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ALTERNATIVE POLARIZATIONS
OF BOREL FIXED IDEALS

KOHJI YANAGAWA

Abstract. For a monomial ideal I of a polynomial ring S, a polarization of

I is a square-free monomial ideal J of a larger polynomial ring S̃ such that

S/I is a quotient of S̃/J by a (linear) regular sequence. We show that a Borel

fixed ideal admits a nonstandard polarization. For example, while the usual

polarization sends xy2 ∈ S to x1y1y2 ∈ S̃, ours sends it to x1y2y3. Using this

idea, we recover/refine the results on square-free operation in the shifting theory

of simplicial complexes. The present paper generalizes a result of Nagel and
Reiner, although our approach is very different.

§1. Introduction

Let both S := k[x1, . . . , xn] and S̃ := k[xi,j | 1 ≤ i ≤ n,1 ≤ j ≤ d] be poly-
nomial rings over a field k. Any monomial m ∈ S has a unique expression

(1.1) m =
e∏

i=1

xαi with 1 ≤ α1 ≤ α2 ≤ · · · ≤ αe ≤ n.

If deg(m)(= e) ≤ d, we set

(1.2) b-pol(m) =
e∏

i=1

xαi,i ∈ S̃.

Note that b-pol(m) is a square-free monomial. For a monomial ideal I ⊂ S,
G(I) denotes the set of minimal (monomial) generators of I . If deg(m) ≤ d

for all m ∈ G(I), we set

b-pol(I) :=
(
b-pol(m)

∣∣ m ∈ G(I)
)

⊂ S̃.

In Theorem 3.4, we will show that if I is Borel fixed (i.e., m ∈ I , xi|m,
and j < i imply that (xj/xi) · m ∈ I), then J := b-pol(I) is a polarization
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80 K. YANAGAWA

of I ; that is, Θ := {xi,1 − xi,j | 1 ≤ i ≤ n,2 ≤ j ≤ d} ⊂ S̃ forms an S̃/J -
regular sequence with the canonical isomorphism S̃/(J + (Θ)) ∼= S/I . For
general monomial ideals, the corresponding statement is not true. Even for a
Borel fixed ideal, b-pol is essentially different from the standard polarization
(see Example 2.3). Recall that Borel fixed ideals play an important role in
Gröbner basis theory and many related areas, since they appear as the
generic initial ideals of homogeneous ideals (see [5, Section 15.9]).

The idea of b-pol(I) first appeared in Nagel and Reiner [10], although
they did not give a specific name to this construction. Among other things,
under the additional assumption that all elements of G(I) have the same
degree, they have shown the above result (it is not directly stated there,
but follows from [10, Theorem 3.13]). Inspired by this, Lohne [8] undertakes
a study of all possible polarizations of certain monomial ideals. He calls
b-pol(I) the box polarization, since combinatorial objects called “boxes” are
used in [10]. While the name “box” is no longer natural in our case, we use
the symbol b-pol.

To prove Theorem 3.4, we show that S̃/J has a pretty clean filtration
introduced by Herzog and Popescu [6] and is sequentially Cohen-Macaulay.
Moreover, since J is square-free, the simplicial complex associated with S̃/J

is nonpure shellable in the sense of Björner and Wachs [3].
Inspired by Kalai’s theory on the algebraic shifting of simplicial complexes

(see [7]), Aramova, Herzog, and Hibi [2] introduced the operation sending a
monomial m ∈ S of (1.1) to the square-free monomial

mσ :=
e∏

i=1

xαi+i−1

in a polynomial ring T := k[x1, . . . , xN ] with N � 0. If I ⊂ S is a Borel
fixed monomial ideal, we can define the square-free monomial ideal Iσ ⊂ T

in the natural way. (This construction works for general monomial ideals,
but is important for Borel fixed ideals.) This operation has the remarkable
property that βS

i,j(I) = βT
i,j(I

σ) for all i, j, as shown in [2]. Here βi,j(−)
denotes the graded Betti number, as usual.

In Section 4, we will study Iσ through our polarization J := b-pol(I).
In fact, Θ1 := {xi,j − xi+1,j−1 | 1 ≤ i < n,1 < j ≤ d} also forms an S̃/J -
regular sequence, and we have S̃/(J + (Θ1)) ∼= T/Iσ (if we set the number
N of the variables of T to be n + d − 1). Hence, we get a new proof of
the equation βS

i,j(I) = βT
i,j(I

σ). Moreover, we have βT
i,j(Extk

T (T/Iσ, T )) =
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βS
i,j(Extk

S(S/I,S)) for all i, j, k. Murai ([9]) has generalized the operation
(−)σ so that the equations on the Betti numbers remain true. We can also
understand his operation using b-pol. In fact, it is enough to change an
S̃/J -regular sequence Θ′ ⊂ S̃.

§2. Preparation

We introduce the conventions and notation used throughout the paper.
Let S = k[x1, . . . , xn] be a polynomial ring over a field k. The ith coordinate
of a ∈ N

n is denoted by ai (i.e., we change the font). For a ∈ N
n, xa denotes

the monomial
∏n

i=1 xai
i ∈ S. For a monomial m := xa, set deg(m) :=

∑n
i=1 ai,

and set degi(m) := ai. We define the order � on N
n so that a � b if ai ≥ bi

for all i. We refer to [4] and [5] for unexplained terminology.
Take d ∈ N

n with di ≥ 1 for all i, and set

S̃ := k[xi,j | 1 ≤ i ≤ n,1 ≤ j ≤ di].

Note that
Θ := {xi,1 − xi,j | 1 ≤ i ≤ n,2 ≤ j ≤ di} ⊂ S̃

forms a regular sequence with S̃/(Θ) ∼= S. Here the isomorphism is induced
by the ring homomorphism φ : S̃ → S with φ(xi,j) = xi. Throughout this
paper, S̃ and Θ are used in this meaning, while the choice of d ∈ N

n depends
on the context.

Definition 2.1. For a monomial ideal I ⊂ S, a polarization of I is a
square-free monomial ideal J ⊂ S̃ satisfying the following conditions.
(i) Through the isomorphism S → S̃/(Θ), we have S̃/(Θ) ⊗

S̃
S̃/J ∼= S/I .

(ii) Θ forms an S̃/J -regular sequence.

Clearly, condition (i) holds if and only if φ(J) = I . The following is a
well-known fact, and a proof is found in [10, Lemma 6.9].

Lemma 2.2 (see [10, Lemma 6.9]). Let I and J be monomial ideals of S

and S̃, respectively. Assume that Definition 2.1(i) is satisfied. Then condi-
tion (ii) is equivalent to the following:
(ii′)

βS̃
i,j(J) = βS

i,j(I) for all i, j.

While the proof in [10] concerns only the case #Θ = 1, it works in the gen-
eral case. If Θ does not form an S̃/J -regular sequence, the relation between
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βS̃
i,j(J) and βS

i,j(I) is not simple. So it is better to compare the Hilbert series
of S̃/J with that of S/I (recall that the Hilbert series is determined by the
Betti numbers).

For a monomial xa with a � d, set

pol(xa) :=
∏

1≤i≤n

xi,1xi,2 · · · xi,ai ∈ S̃.

Let I ⊂ S be a monomial ideal with a � d for all xa ∈ G(I). Here G(I)
denotes the set of minimal (monomial) generators of I . Then it is well
known that

pol(I) =
(
pol(xa)

∣∣ xa ∈ G(I)
)

gives a polarization of I , which is called the standard polarization. (If the
reader is nervous about the choice of d ∈ N

n, take it so that xd is the
least common multiple of the minimal generators of I . For the properties
considered in this paper, the choice of d is not essential.) While all monomial
ideals have the standard polarizations, some have alternative ones.

Let d be a positive integer, and set

(2.1) S̃ := k[xi,j | 1 ≤ i ≤ n,1 ≤ j ≤ d].

For a monomial xa ∈ S with e := deg(xa) ≤ d, set bi :=
∑i

j=1 aj for each
i ≥ 0 (here b0 = 0), and set

b-pol(xa) :=
∏

1≤i≤n
bi−1+1≤j≤bi

xi,j ∈ S̃.

If ai = 0, then bi−1 = bi and xi,j does not divide b-pol(xa) for all j. If
m = xa ∈ S is the monomial of (1.1), then we have bi = max{j | αj ≤ i}, and
the above definition of b-pol(xa) coincides with the one given in (1.2).

Let I ⊂ S be a monomial ideal with deg(xa) ≤ d for all xa ∈ G(I). Set

b-pol(I) :=
(
b-pol(xa)

∣∣ xa ∈ G(I)
)

⊂ S̃.

Occasionally, this ideal gives a polarization of I . Note that Definition 2.1(i)
is always satisfied, and the problem is condition (ii).

In the remainder of this article, when we treat b-pol(I), we assume that
S̃ is the one in (2.1) and that deg(m) ≤ d for all m ∈ G(I).

https://doi.org/10.1017/S0027763000022315 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022315


ALTERNATIVE POLARIZATIONS OF BOREL FIXED IDEALS 83

Example 2.3. (1) For I = (x2, xy,xz, y2, yz) ⊂ k[x, y, z], we have

b-pol(I) = (x1x2, x1y2, x1z2, y1y2, y1z2),

and it gives a polarization. In fact, since I is Borel fixed, we can use Theo-
rem 3.4 below. It is essentially different from the standard polarization

pol(I) = (x1x2, x1y1, x1z1, y1y2, y1z1).

More precisely, b-pol(I) and pol(I) are different even after permutation of
variables.

(2) In general, b-pol(I) does not give a polarization. For example, if I =
(xyz,x2y,xy2, x3), then b-pol(I) = (x1y2z3, x1x2y3, x1y2y3, x1x2x3), and it
is not a polarization. To see this, use Lemma 2.2. Note that I is a stable
monomial ideal, and Borel fixed ideals are nothing other than strongly stable
monomial ideals (see [1] for the definitions).

Definition 2.4. We say that a polarization J of I is faithful if Θ forms
an Exti

S̃
(S̃/J, S̃)-regular sequence for all i.

If a polarization J of I is faithful, then we have

S̃/(Θ) ⊗
S̃

Exti
S̃
(S̃/J, S̃) ∼= Exti

S(S/I,S).

In fact, the long exact sequences of Ext•
S̃
(−, S̃) yield

S̃/(Θ) ⊗
S̃

Exti
S̃
(S̃/J, S̃) ∼= Exti+(#Θ)

S̃

(
S̃/(J + (Θ)), S̃

)
.

Since Θ ⊂ S̃ forms an S̃-regular sequence with S̃/(J + (Θ)) ∼= S/I , we have

Exti+(#Θ)

S̃

(
S̃/(J + (Θ)), S̃

) ∼= Exti
S(S/I,S).

Hence, if J is faithful, Exti
S(S/I,S) and Exti

S̃
(S̃/J, S̃) have the same

degree and Betti numbers. So S/I and S̃/J have the same arithmetic degree
in this case.

Remark 2.5. For any I , the standard polarization is always faithful by
[11, Corollary 4.10] (see also [13, Theorem 4.4]). It is an easy exercise to
show that if S/I is Cohen-Macaulay, then any polarization of I is faithful.
In Lemma 2.8 below, we will generalize this fact.
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Example 2.6. For the ideal I := (x2y,x2z,xyz,xz2, y3, y2z, yz2) of S :=
k[x, y, z], J := b-pol(I) ⊂ S̃ gives a polarization. (To see this, compute the
Betti numbers.) However, degExt3S(S/I,S) = 6 and degExt3

S̃
(S̃/J, S̃) = 5.

Hence, J is not faithful.

Let M be a finitely generated S-module. We say that M is sequentially
Cohen-Macaulay if Extn−i

S (M,S) is either a Cohen-Macaulay module of
dimension i or the 0-module for all i. The original definition is given by
the existence of a certain filtration (see [12, III, Definition 2.9]); however, it
is equivalent to the above by [12, III, Theorem 2.11].

Lemma 2.7. Let M be a sequentially Cohen-Macaulay S-module, and let
y ∈ S be a nonzero divisor of M . Then y is a nonzero divisor of Exti

S(M,S)
for all i, and M/yM is a sequentially Cohen-Macaulay module with

Exti+1
S (M/yM,S) ∼= Exti

S(M,S)/y · Exti
S(M,S).

Moreover, we have

Ass(M/yM)

=
{
p

∣∣ p is a minimal prime of p′ + (y) for some p′ ∈ Ass(M)
}
.

If y ∈ S1, and all associated primes of M are generated by elements in S1,
then

Ass(M/yM) =
{
p′ + (y)

∣∣ p′ ∈ Ass(M)
}
.

To prove this lemma, recall the following basic properties of a finitely
generated module N over S (see [4, Theorem 8.1.1]):

(1) dimS(Exti
S(N,S)) ≤ n − i for all i;

(2) for a prime ideal p ⊂ S of codimension c, p ∈ Ass(N) if and only if p is
an associated (equivalently, minimal) prime of Extc

S(N,S).

Proof. By the above remark, we have Ass(M) =
⋃

i Ass(Exti
S(M,S)).

Hence, the first half of the lemma is easy. To see the next assertion, let
p ⊂ S be a prime ideal of codimension c. Then we have

p ∈ Ass(M/yM) ⇐⇒ pSp ∈ AssSp

(
Extc

S(M/yM,S) ⊗S Sp

)

⇐⇒ dimSp

(
Extc−1

S (M,S) ⊗S Sp

)
= n − c + 1 and y ∈ p

⇐⇒ ∃p′ ∈ Ass
(
Extc−1

S (M,S)
)

with codimp′ = c − 1,
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p′ ⊂ p, and y ∈ p

⇐⇒ ∃p′ ∈ Ass(M) with codimp′ = c − 1,p′ ⊂ p, and y ∈ p

⇐⇒ ∃p′ ∈ Ass(M) such that p is a minimal prime of

p′ + (y).

The last assertion of the lemma is clear now, since p′ + (y) is a prime ideal
for all p′ ∈ Ass(M) in this case.

Lemma 2.8. Let J be a polarization of I. If S̃/J is sequentially Cohen-
Macaulay, then so is S/I, and J is faithful.

Proof. This follows from the first assertion of Lemma 2.7.

Remark 2.9. Even if S/I is sequentially Cohen-Macaulay, a polarization
J is not necessarily faithful. In fact, S/I of Example 2.6 is sequentially
Cohen-Macaulay.

Definition 2.10. Let M be an S-module, and let

F : 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mt = M

be a prime filtration; that is, there is a prime ideal pi such that Mi/Mi−1
∼=

S/pi for each 1 ≤ i ≤ t. Herzog and Popescu [6] call the filtration F pretty
clean if i < j and pi ⊆ pj imply that pi = pj .

For example, if codimpi ≥ codimpj for all i, j with i < j, then F is pretty
clean. By [6, Theorem 4.1, Corollary 3.4], if M admits a pretty clean filtra-
tion F , then M is sequentially Cohen-Macaulay and AssM = {pi | 1 ≤ i ≤ t}.

§3. Main results

We say that a monomial ideal I is Borel fixed if m ∈ I , xi|m, and j < i

imply that (xj/xi) · m ∈ I . If char(k) > 0, this terminology is unnatural (see
[5, Section 15.9.2] for details), and the terms 0-Borel fixed ideals or strongly
stable monomial ideals are also used in the literature. However, we will call
it a Borel fixed ideal for simplicity.

For a monomial m ∈ S, set

ν(m) := max{i | xi divides m}.

Similarly, for a monomial ideal I ⊂ S, set ν(I) := max{ν(m) | m ∈ G(I)}.
If I is Borel fixed, it is well known that ν(I) = proj.dimS(S/I) (see [5,
Corollary 15.25]), although we do not use this fact.
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Lemma 3.1. If I is a Borel fixed ideal (with deg(m) ≤ d for all m ∈ G(I)),
then

b-pol(I) =
(
b-pol(m)

∣∣ m ∈ I with deg(m) ≤ d
)
.

Proof. Since the inclusion “⊆” is clear, it suffices to show the converse.
For the contrary, assume that there is some m ∈ I with deg(m) ≤ d and
b-pol(m) /∈ b-pol(I). Take m so that it has the smallest degree among these
monomials. It is clear that m /∈ G(I). Hence, there is some i with xi|m and
m′ := m/xi ∈ I . Set l := ν(m). Since I is Borel fixed, we have m′ ′ := m/xl =
(xi/xl) · m′ ∈ I . Since deg(m′ ′) < deg(m) =: e, we have b-pol(m′ ′) ∈ b-pol(I).
Hence, b-pol(m) = xl,e · b-pol(m′ ′) ∈ b-pol(I). This is a contradiction.

As shown in [6, Proposition 5.2], the quotient S/I of a Borel fixed ideal
I has a pretty clean filtration. The next result states that the same is true
for J := b-pol(I). Moreover, since J is a radical ideal, S̃/J actually admits
a clean filtration by [6, Corollary 3.5]. Hence, the simplicial complex asso-
ciated with J is nonpure shellable.

Theorem 3.2. Let I be a Borel fixed ideal, and set J := b-pol(I). Then
S̃/J has a pretty clean filtration; in particular, S̃/J is sequentially Cohen-
Macaulay.

Proof. Set l := ν(I). Then {m ∈ G(I) | ν(m) = l} is nonempty. Let m be
the maximum element of this set with respect to the lexicographic order. If
m = xl, then I (resp., J) is a prime ideal (x1, . . . , xl) (resp., (x1,1, x2,1, . . . ,

xl,1)) and there is nothing to prove. So we may assume that m �= xl, and we
set m1 := m/xl. Since m ∈ G(I), we have m1 /∈ I .

Claim 1. The ideal I1 := I + (m1) is Borel fixed.

Proof of Claim 1. It suffices to show that xi|m1 and j < i imply that
(xj/xi) · m1 ∈ I . Note that m′ := xl · (xj/xi) · m1 = (xj/xi) · m ∈ I and m′ > m

with respect to the lexicographic order. From our choice of m, we have
m′ /∈ G(I). Hence, there is some k such that xk |m′ and m′/xk ∈ I . If k = l,
then we have (xj/xi) · m1 = m′/xk ∈ I . So we may assume that k �= l and
ν(m′/xk) = l. Since I is Borel fixed, we have (xj/xi) · m1 = m′/xl = (xk/xl) ·
(m′/xk) ∈ I .

If m1 =
∏l

i=1 xai
i , then

n := b-pol(m1) =
∏

1≤i≤l
bi−1+1≤j≤bi

xi,j ,
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where bi :=
∑i

j=1 aj for each i ≥ 0 (here b0 = 0). Note that bl = deg(m1) =
deg(n).

Claim 2. With the above notation, we have J : n = (xi,bi+1 | 1 ≤ i ≤ l).

Proof of Claim 2. First we prove that xi,bi+1 · n ∈ J for 1 ≤ i ≤ l. Note
that xi · m1 = (xi/xl) · m ∈ I . Since deg(xi · m1) = deg(m) ≤ d, we have
b-pol(xi · m1) ∈ J by Lemma 3.1. If ν(m1) ≤ i, then we have bi = deg(n)
and xi,bi+1 · n = b-pol(xi · m1) ∈ J . Hence, we may assume that ν(m1) > i,
and we can take k := min{j | aj > 0, j > i}. Since m′ := (xi/xk) · m1 is in
I by Claim 1, we have b-pol(m′) ∈ J by Lemma 3.1. Hence, xi,bi+1 · n =
xk,bi+1 · b-pol(m′) ∈ J .

Next we prove that J : n ⊆ (xi,bi+1 | 1 ≤ i ≤ l). For the contrary, assume
that there is a monomial n′ ∈ S̃ \ (xi,bi+1 | 1 ≤ i ≤ l) satisfying n′ · n ∈ J . Then
there is a monomial m′ ′ =

∏
xci

i ∈ G(I) such that b-pol(m′ ′) divides n′ · n. By
the present assumption, we have that b-pol(m′ ′) /∈ (xi,bi+1 | 1 ≤ i ≤ l). Under
this assumption, we have the following.

Claim 2.1. Set di :=
∑i

j=1 cj . Then bi ≥ di for all i.

The above fact completes the proof of Claim 2. To see this, take the
expression m1 :=

∏e
i=1 xαi as in (1.1), where e = deg(m1). We have e = bl ≥

dl = deg(m′ ′) =: f . Moreover, since I is Borel fixed and bi ≥ di for all i, m′ ′ ∈
I implies that

∏f
i=1 xαi ∈ I . It follows that m1 ∈ I , which is a contradiction.

Proof of Claim 2.1. Clearly, b0 = d0 = 0. Hence, if the claim does not
hold, there is some i ≥ 1 such that (bi ≥)bi−1 ≥ di−1 and bi < di. Note that
xi,j divides b-pol(m′ ′) if and only if di−1 + 1 ≤ j ≤ di. Hence, under the
present assumption, xi,bi+1 divides b-pol(m′ ′). This is a contradiction.

Continuation of the proof of Theorem 3.2. Set J1 := J + (n), and set p :=
(xi,bi+1 | 1 ≤ i ≤ l). Then J1/J ∼= (S̃/p) up to degree shift, and b-pol(I1) =
J1. If I1 is not a prime ideal, applying the above argument to I1, we get a
Borel fixed ideal I2(⊃ I1) such that b-pol(I2)/J1 satisfies the similar property
to J1/J . Repeating this procedure, we have a sequence of Borel fixed ideals

I = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ It

of S such that Ji := b-pol(Ii) satisfies Ji/Ji−1
∼= S̃/pi up to degree shift for

all i ≥ 1. Here pi ⊂ S̃ is a prime ideal of the form (xj,ci,j | 1 ≤ j ≤ li) for
some li, ci,j ∈ N. By the Noetherian property of S, the procedure eventually
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terminates; that is, It will become a prime ideal. In this case, Jt = b-pol(It)
is also a prime ideal, and we have a prime filtration

0 ⊂ J1/J ⊂ J2/J ⊂ · · · ⊂ Jt/J ⊂ S̃/J.

This is a pretty clean filtration. In fact, ν(I1) ≤ ν(I) by the construction.
Similarly, ν(Ij) ≤ ν(Ii) holds for all i, j with j ≥ i. On the other hand, we
have codimpi = li = ν(Ii). Hence, codimpj ≤ codimpi for all j ≥ i. Now
recall the remark after Definition 2.10.

Remark 3.3. By the above proof, we see that any associated prime of J

is of the form (xi,ci | 1 ≤ i ≤ m) for some m,ci ∈ N with c1 ≤ c2 ≤ · · · ≤ cm.

Theorem 3.4. If I ⊂ S is a Borel fixed ideal, then J := b-pol(I) gives a
polarization of I, which is faithful.

Proof. To see that J is a polarization, it suffices to show that Θ forms
an S̃/J -regular sequence. So, assuming that a subset Θ′ of Θ forms an
S̃/J -regular sequence, we show that Θ′ ∪ {xi,1 − xi,j } is also an S̃/J -regular
sequence for xi,1 − xi,j ∈ Θ \ Θ′. Since S̃/J is sequentially Cohen-Macaulay
and Θ′ is assumed to be a regular sequence, S̃/(J +(Θ′)) is also sequentially
Cohen-Macaulay and

AssS

(
S̃/(J + (Θ′))

)
=

{
p + (Θ′)

∣∣ p ∈ Ass(S̃/J)
}

by the repeated use of Lemma 2.7. Since all p ∈ Ass(S̃/J) are of the form
(xk,ck

| 1 ≤ k ≤ m), xi,1 − xi,j is S̃/(J + (Θ′))-regular.
The faithfulness follows from Lemma 2.8.

Murai told us that Theorem 3.4 can be shown by using his [9, Proposi-
tion 1.9]. We will explain this idea in Remark 4.3 below, since it requires
(generalized) square-free operations introduced in the next section.

However, this second proof does not give a pretty clean filtration of
S̃/b-pol(I) (equivalently, the nonpure shellability of the associated simpli-
cial complex) and the following generalization of Theorem 3.4. Moreover,
in the next section, we will show a new proof of [9, Proposition 1.9] using
b-pol(I) and give a new perspective to the square-free operations.

Theorem 3.5. Let A be a subset of {1,2, . . . , n}. For a monomial m =
xa ∈ S, set mA :=

∏
i∈A xai

i , m−A :=
∏

i/∈A xai
i , and

b-polA(m) := b-pol(mA) · pol(m−A) ∈ S̃.
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(We set S̃ := k[xi,j | 1 ≤ i ≤ n,1 ≤ j ≤ d], where d := max{deg(m) | m ∈
G(I)}.) If I is Borel fixed, then S̃/b-polA(I) has a pretty clean filtration,
where

b-polA(I) :=
(
b-polA(m)

∣∣ m ∈ G(I)
)
.

Moreover, b-polA(I) gives a faithful polarization of I.

By the above theorem, we see that Borel fixed ideals have many alterna-
tive polarizations.

Lemma 3.6. In the situation of Theorem 3.5, we have

b-polA(I) =
(
b-polA(m)

∣∣ m ∈ I with deg(m) ≤ d
)
.

Clearly, this is a generalization of Lemma 3.1.

Proof. It suffices to prove “⊇”. Set J := b-polA(I). For the contrary,
assume that there is some m = xa ∈ I with deg(m) ≤ d and b-polA(m) /∈ J .
Since m /∈ G(I), there is some i with xi|m and m′ := m/xi ∈ I . If i /∈ A, then
it is easy to see that b-polA(m) = xi,ai · b-polA(m′) ∈ J . Hence, we have i ∈ A.
If we replace ν(m) by νA(m) := max{i ∈ A | ai > 0}, the last part of the proof
of Lemma 3.1 works verbatim, except that b-polA(m) = xνA(m),f · b-polA(m′ ′)
with f :=

∑
i∈A ai.

Proof of Theorem 3.5. For the former assertion, we imitate the proof of
Theorem 3.2. First, take the same m ∈ S̃ as in the proof of Theorem 3.2.
(Here ν(m) = ν(I) =: l, and νA(I) is not used.) As shown in Claim 1 of the
original proof, I + (m1) is Borel fixed.

For the statement corresponding to Claim 2, we need modification. If
m �= xl, set m1 := m/xl =

∏n
i=1 xai , and set n = b-polA(m1). For each i ∈ A,

set
bi :=

∑
j∈A,j≤i

aj .

Next, we will show that J : n = p, where

p := (xi,bi+1 | i ∈ A, i ≤ l) + (xi,ai+1 | i /∈ A, i ≤ l).

Note that xi · m1 = (xi/xl) · m ∈ I for i ≤ l. If i /∈ A, then we have xi,ai+1 ·
n = b-polA(xi · m1) ∈ J . If i ∈ A, then we can show that xi,bi+1 · n ∈ J by a
similar argument to the proof of Claim 2, while we have to replace min{j |
aj > 0, j > i} by min{j ∈ A | aj > 0, j > i}. Hence, we have J : n ⊃ p.
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To prove the converse, assume that a monomial n′ ∈ S̃ satisfies n′ · n ∈ J .
Then there is a monomial m′ ′ ∈ G(I) such that b-polA(m′ ′) divides n′ · n.
If n′ /∈ (xi,ai+1 | i /∈ A, i ≤ l), then b-polA(m′ ′) /∈ (xi,ai+1 | i /∈ A, i ≤ l) also. It
means that degi(m′ ′) ≤ ai = degi(m1) for all i /∈ A. Now, concentrating our
attention to the variables xi with i ∈ A and i ≤ l, we can use the proof of
Claim 2 (almost) verbatim, and we see that the assumption n′ /∈ p implies
that m1 ∈ I . This is a contradiction.

Hence, we have J : n = p, and a pretty clean filtration can be constructed
as in (the final step of) the proof of Theorem 3.2.

The above argument shows that any associated prime of S̃/b-pol(I) is of
the form (xi,ci | 1 ≤ i ≤ m) (but we lose the relation c1 ≤ c2 ≤ · · · ≤ cm here).
Hence, by an argument similar to the proof of Theorem 3.4, we can show
that J is a faithful polarization.

§4. Application to square-free operation

Throughout this section, let {ai}i∈N be a nondecreasing sequence of non-
negative integers. We also assume that a0 = 0 for convenience.

Let T = k[x1, . . . , xN ] be a polynomial ring with N � 0. For a monomial
m ∈ S = k[x1, . . . , xn], take the expression m =

∏e
i=1 xαi as (1.1). Murai [9]

defined the operation (−)σ(a) which sends m to

mσ(a) :=
e∏

i=1

xαi+ai−1 ∈ T.

For a monomial ideal I ⊂ S, he also set

Iσ(a) :=
(
mσ(a)

∣∣ m ∈ G(I)
)

⊂ T.

(In [9], the symbol “αa” is used for this operation. However, we change the
notation, since the letter α has been used already.)

If ai+1 > ai for all i, then mσ(a) is a square-free monomial. In particular,
if ai = i for all i, then (−)σ(a) coincides with the square-free operation (−)σ,
which plays an important role in the construction of the symmetric shifting
of a simplicial complex (see [2]; see also [7] for the original form of the
shifting theory).

Let La be the linear subspace of S1 spanned by

Xa := {xi,j − xi′,j′ | i + aj−1 = i′ + aj′ −1},
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and take a subset Θa ⊂ Xa so that it forms a basis of La. For example, if
ai = i for all i, then we can take

{xi,j − xi+1,j−1 | 1 ≤ i < n,1 < j ≤ d}

as Θa. Clearly, Θa is an S̃-regular sequence, and the ring homomorphism
ψ : S̃ → T (= k[x1, . . . , xN ]) defined by S̃ � xi,j �→ xi+aj−1 ∈ T induces the
isomorphism S̃/(Θa) ∼= T (if we adjust the number N ).

Proposition 4.1. Let I ⊂ S be a Borel fixed ideal, and set J := b-pol(I).
Then Θa forms an S̃/J-regular sequence, and we have S̃/(Θa) ⊗

S̃
S̃/J ∼=

T/Iσ(a) through the isomorphism S/(Θa) → T (i.e., we have ψ(J) = Iσ(a)).

Proof. The latter assertion is clear by expression (1.2), and it suffices to
prove the former. Recall that S̃/J is sequentially Cohen-Macaulay, and any
associated prime of S̃/J is of the form (xi,ci | 1 ≤ i ≤ m) with c1 ≤ c2 ≤ · · · ≤
cm. If xi,j − xi′,j′ ∈ Θa and i < i′, then aj−1 − aj′ −1 = i′ − i > 0. Since {ak }k∈N

is a nondecreasing sequence, we have j > j′. Hence, Θa forms an S̃/J -regular
sequence by the same argument as in the proof of Theorem 3.4.

Corollary 4.2 ([9, Proposition 1.9]). Let I be a Borel fixed ideal. Then,

βS
i,j(I) = βT

i,j(I
σ(a))

for all i, j.

Proof. The left (resp., right) side of the equation equals βS̃
i,j(J) by The-

orem 3.4 (resp., Proposition 4.1).

The original proof in [9] uses a formula given in [1], and is very different
from ours.

Remark 4.3. Murai told us that Corollary 4.2 (i.e., his [9, Proposi-
tion 1.9]) can be used to prove Theorem 3.4. In fact, if ai = i · n for each i,
(−)σ(a) corresponds to our b-pol. To see this, assign our variable xi,j to his
x(j−1)·n+i. Since (−)σ(a) preserves the Betti numbers of a Borel fixed ideal,
it gives a polarization by Lemma 2.2. However, our proof has advantages, as
mentioned before in Theorem 3.5, and we can refine Corollary 4.2 as follows.
That is, Theorem 3.4 (the polarization b-pol(I)) and Corollary 4.2 (gener-
alized square-free operation) imply each other, but our analysis of b-pol(I)
contains more precise information.
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Corollary 4.4. With the situation of Proposition 4.1, Θa forms an
Exti

S̃
(S̃/J, S̃)-regular sequence for all i, and

S̃/(Θa) ⊗
S̃

Exti
S̃
(S̃/J, S̃) ∼= Exti

T (T/Iσ(a), T ).

Hence, we have

βT
i,j

(
Extk

T (T/Iσ(a), T )
)

= βS
i,j

(
Extk

S(S/I,S)
)

for all i, j, k. Similarly, deg(ExtiT (T/Iσ(a), T )) = deg(Exti
S(S/I,S)) for all

i, and hence S/I and T/Iσ(a) have the same arithmetic degree.

Proof. Since Θa is an S̃/J -regular sequence and S̃/J is sequentially
Cohen-Macaulay, the former assertion follows from iterated use of Lem-
ma 2.7 (see also the argument after Definition 2.4). The equation on the
Betti numbers holds, since both sides equal βS̃

i,j(Extk
S̃
(S̃/J, S̃)). The equa-

tions on the degrees can be proved in a similar way.

Proposition 4.5. If I ⊂ S is a Borel fixed ideal, then T/Iσ(a) has a
pretty clean filtration. In particular, if Iσ(a) is square-free (e.g., if ai+1 > ai

for all i), then the corresponding simplicial complex of T/Iσ(a) is nonpure
shellable.

Proof. Take the pretty clean filtration 0 ⊂ J1/J ⊂ J2/J ⊂ · · · ⊂ Jt/J ⊂
S̃/J (J0 = J) constructed in the proof of Theorem 3.2. Recall that Ji/Ji−1

∼=
S̃/pi up to degree shift for each i ≥ 1. Since pi ∈ Ass(S̃/J), Θa forms an
S̃/pi-regular sequence by the same argument as in the proof of Proposi-
tion 4.1. Moreover, S̃/(Θa) ⊗

S̃
S̃/pi

∼= T/qi for some prime ideal qi ⊂ T

with codimpi = codimqi. From the exact sequence 0 → Ji−1/J → Ji/J →
S̃/pi → 0, we have the exact sequence

0 → S̃/(Θa) ⊗
S̃

Ji−1/J → S̃/(Θa) ⊗
S̃

Ji/J → S̃/(Θa) ⊗
S̃

S̃/pi → 0

by [4, Proposition 1.1.4]. Set Mi := S̃/(Θa) ⊗
S̃

Ji/Ji−1. Then 0 ⊂ M1 ⊂ · · · ⊂
Mt ⊂ T/Iσ(a) is a pretty clean filtration.
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