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A CONVERGENCE PROPERTY OF DUBINS'
REPRESENTATION OF DISTRIBUTIONS

SHEY SmuNG SHEU

Let (<Xn)n>i be a sequence of random variables with zero means and uniformly bounded
variences. Let rn be the stopping time defined on a given Brownian motion (£t)t>o>
Bo = 0, by Dubins' method such that B(rn) has the same distribution as Xn . We prove
that Xn converging to 0 in distribution implies that rn converges to 0 in probability.
Examples are presented to illustrate the result is the best possible.

1. INTRODUCTION

This is an extension of my paper (Sheu [7]) which dealt with problems related to the
Skorohod representation (Skorohod [8]). More specifically, one is seeking a propability
space supporting a Brownian motion (Bt)t^0 starting at the origin and a stopping time
T so that BT will be distributed according to a given distribution (or random variable).
Special interest is focussed on whether such r can be required to depend only on
Brownian paths without furhter randomisation (see Root [6], Dubins [4], Chacon and
Walsh [3], Azema and Yor [1], Bass [2], Vallois [9], etcetera).

For convenience, we use the notation BT ~ X to mean BT and X have the
same distribution and say BT represents X. In an investigation of Root's method
of representation, Loynes [5] posed a problem of convergence. He asked whether the
stopping time T depends on the distribution of X continuously in a certain sense. In
fact, he showed that if (Xn) is a sequence of random variables with zero means and
uniformly bounded variences and if Xn converges in distribution, then the stopping time
Tn constructed by Roots' method, BTn ~ Xn, converges in probability. Motivated by
his results, we shall answer the same question for the Dubins method of representation
in this paper.

2. MAIN RESULTS

The Dubins method can be described as follows (Dubins [4]). Let fi be a distribu-
tion on the real line with finite expectation Efi, let (JL+ and fi~ denote the conditional
distribution of fj. given [En, oo) and (—oo, Efi), respectively. If /u is degenerate, set
(i+ = fi~ — yL. For any set K of n-tuples, let (m;K) be the set of (n + l)-tuples of
the form (m, x), x e K. Now introduce for each fi and each n ^ 1, a finite set of
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n— -tuples of real numbers Hn(n) as follows: H\{ii) = {En}, Kn(f*) = Hn(fi
+) U

Hn(n~), Hn+i(n) = (En;Kn(fi)). Let {Bt)t>0 be a given Brownian motion, Bo = 0,
and (i a distribution with finite expectation Efi. The Dubins stopping time T is defined
to be the least t such that for all n ̂  1, there is an n-tuple t\ ^ t2 < . . . < tn < t for
which ( 5 t l , 5 t 2 , . . -,Btn) £ Hn{n). Dubins showed that BT is distributed according
to fj. and if Efj. — 0, then E(T) — J^0^ x2 dfi. Turning to the question of convergence,
we have

THEOREM 1. Let (Xn)n^j be a sequence of random variables with zero means

and uniformly bounded variances. Let rn be the Dubins stopping time for representing

Xn , BTn ~ Xn , n ̂  1. Then Xn converging to 0 in distribution implies rn converges

to 0 in probability.

PROOF: Let fin be the distribution of Xn, n ̂  1, and let

Ta =inf{* > 0 : Bt = a}.

Since Xn converges to 0 in distribution and E(X%) is uniformly bounded, we conclude
E\Xn\ - » 0 ; that is

E(X+) -» 0 and E(X~) -> 0.

Given e > 0, choose 6 > 0 so that P(Te ^ f) < f • Then there exists an N = iV(e)
such that , if n ̂  JV, either

E/J.+ = E(X+)/P{0 ^Xn<oo)^S

or

En' = E(X-)/P(-oo <Xn<0)^6.

By Dubins' construction, we see

rn < inf{t ^ 0: Bt = 0, B4 = 8, some 5 < /}

or
rn < inf{< ^ 0: Bt = 0, B. = -6, some s < <}.

By the strong Markov property of Brownian motion, we have P(rn ^ e) < 2P(Te ^ | )
< e. That is, r n converges to 0 in probability. |

The following examples indicate the result obtained is the best possible.

Example 1. Let P{Xn = 0) = 1 - 1 , P(Xn = n) = P(Xn = -n ) = £ . Then
•E(Xn) = 0, -E -̂X )̂ = 2n. By computation, ^^t+ = ^ T , Efi~ = —n. Clearly,
Xn converges to 0 in distribution but rn does not. This example shows that the
assumption of uniformly bounded variances can not be omitted.
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Example 2. Let P(Xn = &±±) = ± , P(Xn = - I ) = §, P{Xn) = =2=±I = & and

let i>(X = 3) = i , P ( X = 0) = I , P(JT = - 2 ) = A . Then £ ( X ) = £?(*„) = 0,

J3(-X£) < " . By computation, fi* , fi~+ , (i~~ are degenerate and E/J.% — 3n*1 —> 3 ,

^M» = ^ ^ - - f , - E ^ + = - £ -> 0, £ ^ - = ^ ^ -» " 2 - Also, M", M
+ + ,

(j,+- are degenerate and ^/x+ = f, £/x~ = - 2 , E/J,++ = 3 , £^t— = 0. Therefore,

Xn converges to X in distribution but the Dubins stopping time, rn, BTn ~ Xn,

does not converge to r in probability, where BT ~ X. This example shows that the

assumption that the limiting distribution of Xn is degenerate can not be omitted.
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