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ON THE DIVERGENCE OF HERMITE-FEJER TYPE
INTERPOLATION WITH EQUIDISTANT NODES

T.M. MILLS AND SIMON J. SMITH

If f(x) is defined on [—1,1], let Hin(f, x) denote the Lagrange interpolation poly-
nomial of degree n (or less) for / which agrees with / at the n + 1 equally spaced
points Xk,n = —1 + (2k)/n (0 ^ k ^ n). A famous example due to S. Bernstein
shows that even for the simple function h(x) — \x\, the sequence H\n(h,x) di-
verges as n —» oo for each ae in 0 < |z| < 1. A generalisation of Lagrange
interpolation is the Hermite-Fejer interpolation polynomial Hmn(f,x), which is
the unique polynomial of degree no greater than m(n + 1) — 1 which satisfies
HZn(f,Xk,n) - 8o,Pf{xk,n) (0 ^ p ^ m - 1,0 < k ^ n). In general terms, if m is
an even number, the polynomials Hmn(f,x) seem to possess better convergence
properties than the H\n{f,x). Nevertheless, D.L. Berman was able to show that
for g[x) = x, the sequence H2n{g,x) diverges as n —» oo for each x in 0 < \x\. In
this paper we extend Berman's result by showing that for any even m, Hmn(g,x)
diverges as n —» oo for each x in 0 < |z| < 1. Further, we are able to obtain an
estimate for the error |i/mn(s,a:) — s(z)| .

1. INTRODUCTION

Suppose —1 S$ xo>n < xi,n < • •. < xn<n S$ 1 is an arbitrary system of interpolation
nodes. (We shall often write Xk,n as xt) Let m ^ 1 be an integer, and suppose /
is a real-valued function defined on [-1,1]. The ( 0 , 1 , . . . , m - l ) Hermite-Fejer (HF)
interpolation polynomial Hmn(f, x) for / is the unique polynomial of degree at most
m(n + 1) — 1 which satisfies the m(n + 1) conditions

(~Hmn(f,zk) = f(xk) ( f c=0 , l , . . . , n ) ,

{H(Z)
n(f,xk) = 0 (p = l , 2 , . . . , m - l ; k = 0 ,1 , . . . ,n).

Note that Hin(f,x) is the well-known Lagrange interpolation polynomial for f(x).

In 1914, Faber [4] showed that for any system of nodes, there exists a function
f(x), continuous on [—1,1], such that H\n(f,x) does not converge uniformly to
f(x) on [—1,1] as n —> oo. On the other hand, Fejer [5] showed in 1916 that if
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Xk = — cos(((2fc + l)7r)/(2n + 2)) (so the Xk are the zeros of the Chebyshev polyno-
mial Tn+i(x) = cos((n + l)arccoss)), and if / is continuous on [—1,1], then

Urn H2n(f,x) = f(x),
n—»oo

uniformly in [-1,1]. Thus (0,1) HF interpolation seems to possess better convergence
properties than Lagrange interpolation.

Fejer's result has prompted many authors to study (0 ,1 , . . . ,m — 1) HF interpo-
lation, particularly when the nodes of interpolation are the zeros of some orthogonal
polynomials (such as the Chebyshev polynomials). Much less popular has been a study
of (0 ,1 , . . . ,7n—l) HF interpolation based on the equidistant nodes

2fc
(1-1) xk,n = xk = - 1 + — (4 = 0 ,1 , . . . ,n).

n

One reason for the lack of attention paid to equidistant nodes is a result of Bernstein [2],
who showed in 1918 that if h(x) = |a;|, and the Xk are given by (1.1), then the sequence
Hin{h,x) diverges as n —» oo for each x in 0 < \x\ < 1. Thus Lagrange interpolation
on equidistant nodes diverges for a simple function such as h(x) . A quantitative version
of Bernstein's result was developed by Byrne, Mills and Smith [3], who showed that if
0 < |x| < 1, then

(1.2) l imsupi log \Hln{h,x) - h{x)\ = \ [(1 + as)log (1 + x) + (1 - s)log(l - as)].
n—»oo Tl 6

(See also Li and Mohapatra [6].)

For (0,1) HF interpolation on the equidistant nodes (1.1), Berman [1] showed in
1958 that even for g(x~) = x, the sequence H2n(g,x) diverges as n - t oo for each x

in 0 < |«c| < 1. The only results of this type for (0 ,1 , . . . , m - 1) HF interpolation
(m J5 3) that we have been able to locate in the literature are due to Mendelevic [7]. In
particular, Mendelevic showed that if m is even, the (0 ,1 , . . . , m — 1) HF interpolation
process based on the equidistant nodes yk,n — k/n (k = 1,2,... ,n) diverges for the
function

f 0 (0 <x < 1/2),
\ s - 1 / 2 ( 1 / 2 < X < 1 ) ,

on a set E C [0,1], where E has measure greater than 0.26.

In this paper we shall prove the following theorem that both generalises and quan-

tifies Berman's divergence result, and also provides a simpler example of divergence of

(0 ,1 , . . . , m — 1) HF interpolation on equidistant nodes for even m than Mendelevic's

example.
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THEOREM 1 . Suppose m ^ 2 is even, and g(x) = x. Then for each x in 0 <
\x\ < 1, the ( 0 , 1 , . . . , m - 1) Hermite-Fejer interpolation polynomials Hmn(g,x) based
on the equidistant nodes

2k
xk,n = xk = -l +— (fc = 0 , l , . . . ,n)

n

satisfy

(1.3)

lim sup - log \Hmn{g, x) - g(x)\ = ^ [(1 + x) log (1 + x) + (1 - x) log (1 - x)}.

The proof of Theorem 1 will be presented in Section 3. We note that since ±1
are interpolation nodes for all n, then g( —1) = Hmn(g,—1) and g(l) = Hmn{g,l) for
all n. Furthermore, since the equidistant nodes are distributed symmetrically about 0,
then Hmn(f,x) is an odd function whenever f(x) is odd. Hence g(0) = Hmn(g,0) = 0
for all n. Thus Theorem 1 settles the convergence behaviour of Hmn(g,x) for all x in
[—1,1]. We also point out that our proof of Theorem 1 does not readily adapt to the
case when m(^ 3) is an odd number. However, we conjecture that Theorem 1 remains
true for all such values of m. (For m = 1, Theorem 1 is false, since Hmn(g,x) = g(x),
although (by (1.2)) it does hold true if g is replaced by h(x) = \x\.)

2. PRELIMINARY RESULTS

In this section we introduce further notation and some preliminary results that will
be needed for the proof of Theorem 1.

Suppose

(2.1) - 1 ^ Zo,n < Zl,n < . . . < Xn,n ^ 1

is a system of interpolatory nodes, and let m ^ 1 be an integer. If f(x) is TO — 1 times
differentiable on [—1,1], the (0 ,1 , . . . ,m — 1) Hermite interpolation polynomial for /
is the unique polynomial Hmn(f,x) of degree m(n + 1) — 1 or less which satisfies

H%l(f, xk) = /<">(*0 (p = 0, 1, . . . . m - 1; * = 0, 1, . . . . n ) .

-ffmn(/»;c) c a n be written in the form

n m — 1

(2-2) Hmn(f,x) = £ £ p\xk)Ajk{x),
Jt=O j=0

where the polynomials Ajk{x) (more precisely, Ajkmn{x)) are the unique polynomials
of degree m[n + 1) — 1 or less which satisfy
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Note that the ( 0 , 1 , . . . ,m — 1) HF interpolation polynomial for / can be written as

n

(2.3) TT«m(f,x) = 152f{xk)Aok{x).
k=0

Now, if g(x) = x, then Hmn(g,x) = x. Hence, by (2.2),

ik{) =x

k=o fc=o

for all x in [—1,1], and so by (2.3),

(2.4) x-Hmn{g,x) =
k=o

n
Thus to prove (1.3) it will suffice to consider ^2 A\k{x).

k=o
The following formula for the Ajk{x) was developed by Szabados [8, Lemma 1].

Define

n

(2.5) wB(i) = JJ (x - xk),
Jt = O

and put

(2.6) M X ) = W B ) = ^ L

Then

(2.7)Ajk(x) = ^—(x-xkYBjk(x) (j = 0 , 1 , . . . , T I » - 1 ; k = 0 , 1 , . . . ,n),

where

(2.8)
771 — j — 1

Bjk(x) = Bjkmn{x) = ^ 6tJt(x - xky (j = 0 , 1 , . . . , m - 1; k = 0 , 1 , . . . ,n ) ,
i=0

and

(2.9) 6iA=6iAmn = , ( , , ; , , , )

We shall need the following lemma which is also due to Szabados [8, Lemmas 2 and 3].

LEMMA 1. Define

" 1
(2.10) aik = aikmn = m V -, (k = 0 , 1 , . . . ,n; i = 1,2,... ),

.=o Kx" ~ xk)
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and let Bjk(x) and bik be given by (2.8) and (2.9). Then

- i
(2.11) bik = - Y^ o-vkbi-v,k (A: = 0 , 1 , . . . ,n ; i = l , 2 , . . . ) .

Also, there exists a positive number c (depending only on j and m) so that

f T-TL. X"1-^-1

(2.12) B j h { * ) ^ - ' *

(—oo < x < oo, m — j odd, 0 ^ j ^ m — 1, O ^ f c ^ n),

with one of the signs in xk±i.

The formulas and results of this section so far are valid for an arbitrary system (2.1)
of nodes. Henceforth we shall assume that the interpolation nodes are the equidistant
nodes

2k
(2.13) Xk = -i + — (k = 0,l,...,n).

n

We now develop an upper bound for |5n(x) | which, by (2.4) and (2.7), will be useful
later when obtaining bounds for \Hmn(g,x) — x|.

LEMMA 2 . There exist constants cim (* = 0,1, ; m = l , 2 , . . . ) so that for

(2.14) |6m-fc| ^cim{nlogny (i = 0 , l , . . . ; * = 0 , 1 , . . . , n ) .

PROOF: From (2.10) and (2.13) we have

1 n 1
and so |a;*K m ( ^ ) x 2 ^ ^7 ^ mn1 ^ -^.

r=l r=l

Thus there exist constants cm (independent of n) so that

/ cmnlogn (t = l;fc = 0 , l , . . . ,n),
(2.15) O«A ^ S

\ c m n * (i = 2 , 3 , . . . ; fc = 0 , 1 , . . . ,n).

We now prove (2.14) by induction on i. Since £k(xk) = 1 for all k, (2.9) yields
bok = 1 for all Jfe, and so (2.14) holds true for i - 0 if we define cOro = 1. If (2.14)
holds true for i = 0 , 1 , . . . ,r - 1, then by (2.11) and (2.15) we have
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Cm ( r-l -A T-v\
4, — I nlogn x cr_ii7n(nlogn)r l + 2 j n " x cr_V)7n(nlogn)r " I

= —(nlogn) r cr-ltm + >r \ t
Cm r ( V1

< —(nlogn)7" cr_1)m + >

On defining

r

the lemma is established. U

COROLLARY . There exist constants dm (m = 1 , 2 , . . . ) so that for n = 2, 3 , . . . ,

(2.16) \Bik(x)\ ^ d m ( n l o g n ) m ~ 2 (A; = 0 , 1 , . . . , n ; - 1 < x < 1).

PROOF: Since |x - asjfe| ^ 2 , (2.8) gives

m-2

i=0

By Lemma 2 we then have
m-2

\Bik{x)\ ^
t=0

^ dm(nlogn)m~ ,

where «£,„='£ 2'cim . D

We consider next the polynomials ^jt(x) as defined by (2.5) and (2.6). Upon writing

(2.17) x = Xj + — =-l + -(j + 6),
n n

where 0 ^ 0 < 1, and using (2.13), we obtain

(2 is) eku)
( 2 1 8 ) £k{X>- (j+B-k)k\(n-k)\ '
where

(a) = / l {k = 0 )>

° * \ o(o + l ) . . . ( a + Jfc-l) (Jb = 1,2, . . .)-
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The following lemma will be useful in determining the behaviour of the lk(x) for large

n.

LEMMA 3 . If \x\ < 1, and x is given by (2.17) with 0 ̂  0 < 1, define

(2.19) q{x) - qn(x) = (1 + fl);(2 - ^) n _ J _ 1 •

Then

(2.20)

lim ( — log q(x) — log n = —1 — log 2 -\— [(1 +
n^oo \n J 2

PROOF: Firstly note from (2.17) that

(2-21) lim 3- =
2

and so j , n — j' —> oo as n —» oo. Now, (2.19) can be written as

^ ; r ( i + 6>) r(2 - e)

and hence, upon using the asymptotic expansion [9, page 252]

(2.22) log T(z) = (z - 0 log z - z + \ log (2TT) + 0{z~1)

as i - t o o , we obtain

- log q(x)

+ log n - 1 + O
/logn\

V n J

The lemma is then established by letting n —• oo and using (2.21). D

3. PROOF OF THE THEOREM

We now prove Theorem 1. Since Hmn(g,x) is odd, we can assume without loss of
generality that x < 0. Write x = - 1 + 2(; + 6)/n, where 0 ̂  6 < 1. By (2.4) and
(2.7) we have

n

\ x ~ I* Tnn\9ix)\ ~ / y ijH
3-)

A=0
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Now, from (2.12), Blk(x) > 0 for all x, and so

sgn [ek(x)mBlk(x)(x - xk)} = | + j {3

Therefore, on putting n' = [n/2], we obtain

(3.1) ln,{x)mBln,{x){xn, - x) - [Y^tk{x)mBlk{x)(x - xk)
\k=0

n

^ \x-Wmn{g,x)\ ^ ^4(^ ) m 5 l f c (x ) |x - xk\.
Jt=O

We work firstly with the right hand side of (3.1). Since \x — xk\ ^ 2, and

k\(n - k)\ ^ (n')\(n - ri)\, we have from (2.16) and (2.18),

Now (tf(l - 6))/{\j + 6- k\)^l for aU k, and so

Thus, with q(x) given by (2.19), we have

From (2.22) it follows that

(3.3) - log ((n')\(n - n')\) = logn - log 2 - 1 + O ) .
n \ n )

Hence, by (2.20), we can conclude from (3.2) that

(3.4) Kmsup- log |x-¥ m n ( s ,a ! ) | ^ ^ [(1 + a)log (1 + x) + (1 - x)log(l - x)].

Next consider the summation term on the left hand side of (3.1). Since lim j/n =
n—»oo

(1 + x)/2 < 1/2, there exists a number a < 1/2 so that j < an for all n large enough.
Then, because k\(n - A;)! = T(k + 1) T(n - k + 1) > T{an + 1) T((l - a)n + 1) for 0 <
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k ^ j , we have (as with the derivation of (3.2)),

- l o g
n Jb=o

}

rnrn
n l o g

q{x) \ (logn\

By (2.22) we can write

1 log (r(an + 1) r((l - a)n + 1)) = log n + log (aQ(l - a)1'") -l + O (l^Jl) ,
n \ / \ n )

and so by (2.20) we have

(3.5)
1 ( 'limsup-log I V]£i(a;)'n5ijt(2)(x - xk)

"^°° n \k=o

j [(1 + x) log ( 1 + as) + (1 - x) log (1 - x)] + km,

where k = - log 2 - log ( a a ( l - a ) 1 " " ) < 0 .

It remains to consider the expression £ni(x)mBini{x)(xni — x) on the left hand side

of (3.1). Because \xn, - xn,±1\ = 2/n, (2.12) gives

Bln,(x) > c ( ; ) m ~ 2 (xn, - x ) m " 2 = c(n' - j - ,

where c depends only on m. Thus

M.r*„<.)(...')> n{nl_)_e) ( j ^

By Berman [1, Lemma 1] for each x there exists an increasing sequence {kn}^=1 of
positive integers, and a number a(x) with 0 < a(x) < 1/2, such that if we write

where 0 ^ 6 < 1, then a(x) $̂  <? ^ 1 — a(x) for all n. Hence we can assume 6(1 — 8)
has a positive lower bound, and then, on using n' — j — 6 ^ n, (3.6) can be written in
the form

where c' depends only on m. By (2.20) and (3.3) we can conclude that

(3-7)

lim sup - log (in,(x)mBlnl(x)(xn, -x))>^ [(1 + x) log (1 + x) + (1 - x) log (1 - i)] -
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To complete the proof of Theorem 1, we observe that the estimates (3.5) and (3.7)
for the terms on the left hand side of (3.1) yield

1 rrrt

(3.8) lim sup - log \x - ~Hmn(g, x)\ ^ — [(1 + x) log (1 + as) + (1 - x) log (1 - x)].

The required statement (1.3) then follows from (3.4) and (3.8).
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