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Introduction. The Hilbert space methods in the theory of biholomorphic mappings
were applied and developed by S. Bergman [1, 2]. In this approach the central role is
played by the Hilbert space L2H(D) consisting of all functions which are square
integrable and holomorphic in a domain B c C ^ . A biholomorphic mapping q?:D—»G
induces the unitary mapping £/,,: L2H(G)—* L2H(D) defined by the formula

( t / / ) (z )=/ (<p(z) ) |^ . (1)

Here dcp/dz denotes the complex Jacobian of <p. The mapping Uv is useful, since it
permits to replace a problem for D by a problem for its biholomorphic image G (see for
example [11], [13]). When <p is an automorphism of D we obtain a unitary operator Uv on
L2H(D).

Since the appearance of K. Hoffman's book [7] the spaces of holomorphic functions
became an interesting subject for experts in functional analysis. An important part of the
research was devoted to Hardy spaces HP(D) and to composition operators. A
holomorphic automorphism cp of D induces the composition operator Av on HP{D) by
the formula

{AJ){z)=f(cp{z)). (2)

The spectral properties of (2) were studied in [6], [8], [10]. The purpose of the present
paper is to establish the following spectral property of the operator (1).

THEOREM 1. Assume that L2H(D)y^{0}. Let q>:D—>Dbea holomorphic automorph-
ism with fixed point aeD. Then there is a complete orthonormal system in L2H(D)
contained in the set of all eigenfunctions of U^.

It should be noted that, strictly speaking, Uv is not a composition operator for two
reasons. First the spaces L2H(D) and ^{D) are different. (For example in the unit disc
A <= C the first space is larger as a set than the second.) Next, in the definition (1) of Uv

there is a factor dyldz, which does not appear in the definition (2) of Av. Our proof of
Theorem 1 will be based directly on the properties of the Bergman function [2]. The
assumption that (p has a fixed point is essential. The case D = A was considered earlier in
[9]-

1. Holomorphic vector-valued functions. The following result is classical. See [12,
Definition 3.30 and exercise 26].

THEOREM 2. Let X be a complex Banach space. Let D be a domain in CN. For every
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mapping F:D—>X the following conditions are equivalent
1° the function x*°F is holomorphic for every x* e X*;
2° for every a = (a1; a2, . . . , aN) e D there exists a power series with coefficients in X

which for all z = (z1, z2, . . . , zN) sufficiently close to a converges to

F(z) = A, gk{zx - a{)k\(z2 - O2)k2. . . (zN - aN)k".
k=(k,,k2,--,kN)

If the above conditions are satisfied, then F is called holomorphic. It is easy to verify
that F is holomorphic iff it is C-differentiable. Moreover the coefficients gk are determined
uniquely by F and a.

2. Formal substitution and formal multiplication of power series. We shall now
recall some properties of power series with coefficients in a Banach space X. Assume that
the power series

F{z) = S gkZk' • z2
2. . . zft' (3)

converges in an open polydisc P = {z eCN; |z,| <Pj,j = 1,2,... ,N}. Assume further that
in an open polydisc Q = {z e CN; |u,| <qhl = 1,2,... ,N} holomorphic functions ht,
j = 1,2,. . . ,N are represented by power series

hj(u) = Zi C^UI'M^ . . . u$ (4)

and the mapping h = {huh2,. . . ,hN) satisfies /z(0) = 0. The series (4) converges ab-
solutely and we denote

r=(r|,r2....,rAr)

A formal substitution z = h(u) into the expression

Z^ . Z^ • • • Zyy = Z \Jj

requires a formal multiplication of \k\ = kl + k2+. . . + kN series which correspond to
factors on the left side. This means that one has to select one term in each of these series,
and then multiply the selected terms. Next one forms the sum of all products obtained in
the above way.

It is now clear, how to define a formal substitution z = h(u) into (3). A pedantic
definition could run as follows. For a fixed k = (kx, k^,..., kN) denote by Ak the set of all
sequences

( \
•Sll* • • • ; S1k^ S2\i • • • ) S2k2i • • • > ^ 1 ) • • • > SNkN)

of length \k\ with terms in {0,1,2, . . .}N. Then a formal substitution z = h{u) into (5) is
defined as a series E Wa(u), where

N ki
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A formal substitution z = h{u) into (3) is defined as a series

2 2 gkwa(U). (6)
*=(* *„) aeAk

With the above notation we have

THEOREM 3 [5, sec. 9.2.1]. Assume that thepolydisc QO
CQ with centre 0 is so small,

that

for every u e Qo. Then the series (6) converges absolutely in Qo, and its sum is F(h(u)).
The terms in the series (6) can be reduced to yield the power series in Qo with the sum
F(h(u)).

We shall also need the following (obvious)

THEOREM 4. Assume that both series

c = E cm cm e C, v = X vk vkeX
m k

converge absolutely. Then the series £ cmvk converges absolutely and its sum is cv.
k,m

3. Subspaces generated by coefficients. For every z e D the evaluation functional

belongs to L2H(D)*, the space of all continuous linear functionals on L2H(D). (The
element in L2H(D) which represents %* in terms of the scalar product is denoted by $f2,
and KD(w, z) = (#f2, #f,v> w,zeD is the Bergman function of D.)

LEMMA 1. The mapping
Dsz^>%*eL2H{D)* (7)

is holomorphic.

Proof. Set X = L2H{D)*. Since L2H(D) is reflexive we have X* = L2H(D). Now,
for every / e L2H(D) / ( ^ } = ^ =f{z)

is holomorphic as function of z. Therefore the mapping (7) satisfies condition 1° of
Theorem 2, Q.E.D.

Assume now that cp.D—*D is a holomorphic automorphism. The well-known
transformation rule for the Bergman function

can be written as
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To derive an analogous formula for %£* we introduce the operator U^,:L2H(D)*
L2H(D)* adjoint to U9. By definition, for every g* e L2H(D)* and every / e L2H(D)

(8)

For g* = Se* (8) yields

Since f e L2H(D) is arbitrary, we can write simply

dcp
v dz

Let us now make additional assumption that 0 e D is a fixed point of cp. By Theorem 2 the
functional $?* is represented for z close to 0 by the series

We can substitute (10) into the left side of (9). For z close to 0 the value cp(z) is also close
to 0, and (9) yields

2 (UUt)zk = ^T 2 8t(9(z))k. (11)
* = (*! kN) OZ k = (kl kf/)

We shall now express the right side of (11) as power series in the variable z; since the
coefficients in such expansion are uniquely determined this will yield information about
U%>8*- To this end we develop dcpldz as power series about 0, and compute formally the
right side of (11) using Theorem 3 and Theorem 4. The resulting series converges
absolutely for z close to 0, and, after reduction yields the desired power series.

Denote cp = (cpx, q>2, • • • , <PN). We are now ready for the following crucial observa-
tion. Since <p(0) = 0, the development of <p;-, j = 1,2,... ,N has no zero order terms.
Therefore for every s = 0 , 1 , 2 , . . . all terms in the development of

<p(zY = q>x(z)kxp2{z)k*...<pN{z)k», \k\>s

have order greater than s. Therefore for every multiindex m = (m1,m2,. . . ,mN) such
that \m\ ̂ s the coefficient U^g^, is equal to the coefficient at zm in the expression

f 2 8t«p(z)Y.
OZ \k\^s

It follows that U^g^,, |m|=£s belongs to the subspace H* in L2H(D)* generated by
elements gk, \k\^s. We can now state

L E M M A 2 . For every s = 0 , 1 , 2 , . . .

= H * . (12)
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Proof. We have seen already that W^H* c H*. Now (/* is a linear automorphism of
L2H(D)* (since Uv is a linear automorphism of L2H(D)). Therefore dim U^H* is equal
to the (finite) number dim//*. It follows that the inclusion is in fact an equality, Q.E.D.

Denote by n the mapping of g* eL2H(D)* onto the unique element g e L2H(D)
which represents g* in terms of the scalar product. It is well known that n is conjugate
linear and norm-preserving. It maps H* onto the subspace Hs in L2H(D) generated by
elements gk = n(gk), \k\ =£5. We can restate Lemma 2 as follows.

LEMMA 3. For every s = 0,1, 2, . . .

UVHS = HS. (13)

Proof. Set U = JtUy-ijz~\ Lemma 2 (for q?"1) implies that

UHS = H,. (14)
For every g,feL2H(D) K

(Ug,f) = {f, nU;->Jt-lg) =

(we used the fact that Uv is unitary, and U^1 = Uv-i. It follows that U = Uv and (14)
implies (13), Q.E.D.

Denote by Hs, 5 = 1,2, . . . the orthogonal complement of Hs_x in Hs. Since Uv

preserves scalar product, from Lemma 3 follows

LEMMA 4. For every 5 = 1,2, . . .

4. Proof of Theorem 1. We can assume (with no loss of generality) that 0 e D is a
fixed point for (p. Define

0 otherwise.

We shall define Es, s = 1,2, . . . as follows. If //^ =£ {0} we take for Es any othonormal
system of eigenfunctions for Uq>:Hs^'Hs which generates Hs. (Such system exists by
spectral theorem for unitary operator in a finite dimensional space.) If Hs = {0} we set
Es = 0 . Denote E = (J Es. By construction, every non zero coefficient gk can be written

5=0

as linear combination of elements in E. Note that the set of all gk is total in L2H(D)
because gk (up to a positive constant) represents the partial derivative (31*1/
Sz?1. . . SzftO|z=0. If £ = 0 then L2H{D) = {0}, contrary to the assumption. Hence £ ¥ 0
is (by construction) an orthonormal system in L2H{D). This system is complete, since it
spans a total set of all gk, Q.E.D.

5. An example: complete circular domains. A domain D <E C^ is called complete
circular (with respect to 0eCN) if for every z eD, and every AeC such that |A| =£ 1, the
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point Xz = (Xzu. . . , XzN) belongs to D. For such domains (and a — 0) Theorem 1 can be
obtained directly from the following result of H. Cartan [3], [4].

THEOREM 5. Let D g C be a complete circular domain. Then
(a) every holomorphic automorphism cp:D—*D such that <p(0) = 0 can be written as

V = (<Pu <Pi, • • • ,<PN) where

(pi(z) = anzi + . . . + aiNzN

a n d a n e C f o r i , j = 1 , 2 , . . . , N ,
( b ) homogeneous polynomials of different degrees are orthogonal in L2H(D),
(c) the set of all polynomials is dense in L2H(D).

Indeed, (a) implies that dcp/dz = const, and Uv maps the (finite dimensional)
subspace of all homogeneous polynomials of degree s onto itself. Using (b) we can
construct an orthonormal system of eigenfunctions for Uv which spans every polynomial.
This system is complete by (c). This proves Theorem 1 in the considered case. Perhaps
the interest in Theorem 1 is justified by its relation with Theorem 5.
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