For
Fe!F(X), the map F <-+ FC\A is the required lattice epimorphism.

5. "Gratzer-Schmidt theorems"

DEFINITIONS 5.1. A lattice L with 0 is called quasi-complemented if for each
x in L there exists x'inL such that x A x' = 0 and (x V*']* = (0].
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5.2. A lattice L with 0 is sectionally quasi-complemented if each interval
[0,x], 0 < x, is quasi-complemented.

5.3. A lattice L with 0 is called a generalized Stone lattice if (x]* V (*]**=L
for each x in L.

The terminology of 5.1 is due to Varlet [14] while that of 5.3 is due to Katri-
iiak [5]. Quasi-complemented lattices have been studied by Varlet [14] and Speed
[12]. They generalize pseudo complemented lattices (i.e. a lattice with 0 such that
(x]* is a principal for each x).

Katrinak [5, Lemma 8, p. 134] proved the following result.

LEMMA 5.4. A lattice L with 0 is a generalized Stone lattice if and only if
each interval [0,x],0 < xeL, is a Stone Lattice.

We remark that a Stone lattice can be considered as either a generalized
Stone lattice with 1 or a pseudo-complemented lattice in which x* V*** = 1 for
each x where (x]* = (x].

The following three results sum up the connections between lattices satisfying
Definitions 5.1, 5.2, and 5.3 and normal lattices.

PROPOSITION 5.5 Let L be a lattice with 0. Then
(a) L is quasi-complemented if and only if it is sectionally quasi-com-

plemented and possesses an element d such that (d]* = (0],
(b) if L is a generalized Stone lattice then it is normal.

PROOF, (b) was proved by Katririak [5, Theorem 4].
(a) Suppose L is quasi-complemented. Then there is an element d such that

0 A d = 0 and (d\* = (0 V d~\* = (0].

We now show that an arbitrary interval [0,x] is quasi-complemented. Let y e [0,x]
and choose y' eL such that y A y' = 0 and (y Vy']* = (0] in L. Put z = x A y'.
Then z A y - 0 and z e [0,x]. If w e [0,x] and w A (y Vz) = 0 then

so w e (y A / ] * = (0] i.e. w = 0. It follows that L is sectionally quasi-complemen-
ted.

Suppose L is sectionally quasi-complemented and that there is an element d
in Lwith (d]* = (0]. Let x e L and consider the interval [0,x V^]- In this interval
there is an element x' with xAx' = 0 and such that

{ye[0,x yd] : M ( x V x ' ) = 0} = {0}.

For yeL such that y V(*A x') = 0, (yA d) A (x V*') = 0 so yAd = 0 as
yAd e [0,x V^]- But then y = 0 so L is quasi-complemented.
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THEOREM 5.6. Let L be a lattice 0. Then sufficient conditions for L to be a
generalized Stone lattice are

(a) L is quasi complemented, and

(b) L is normal.

When L possesses an element d such that (d~\* = (0], the conditions {si) and
(b) are also necessary.

PROOF. Sufficiency of (a) and (b). For xeL choose x' such that

x/\x' = 0 and (x V*']* = (x]*n(x'] = (0].

Then (*]** = (*']*. (This is easy to show and well-known from [14] and [10].
As L is normal Theorem 2.4 shows that (x] V(x]* = L. Combining we get (x]*
V (*]•* = L.

The necessity of the conditions when L has an element d such that (rfj* = (0]
follows from Lemma 5.4 and Proposition 5.5.

THEOREM 5.7. A lattice with O is a generalized Stone lattice if and only
if it is both normal and sectionally quasi-complemented.

PROOF. Apply Lemma 5.4, Proposition 5.5 and Theorems 5.6 and 3.3
Theorem 5.7 can be regarded as a minor improvement of Katrinak's result

[5, Theorem 4] which in turn generalizes Varlet's ([14]) and Speed's ([11]) ex-
tensions of Gratzer and Schmidt's ([4]) characterization of Stone lattices.

Theorem 3.3 shows that nothing is gained in Theorem 5.7 by supposing L
is sectionally normal rather than normal.

Because of the simple characterization of normalcy given in Theorem 2.4,
Theorem 5.6 presents a very natural proof of these "Gratzer-Schmidt theorems".

Before leaving this section we would like to emphasize one more point.

THEOREM 5.8. Let L be a relatively pseudo-complemented lattice. Thm the
following are equivalent

(a) L is a relative Stone lattice,

(b) (a A b)*c = (a*c) V ( 6 * c ) holds for all a,b and c in L

(c) c*{a \Jb) = {c*a)\J (c*b) holds for all a,b and c in L.

PROOF. A relatively pseudo-complemented lattice is a lattice with 0 and 1
such that {a,b} is a principal ideal for each a and b. <a,b> = (a * 6]. The theorem
follows from Theorem 3.7 if we apply Theorem 5.7 and the fact that each interval
in L is pseudo-complemented (L is relative Stone lattice if each interval is a
Stone lattice.)
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6. Complemented!) normal lattices

DEFINITION 6.1. A complementedly normal lattice is a lattice L with 0 and
1 such that if x A y = 0 then x ^ u and y ^ u' for some complemented element
u in L.

In the above definition u' is the complement of u. Z(L) will be used to denote
the sublattice of complemented elements.

The above condition appears in [1, Proposition 2.4] but is not really studied
there.

From Theorem 2.4 (part (h)) we see that a complementedly normal lattice
is normal.

The following result has some interest though we omit the easy proof.

PROPOSITION 6.2. A complementedly normal lattice is a Stone lattice if and
only if for each x there is a smallest complemented element w such thatx = x A w.

We now propose to generalize and extend Speed's results [1, Proposition
3.2 and Theorem 3.3.].

PROPOSITION 6.3. L is a complemented normal lattice, Z(L) is its Boolean
algebra of complemented elements, Tl(L) and I1(Z(L)) are the sets of minimal
prime ideals of L and Z(L), respectively. Then the map P-*L(P) = {xeL:
x = x A ufor some ue P} is a bijection of iI(Z(L)) onto U(L).

PROOF. It is clear that L(P) is an ideal in L and if it is prime it must be a
minimal prime due to [6, Lemma 3.1]. Thus we show that L (P) is prime. Suppose
x, y e L are such that x A y e L(P) and y $ L(P). Then x A y A " = x ,\ y for some
ueZ(L) so x A y A u' = 0. As L is complementedly normal x = x f\ v and

yAW Av' = yAW

for some v e Z(L). Also we have yAu'Av = QsoyAw = y and

u'AvAW = u' Av

for some weZ(L). Since y£L(P), w£P so w'eP and then u'AveP. But
ueP so u'$ P hence veP whence x = x A veL{P) and so L{P) is prime.

The map P-+L(P) is an injection since if L(P) = L(L), P,LeTl(Z(L)),
then P £ L(P) implies that for arbitrary peP there is an element q e L, such that
p 5£ q. That is P s L whence P = L.

The map is surjection since if Heri(L) then H nZ(L) e IT(Z(L)) and it is
clear that L(HOZ(L)) s H. Hence L(HC\Z(L)) = H.

COROLLARY 6.4. If P is a prime ideal in a complementedly normal lattice
L then P C\Z{L) is the unique prime ideal in the sublattice Z(L) which is con-
tained in P.
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PROOF. This follows readily from the proposition if we recall that all prime
ideals in a Boolean algebra are minimal primes.

The next result presumes a knowledge of the hull-kernel topology on the set
of minimal ideals of a lattice. For details we refer to [6] and [10].

THEOREM 6.5. For a complementedly normal lattice L the map P -> L(P)
of Proposition 6.3 is a continuous function from IT(Z(L)) onto IT(L), with respect
to the hull-kernel topologies, if and only if L is a Stone lattice.

PROOF. If P -» L{P) is continuous then I1(L) is a continuous image of the
compact space IT(Z(L)) (using a well-known result of Stone or [9, Proposition 3.2])
and so is compact. Then L is quasi-complemented by [9] and as L is normal it is a
Stone lattice by Theorem 5.6.

Suppose L is a Stone lattice. Let aeL. h(a) is the hull of a in U(L). Then the
inverse image of h(a) under the map P -> L(P) is

{PeU(Z(L)): aeL(P)} = {PeU(Z(L)):a**eP}

as is readily verified," and this is closed in II(Z)L)}. As the map is a bijection it
follows that it is continuous.

7. Spaces of ultra filters

The proof of the following lemma is identical with that presented for com-
mutative rings in [7, Proposition 5, p. 157].

LEMMA 7.1. Let L be a lattice with 0. Z is a non-empty set of prime ideals
L endowed with the hull-kernel topology and such that r\{P:Pe'E} = (0].
Then Z is a Hasdorff space if and only if, for each Pel,,? is the unique ideal
in Z containing 0(P).

For a prime filter F (in particular an ultrafilter) co(F) denotes the filter {xeL:
x \ /y = 1 for some y $ F} when L has a largest element 1. This is the dual of the
ideal 0(P) in section 2.

A lattice with 0 and 1 is called semi-complemented if for each 0 < x < 1
there is an element 0 < y such that x A y = 0. It is well-known and easily proved
that L is semi-complemented if and only if the intersection of all the ultrafilters
is {1}. From this the dula of Lemma 7.1 gives

LEMMA 7.2 Let L be a semi-complemented lattice with 0 and 1. Then the
set of all ultrafilters in L, endowed with the hull-kernel toplogy, is a Hausdorjf
space if and only if for any ultrafilter F, the unique ultrafilter containing
0}(F) is F.

The space of ultrafilters is considered in [1], for example.
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THEOREM 7.3. Let L be a semi-complemented lattice with 0 and 1. Cl is
the space of all ultrafilters in the hulllkenel topology. Then the following are
equivalent:

(a) Q. is Hausdorff
(b) L is normal.

REMARK. £1 is always compact so that il is Hausdorff iff it is a normal
space, so il is normal iff L is normal!

PROOF, (a) =>.(b). Suppose (a) holds and yet (b) does not. Then some
maximal ideal P contains two distinct minimal prime ideals Mx and M2. Clearly,
L\P is a minimal prime filter contained in the distinct ultrafilters L\Mt and L\M2.
But L\P £ L\Mt implies

co(L\Mi) £ (o{L\P)

for i = 1,2. As L\P is a minimal prime filter L\P = a>(L\P), by [6, Lemma 3.1]
(working in the dual of L). Then

which is a contradiction due to Lemma 7.2. Thus (b) holds.
(b) => (a). Suppose (b) holds. If (a) does not hold then by Lemma 7.2 there

are two distinct ultrafilters F1,F2 such that Ft,F2 2 coiFJ. Choose x e f i \F2, then

{z e L: x A y ^ z for some y£F2}

is a filter containing both x and F2 and hence must be L. Thus there is .y eF2\Ft

such that x A y = 0. As L is normal, Theorem 2.4 implies x/\xt = 0 = y /\ y1

and x: V.Fi = 1 f°r suitable x1,yleL. Then xl^Fl whence yleo}{Fl) c f2,
but this is a contradiction for it implies 0 = y A ^i e F2- Thus (a) must hold.

We now consider a similar theorem for complementedly normal lattices.

LEMMA 7.4. Let X be a compact Hausdorff totally disconnected space.
Then the lattice of closed subsets of X is complementedly normal i.e. if A and B
are distjoint closed sets then there is an open and closed set U such that A £ U

PROOF. The proof proceeds in exactly the same way as a compact Hausdorff
space is proved to be normal where any open sets are replaced by open and closed
sets. We therefore omit details.

Recall that a lattice L with 0 is disjunctive if for any a,beL,a < b implies
there is an element ce L such that a A c = 0 and 0 < c < b. The next lemma is
standard; a proof can be found in [1, Lemma 2].

LEMMA 7.5. Let Q be set of all ultrafilters in a disjunctive lattice L.
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Then, for any as L, {x:a ^ x} = C\{Fsh(a)} where h (a) is the hull of a in Q
i.e. h(a) = {Fefi: aeF}.

THEOREM 7.6. Let L be a lattice with 0 and D. be its space of ultrafilters
with the hull-kernel topology. Then

(a) if L is complemently normal Q is a compact Hasudorjf totally dis-
connected space, and

(b) if Q. is compact Hausorjf totally disconnected space and L is dis-
junctive then L is complementedly normal.

PROOF, (a) let Ft ?£ F2 be ultrafilters. As in the proof of (b) implies (a) in
Theorem 7.3, we can find xe Fl\F2 and y eF2\F1 such thatx A y = 0. As L is
complementedly normal there is a complemented element ueL such that x ^ u
and y ^ u'. Then, ueFl and u' eF2 i.e. F t eh(u) and F2eh{u'). Now

h{u)\jh{u') = h(u V«') = h{\) = Q

and h(u)r\h(u') = h(u,\u') = Ji(0) = 0 . Thus, h(u) and h{u') form the required
disconnection of Q.

(b) Let x, yeL with x A « = 0 . Then

h(x)nh(y) = h(xy y) = h(0) = 0,

and h(x) and /i(y) are closed in Q. As fi is, by hypothesis, a compact Hausdorfl
totally disconnected space, Lemma 7.4 implies h(x) c (7 and h(y) £ Q\C/
for some open and closed subset 1/ofO. As L/ is closed there must be a filter
J in L such that h (J) = [/. Similarly, Q\U = /;(X) for some filter iC. Then
C/U(n\t/) = 0 and l/n(Q\t/) = 0 yield h(Jf\K) = D. and h(J \/K) = 0,
respectively, where

J nK = the set theoretic intersection of J and K

= {xeL: x = a \Jb for some aeJ and b6X} and

J \/ K = the supremum J and K in the lattice of niters

= {xeL:x = a/\b, aeJ,beK}.

Thus, J \'K = fi and J n K s n{F:.Fefi} = {1} since L is disjunctive and
hence semi-complemented. Thus, J and K are complementary and it easily follows
that

J — {xeL: u ;g x} and K = [xeL: u' ̂  x}

for some complemented element ueL. Thus /J(X)S [/ = h(u) and /T(J) £ Q\U
= /i(u') so

/i(xA «) = h(x)nh(u) = h(x) and h(y A «') =
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As L is disjunctive, Lemma7.5applies and we conclude x A u—xandyA u'= y
so L is complementedly normal.

REMARKS 7.7. Theorem 7.3 is both related to and inspired by a result of
Banaschewski [1, Proposition 1]. When considering bounded lattices Theorem
7.3 is a stronger result than that of Banaschewski. It is is interesting to note that
the methods of proof are entirely different.

7.8. Unlike Theorem 7.3, we have note seen a result in the literature rela-
ted to Theorem 7.6. Something like the disjunctive property is needed in part
(b) of that theorem. Indeed it is not hard to show to that the space of ultrafilters
of a quasi-complemented lattice is a compact Hausdorff totally disconnected space.

8. Examples

(A) Normal Lattices.
Some examples of normal lattices are: (1) the lattice of all zero sets in a

completely regular space, (2) the lattice of closed subsets of a locally compact
Hausdorff space which are either compact or are the complements of a set with
with compact closure, (3) any lattice of subsets of a compact Hausdorff space
which is a base for the closed sets. Examples (1) and (2) are considered in [1,
pp. 107, 108]. In [8, Theorem 6] Mandelker shows that example (1) is actually
relatively normal. Example (3) is proved in [2, Theorem 2.2].

Using familiar results on F-spaces [3, Theorem 14.25, p. 208] it can be shown
that the lattice of co-zero sets of a completely regular space is normal if and
only if the space is an .F-space. This supplements [8, Theorem 8].

(B) Complementedly normal lattices.
From [3, Theorem 16.17, p. 274] the lattice of zero sets of completely regular

space X is complementedly normal if and only if fSX is totally disconnected.
From [9, Proposition 2.3] a completely regular space is a l/-space if and

only if the lattice of co-zero sets is complementedly normal. For the case when
the lattice of co-zero sets is a Stone lattice the reader should refer to [8, Theorem 9].
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