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Abstract

Properties such as automaticity, growth and decidability are investigated for the class of finitely generated
semigroups which have regular sets of unique normal forms. Knowledge obtained is then applied to
the task of demonstrating that a class of semigroups derived from free inverse semigroups under certain
closure operations is not automatic.
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1. Introduction

Automatic groups are widely studied and are the subject of a major book [3]. In [2]
the notion of automaticity is extended to semigroups. The motivation of the present
work is to determine whether free inverse semigroups are automatic. In the process of
showing that they are not, we demonstrate that for these purposes, it is the property of
having a regular set of unique normal forms that is of interest, a property considered
in the context of groups by Gilman [5]. Connections with growth are exploited to
prove the main theorem, and we also discuss decidability and the word problem.

We proceed now to recall some relevant definitions and notation. For any set X, X*
denotes the set of all words in the elements of X including the empty word €, while X *
denotes the set of all such words of length at least 1. We refer to the words of length
1 as letters. When X* (respectively X*) is considered along with the associative
binary operation of concatenation, it is referred to as the free monoid (respectively
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free semigroup) on the set X, and has the universal properties one would expect. A
language over X is a subset of X*.

Let S be a semigroup and X a set of generators with natural homomorphism
¢ X* - §. If L € X* is any language such that the restriction of ¢ to L is
surjective, say that L is a language of normal forms for S over X. If in addition the
restriction of ¢ to L is injective, say that L is a language of unique normal forms for
S over X.

The fact that regular languages are precisely the sets accepted by finite state ma-
chines has passed into folklore and we use it freely without comment. For details see
[6].

We set out some well known facts about regular languages for later reference.

PROPOSITION 1.1. Suppose X and Y are finite sets. Then

(i) ifK C Y*isaregularlanguageand¢ : Y* — X* is amonoid homomorphism,
then ¢ (K) is a regular language over X ;

(i1) if K, L C Y* are regular languages, thensoare K UL, KNL, K\ L, KL,
K*and K*.

For convenience, we shall refer to a semigroup with a regular set of unique normal
forms as a rational semigroup. We will see that in contrast with automaticity in
semigroups, the property of being rational is independent of the choice of generating
set. (This dependence of automaticity on choice of generating set is peculiar to
semigroups, while an automatic monoid will have an automatic structure for any finite
generating set—see [4] for details.)

1.1. Rational semigroups and automaticity Although the developments in this
paper do not depend on the definition of automaticity, we sketch it here by way of
background and refer the interested reader to [2] for details. Let S be a semigroup
with generating set A and natural homomorphism ¢ : A* — S. An automatic
structure for § consists of a regular language L € A* of normal forms for S such that
(roughly speaking) checking whether two words of L are equal or differ by a factor of
a generator can be done by a finite state machine. Any semigroup with an automatic
structure over some generating set is called an automatic semigroup.

An immediate consequence of [2, Corollary 5.6] is that

LEMMA 1.2. Any automatic semigroup is a rational semigroup.

While an automatic semigroup may have an automatic structure over one generating
set and not another, we show that the definition of a rational semigroup is independent
of the choice of generating sets.

https://doi.org/10.1017/51446788700002354 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700002354

3] Finitely generated semigroups 295

LEMMA 1.3. If a semigroup has a regular language of unique normal forms over
some finite generating set, then it has a regular language of unique normal forms over
every finite generating set.

PROOE. Let L be a regular language of unique normal forms for a semigroup S
over some finite generating set Y. Let i, : Y* — § be the natural homomorphism.
Let X be some other generating set for S with natural homomorphism ¥y : X* — .
Then there is a function ¢ : ¥ — X* expressing every generator y € Y as a product
of generators in X such that Yx¢(y) = ¥y(y). Extend ¢ to a homomorphism. By
Proposition 1.1, ¢ (L) is a regular language. By definition of ¢, ¥x¢ = ¥y, so that
since ¥y restricted to L is a bijection, so is Yy restricted to ¢ (L), proving that ¢ (L)
is a regular language of unique normal forms for S over X. O

On the other hand, the stronger definition of an automatic semigroup gives rise to
a number of interesting properties, most significantly

PROPOSITION 1.4 ([2, Corollary 3.7]). If S is an automatic semigroup, we can solve
the word problem for S in time quadratic in the length of the words.

1.2. Rational semigroups and decidability We show here that for rather general
reasons, rational semigroups have a solvable (recursive) word problem and that the
property of being rational is therefore Markov. It has been shown that for finitely
presented semigroups [8, 9], groups [1, 11] and inverse semigroups [16], Markov
properties are undecidable. For general background on computability, the reader is
referred to [6].

Recall that a set is recursively enumerable if there is an algorithm to list its ele-
ments. We shall say that the word problem of a semigroup is recursively enumerable
if there is an algorithm which lists all pairs of words in the generators which represent
equal elements of the semigroup. It is a simple observation that a finitely presented
semigroup has recursively enumerable word problem. For a finitely presented semi-
group S and word w in the generators of S, denote by S,, the recursively enumerable
set of elements of S equal to w in S.

The word problem for a semigroup is recursive (or solvable) if there is an algorithm
whose input is two words in the generators and which terminates with output ‘yes’
if they represent the same element of the semigroup and terminates with output ‘no’
otherwise.

THEOREM 1.5. Let S be a finitely presented semigroup. Then the word problem for
S is solvable if and only if § has a recursively enumerable set of unique normal forms.

PROOF. Let A be a generating set for S. The direct part is obvious. If a semigroup
has solvable word problem, simply list the elements of A* in some order. As we arrive
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at a word which represents the same element of S as another word already in the list,
do not omit it but skip over it to the next word in A*. In this way we are able to obtain
a list of unique normal forms for elements of S.

Conversely, suppose there is a recursively enumerable set L of unique normal forms
for S. Given words u, v € A* we decide equality in S as follows:

e Since §, is a recursively enumerable set and L is recursively enumerable,
their intersection is also recursively enumerable. By uniqueness, this intersection is a
singleton which we denote w,,;

e Compute the unique normal form w, of v in the same way;

o u and v represent the same element of S precisely when w, = w,. O

Since a regular language is trivially a recursively enumerable set we have

COROLLARY 1.6. Rational semigroups (and therefore their finitely generated sub-
semigroups) have solvable word problem.

This result is well known for semigroups which are groups, see for instance [3,
Section 2.1].

Reflecting on the rather general argument above, we consider it an interesting
question to determine what properties a semigroup will enjoy when the word problem
and the set of unique normal forms are in other computability classes. For example,
if the word problem were solvable by a push-down automaton or the set of unique
normal forms were a context-free language.

A Markov property of semigroups [groups, inverse semigroups] is a property &2
such that:

e 2 is preserved under isomorphism;

o there is a finitely presented semigroup [group, inverse semigroup] which has
property &2,

o there is a finitely presented semigroup [group, inverse semigroup] which em-
beds in no semigroup [group, inverse semigroup] with property .

As mentioned at the beginning of this section, it has been shown that Markov
properties of semigroups, groups and inverse semigroups are undecidable. Among
Markov properties is the property of having solvable word problem. However it is
known [16] that there are undecidable properties which are not Markov.

THEOREM L.7. The property of being rational is Markov for semigroups, groups
and inverse semigroups.

PROOF. Since the following argument is completely generic, the reader may replace
‘semigroup’ with ‘group’ or ‘inverse semigroup’ throughout, simply noting that there
are finitely presented semigroups S in each class which are automatic and other finitely
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presented semigroups T in each class which have insoluble word problem. For details
the reader is referred to [16].

By Lemma 1.3 we know that the property of being rational is preserved under
isomorphism. Since every automatic semigroup is rational, there are certainly exam-
ples with this property. Let T be a finitely presented semigroup with insoluble word
problem. Then by Corollary 1.6 T embeds in no semigroup which is rational. O

1.3. Closure operations on the class of rational semigroups In this section we
exhibit a number of operations under which the class of rational semigroups is closed.
In the following discussion, if S is a semigroup, S' will denote the set § with an extra
element 1 adjoined which is a multiplicative identity for every element of S', and S°
will denote the set S with an extra element 0 adjoined which is a multiplicative zero
for every element of S°.

PROPOSITION 1.8. A finitely presented semigroup S is rational if and only if S' is
rational.

PROOF. Let S be a rational semigroup with regular language L of unique normal
forms over generating set A. Let B = AU{e} be a generating set for S' where e
maps to 1 under the natural homomorphism. Then L is a regular subset of B* and
consequently sois L' = L U {e}. That L’ is a regular set of unique normal forms for
S! follows from the fact that there is no element of L which maps to 1 € S' under the
natural homomorphism.

Conversely, suppose S’ is rational. Then there is a set B of generators, a ho-
momorphism ¢ : B* — S’ and a regular language L € B™ in bijection with S!
under ¢.

Firstly note that there is at least one letter ¢ € B such that ¢ (e) = 1, for otherwise 1
would be a product of non-identity elements of S, contradicting the definition of
S'. Let E C B be the set of all e such that ¢(¢) = 1. Put A = B\ E and define
¥ : B* > A* by mapping all e € E to the empty word and fixing the other generators.
Put w, equal to the preimage of 1 in L under ¢, then the language L \ {w,} is regular
and so is ¥ (L \ {w,}) € A*. Since none of the elements of L \ {w;} are the empty
word, nor composed entirely of letters of E, ¥ (L\ {w,}) € A™*. Definingy : A* — §
as the restriction of ¢ to A*, we see that Im(y) = Im(¢) \ {1} = S, since for all
w € BY, ¢(w) = 1 or ¢(w) = yy¥(w), so ¥ (L \ {w,}) is a set of normal forms.
If y(u) = y(v) for u,v € Y (L \ {w,}), then u = ¥ («') and v = ¥ (v’) for some
u',v € L\ {w}. Then

W) =yy¥ W)=y =y =yy@) =9¢)
which shows that ¥’ = v’ by injectivity of ¢ on L \ {w;}. But then ¥ = v giving

injectivity of y on ¢ (L \ {w,}) as required. Od
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A simpler argument gives

PROPOSITION 1.9. A finitely presented semigroup S is rational if and only if 5° is
rational.

THEOREM 1.10. Let S be a rational semigroup and I an ideal of S such that S/1
has no zero divisors. Then S/ is rational.

PROOF. Suppose S has a regular language L of unique normal forms over some
generating set A. Let 4 : A* — S be the natural homomorphism. Let B =
AN\ ;" (HU{z}. Define 5 : B — S/1I by

by = | H® b ANTD)
0 ifb=z

and extend homomorphically. Under this mapping, B is clearly a generating set for

S/1.

Let K be the regular language (L N (B \ {z})*) U {z} over B. To see that K is a set
of normal forms for §/1, note that if w € L and j,(w) € S\ I, the fact that [ is an
ideal implies each letter of w is in B, so w € K, whence the restriction of 5 to K is
onto.

Suppose w, w, € K and lz(w,) = tg(w,) € S\ I, then w, w; € L so wy = wy,
by uniqueness in L. If hz(w) = O then w ¢ K \ {z} since S/ has no zero divisors,
therefore w = z. O

THEOREM 1.11. The free product of two semigroups is rational if and only if both
factors are rational.

PROOF. Let S and T be rational semigroups with regular languages of unique
normal forms K € A* and L C B* respectively. The set (LK)t U K(LK)* U
(LK)*L U (KL)* is again a regular language with a unique representative for each
element of § * T as required.

Conversely, suppose S * T is a rational semigroup. The semigroups S° and T°
are Rees quotients of S x T without zero divisors, and are therefore rational by
Theorem 1.10, and by Proposition 1.9, § and T are also rational. O

1.4. Growth and rational semigroups We take the following development on the
growth of functions from [15]. Consider the set of non-decreasing functions from
N — R*. We define a preorder on this set by f < g if and only if there are positive
natural numbers m and ¢ such that forevery n € N, f (n) < cg(mn). Further define an
equivalence relation ~ by f ~ gif f < gand g < f. We refer to the ~ equivalence
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class of f as the growth of f and denote it [f ]. Then < defines a partial order on the
growth classes of functions N — R*.

We make some definitions and easy observations about growth which will be used
in the sequel without comment. All polynomials of degree d have the same growth,
namely [n?] which we call polynomial of degree d. All exponential functions of the
form a” with a > 1 areal number have growth [2"] which we call exponential. Clearly,
the conditions of growth being polynomial or exponential are mutually exclusive.
Growth which is either polynomial or exponential is called alternative and growth
which is neither polynomial nor exponential is called intermediate. Finally we have

PROPOSITION 1.12. Suppose that for some real numbers a, h > 0, b, ¢ > 0 and for
all sufficiently large n € N we have g(n) = hf (an + b) + ¢, then [f] = [g].

We now recall the notion of growth of a semigroup. Let S be a semigroup, A aset of
generators for Sand i, : A* — § the natural homomorphism. For each x € S define
the length I(x) of x to be the least length of a word w € A* such that fj, (w) = x. The
growth function of S with respect to A is defined in [12] by

gsa(n) = |{x € §|1(x) < n}|.

When S and A are understood, the growth function will be referred to simply as g.
It is not difficult to see that the ~-class of the growth function is independent of the
generating set A so we can use growth of the semigroup to mean the ~-class of any of
its growth functions.

Finally we define the notion of growth for a formal language. Let L C A* be a
language. The growth function h; of L is given by defining h; (n) to be the number
of words of L of length at most n. Then the growth of L is [h.].

1.4.1. Growth of a language of unique normal forms One may also define the
growth function of S with respect to A by

gm) = a({w € A™ | [w] < n})|

and it is an easy exercise to see that this definition is equivalent to the previous one.
Let L be a language of unique normal forms for S over A. Then b4 is injective on the
elements of L so that
hi(n) = |8a(fw € L | |w| < n})|
< la({w € A* | [w} < n})|
= g(n).

Therefore, noting that any semigroup has at least polynomial growth and at most
exponential growth, we have
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THEOREM 1.13. The growth of a language of unique normal forms for a semigroup
S is bounded above by the growth of S. In particular, if S has polynomial growth, then
any language of unique normal forms for S has polynomial growth, and if a language
of unique normal forms for S has exponential growth, then so does S.

Considering this theorem, a number of questions immediately spring to mind:
When are the growth of the semigroup and the growth of its language of normal forms
in the same class? The growth of the number of paths in a graph is known to be
alternative [15], and therefore the growth of a regular language is alternative — is the
growth of a rational semigroup necessarily alternative? In [15] it is shown that the
growth of any algebra with finite Grobner basis is alternative.

2. The monogenic free inverse semigroup is not rational

There appears to be consensus among workers in the area of automatic semigroups
that it is more difficult to show that a semigroup is not automatic than to show that it is
(which is usually a matter of exhibiting an automatic structure for it). In this section
we use the fact that the growth of the free monogenic inverse semigroup is polynomial
to show that it is not a rational semigroup (and therefore not automatic).

In [3, Chapter 8], it is shown that nilpotent groups are not automatic, and that proof
also exploits the fact that nilpotent groups have polynomial growth. Nilpotent groups
are, nevertheless, rational. As mentioned by Sims in [13], they have finite confluent
rewriting systems under the basic wreath product ordering and it is a simple exercise
in the theory of automata that this implies the existence of a regular set of unique
normal forms.

2.1. Finite state machines We start with some general facts about finite state
machines, a construction used in the subsequent argument. A finite state machine
consists of a finite set A of states, a finite set A of input letters and a function
[ : A x A > A describing the state transitions. We extend I' to a (right) monoid
action of A* on A. Denoting by € the empty word in A*, I"(_, €) is therefore the
identity on A. There is a distinguished state i € A called the initial state and a subset
T C A of terminal states. We will usually identify the state machine with its transition
function. We also consider the state graph of the machine, which has vertex set A
and an edge from s to ¢ labelled bya € A if ['(s,a) = 1.

A word w € A* is said to be accepted by " if I'(i, w) € T. A state s € A issaid to
be accessible if there is some w € A* such that I'(i, w) = s and coaccessible if there
isaword w € A*suchthatI'(s, w) € T.

The state graph of a state machine influences the growth of the language accepted
by the machine in the following way.
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THEOREM 2.1. Suppose the state graph of the state machine T has two distinct
cycles on an accessible and coaccessible state. Then the language accepted by I' has
exponential growth.

PROOF. Recall that a cycle in a graph on the vertex s is a path from s to itself
passing through no other vertex twice.

Let s be the state with two distinct cycles in the state graph. Since s is accessible
and coaccessible, there are words u, v € A* suchthat I'(i, u) = s and I'(s,v) € T.
Since the two cycles on s are distinct, there are distinct words w;, w, € A* (which
are not prefixes of one another) which label the edges of the cycles, such that all
words determined by the regular expression u{w,, w;}*v are accepted by I'. Let
! = lem(|w,|, |Jw;|) and fix p,, p» € N such that | = |w,|p, = |[w;|p,. Then the
number of words accepted by I' of length m = |u| + |v| + Ik is at least 2*. Namely,
they contain the set of words given by the regular expression u{w?', wy*}*v, all of
which are distinct.

Therefore, if the language accepted by the automaton has growth 4, we have that
h(m) > 2k = 2m—lul=wl/! a5 required. |

Theorem 2.1 is an automaton theoretic formulation of the fact that a language not
being simply starred (described by a regular expression in which the star operator is
only applied to singletons) implies that it has exponential growth, a fact explained in
[3, Section 1.3]. The next lemma dictates the form of words in a regular language with
polynomial growth. In the terminology of [3] one would say that a regular language
with polynomial growth is simply starred.

LEMMA 2.2. Let L be a regular language with polynomial growth accepted by some
automaton I'. L consists of precisely the words of the form

h hy h,
WV WUy - U U Uy,

where u; - - - U1 labels a cycle free path from the initial state of T" to a terminal state,
h; > Oforalli, uy, ..., u, are nonempty, and each v; labels a cycle in the state graph
onT'(i, u,---u;).

PROOF. The result follows as a corollary of Theorem 2.1. Since L has polynomial
growth, the state graph of I has no two cycles on a single accessible and coaccessible
state. O

2.2. The monogenic free inverse semigroup For the remainder of Section 2 let
F1, denote the free monogenic inverse semigroup with (semigroup) generating set
{x, x~'}. We pause now to recall some simple facts and standard definitions about this
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semigroup. The reader requiring elucidation of the following development is referred
to [10].

Let - denote the homomorphism of FI, onto the free group F, of rank 1 defined
by taking any word in {x, x ~'}* and freely reducing it, that is to say, cancelling xx ~!
and x ~'x. For example, xxx~'x = x2.

It is a consequence of the graph representation of free inverse semigroups (see [10,
VIIL.3]) that F 1, may be identified with the set of triples (i, j, k) € Z° such thati < j
and O and & are contained in the contiguous interval [/, j]. In particular, i < 0 < j.
The product (i, j, k) * (i, j’, k') is then (min(i, k + i), max(j,k + j'), k + k). Let
n: {x,x"'}* — FI, be the natural homomorphism mapping words to triples. This
map is completely defined by setting hi(x) = (0, 1, 1) and f(x ") = (-1, 0, =1).

It is a useful intuitive device to regard a triple as described above as a segment [i, j ]
of Z with a distinguished element k. Then reading any word from left to right defines
a path, starting at 0 and moving a step to the left every time x ! is read, and a step to
the right every time x is read. Then a word w such that §(w) = (i, j, k) defines a path
starting at 0, whose meanderings in the number line take it at most abs(i) places left
of zero and at most j places right of zero, finally ending at position k. Composing
with another word v with ii(v) = (i’, j’, k') we start at k and meander at most abs(i’)
places to the left of &, j’ places to the right of £ and end up &’ places to the right of k.

More formally, set lex(w) = min{i | # = x’, u a prefix of w} and refer to it as
the left extremum of w’s path through Z. Similarly define rex(w) = max{i | & =
x', u aprefix of w} (the right extremum) and the endpoint given by w = x4, With
this notation we now have ti(w) = (lex(w), rex(w), end(w)).

An immediate consequence of the discussion above is that

PROPOSITION 2.3. Let w be a word in {x,x~'}*. The following conditions are
equivalent:
e (w) is idempotent,
o w=1;
o (w)=(,Jj,0)forsomei,j € Z.

Finally we quote a well known result mentioned in [12] which is at the core of the
proof of Theorem 2.7.

THEOREM 2.4. The free monogenic inverse semigroup has cubic growth.

2.3. Proof of Theorem 2.7 For the remainder of this section we derive some
lemmas under the assumption that F I, is rational so that the proof proper is a proof
by contradiction.

Suppose that L is a regular language of unique normal forms for FI, over the
alphabet {x, x '}, and let " be a finite state machine with n states accepting precisely
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the words of L.

Since F I, has polynomial growth (by Theorem 2.4), L also has polynomial growth,
so that each word of L may be written in the form described in Lemma 2.2. In
particular, any word in L is of the form

h hy hp
)] WV UQVy " U U Uiy

where,

® u;---un, describes a cycle free path in the state graph of I' from the initial
state to a terminal state;

® u,..., U, are nonempty;

e m<n;

e f(v;) is not idempotent, for otherwise the word obtained by increasing A,
by one, which is also accepted by I' would represent the same element of FI,
contradicting uniqueness.

Let w be any word in L. Then w may be factored not only as in (1) but also as
abc where end(a) and end(ab) are the opposite extrema of w’s path. That is, either
a = x'*® and gb = x™® or g = x™™ and gb = x'=®),

However it may happen (inconveniently for our purposes) that a or b ends within
one of the v;. The next lemma shows that we may choose a, b and c so that their
boundaries are out of the v; but where end(a) and end(ab) are still ‘not too far’ from
the extrema of w’s path.

LEMMA 2.5. Let w € L. Then w may be factored as abc and also as in (1) so

that
o a=uyM "'“j—lvj—lh"'"j';
— hj R ‘.
) b—uj”vj-}—l ]“"'uk—lvk—l k. Iuk9
e C= uk”vk+lhl‘+I e umvmhmum+l;

and so that end(a) is within n of the lower extremum of w’s path in Z and end(ab) is
within n of the upper extremum, or vice versa.

PROOF. We prove the lemma for the case that w may be factored as a’b’c’ with
end(a’) the lower extremum and end(a’b’) the upper extremum. The other case is
similar.

If @’ ends within u; for some j then puta = a'. Otherwise, @’ = u,v," - - - u; v;"v]
for some prefix v; of v;.

Now if v; is a negative power of x, then & must be 4; — 1, in which case put
a = uv" ---ujv;%. Then @ cannot be more than an (n — 1)th power of x greater
than &’ since no state appears more than once going from I'(i, a’) to I'(i, a) since it
traces the last part of a cycle in the state graph of I.
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If, on the other hand, v; is a positive power of x, then & = 0 so we can let
a = uyv™ .- -u;_,. Again @ can differ from a’ by no more than an (n — 1)th power
of x.

Now we have w = ab”c’ where ab” = a'b/, defines a path in Z with endpoint
the right extremum of w’s path. We now have lex(w) < end(a) < lex(w) + n, as
required. Of course, we still have end(ab”) = rex(w).

If ab” ends within u,, put b = b” and ¢ = ¢’ and we are done. Otherwise, b” is the
word starting at the end of a and ending with u}v}v} for some prefix v, of v, and u;}
is some (possibly empty) suffix of u,.

If vy is a negative power of x then, h = 0. Truncate 4" at the end of u; to produce b.
If v is a positive power of x then & is h; — 1. Append the rest of v, to form b

In either case, noting that end(b”) — n < end(d), we still have rex(w) — n <
end(ab) < rex(w). ]

It is now shown that if w € L represents a ‘large enough’ element of FI,, then as
I" accepts w, each of the factors a, b and ¢ determined by Lemma 2.5 traverses a cycle
in the state graph of I'. The astute reader will recognize this as a thinly disguised
Pumping Lemma [6].

LEMMA 2.6 (Pumping Lemma). Let w be an element of L with ij(w) = (p, q, 0).
Ifp < —2nand q > 2n then w factors as in (1), and for some i\ < i, < Iy, the factors
v;,, U, and V;;, are nonzero powers of x which alternate in sign.

PROOF. We can write w = abc as in the statement of Lemma 2.5 with end(a) within
n of the lower extremum of w’s path and end(ad) within n of the upper extremum, or
vice versa. Without loss of generality we assume the former.

To begin with, consider a = u;v," -+ - u; _v; _,"'u;’. Now uju, - - - u;_yu; traces
out a path in the state graph of I which does not visit the same state twice hence
u; - - - u; is a power of x which is between —n and n. But @ is a power of x ~! which
is greater than n. Thus there is some | < i; < j with v;, a negative power of x and
h;, > 0.

Similarly, b is a power of x which is greater than 2n, which implies that there is
some j < i < k with v, a positive power of x and 4;, > 0.

An identical argument assures us that there is some k& < i3 < m with v; a negative
power of x and h;, > 0. a

Finally we are in a position to prove main theorem of this section.
THEOREM 2.7. The monogenic free inverse semigroup is not rational.

PROOF. Suppose by way of contradiction that F I, is rational. Then by Lemma 1.3 it
must have a regular language of unique normal forms over the generating set {x, x~'}.
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Let L be such a supposed language and I a finite state machine which accepts precisely
the words of L. Let n be the number of states of . Since L is neither {x, x ~'}* nor
@, n must be at least 2.

Under these assumptions we proceed to exhibit two words in L with the same image
under f contradicting uniqueness.

Let w be the unique element of L with f(w) = (—=2n — 1,2n + 1,0). Then w
satisfies the conditions of Lemma 2.6. So without loss of generality we may write
w = ulv{"uzv;" --~u,,,v:~u,,,+l as in (1) and assume that there are iy, < i, < i3

with:
o Uy =x/tand f, <0;
o T, =x"and f, > 0;
e T, =x"and f; < 0; and

h;,, h;, and h;, nonzero.
Let §,, 83 > 0O be the unique integers such that

(2 [282 = —f383 =lem(f2, —f3).

Observe that 0 < §; < —f3 < |v,| < n and that similarly 0 < é; < n.
Let A = lem(—f}, f2, —f3) (a positive integer). Then set
8n2A 4n2) 2n?A
o= —) ﬂ = , VY= .
—f1 fa —f3
By the fact thatn > 2,8 >n> 6, andy > b > §s.
Define

. a B 13
Wy = Uy Ui U Wiy e - B Uy Uiy gy - Wi Up Uy - Uy

_ a B—é2 y—03
Wy = WUily » - U U; Ujppy =0 s Up Uy Uiy o s UV UGy 0 Uy

The construction by which we arrive at the factorization (1) ensures that w;, and
w, are both accepted by I' and are therefore in L. It only remains to show that
B(w;) = b(w,). The equality holds if the endpoints are equal (which is equivalent to
showing that W7 = w;) and that the left and right extrema are equal.

Now by commutativity of F,,

—_ 5 &

Wy = Wav, U,

= Wox/x/*%  but by (2)
= Wx ~f383 5 38

=w;

as required.
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Now we calculate the left and right extrema of the paths of w; and w, in Z. A
helpful observation for the following calculations is that if v is a positive power of x,
then for all kK > 0, lex(v*) = lex(v) and similarly, if v is a negative power of x, then
for all & > 0, rex(v*) = rex(v). Note also that

3 lex(uv) = min(lex(«), end(u) + lex(v))

and

4) rex(uv) = max(rex(u), end(u) + rex(v)).
B

Leta, be the prefix of wy givenby wyuy - - - w;, Vi s, 41 - - - Uy, U, and let a, be the prefix
of w, given by wyuy - - u; Vi 41 - uizv,‘z"sz. Choose b, and b, so that w, = a,b,

and w; = a;b,. Since v, is a positive power of x, we can easily deduce that
lex(a;) = lex(ay)

o
= lex(uuy - - - wi V7 Wiy 41 -+ - U V)

< n— 8n’A.

To determine lower bounds on end(a, ), end(a,), lex(b,) and lex(b,), we assert only
that end(u, - - - u,) > —n and end(u;,4y - - - Umy1) > —n. Thus,

end(a;) > —n +af ), + Bf
= —n — 8n’A +4n’Ar
= —4n®’A —n,

and similarly,

end(ay) > —4n*x —n — 82f2;

lex(b)) > —2n*A —n; and

lex(b;) > —2n’A — n — 8;f3;
= =2n°A — n + 8,f>.

We show that lex(a;) < end(a,) + lex(b,) and lex(a,) < end(a,) + lex(b,) which
proves (by (3)) that lex(w,) = lex(a;b;) = lex(a,) = lex(a;) = lex(a,b;) = lex(w;)
as required. Now it a simple matter of arithmetic to show that if either of these two
inequalities didn’t hold, then we would have 2n?A — 3n < 0. But this is only true for
values of n between 0 and 3/(2A). Since A > 1 we have shown a contradiction since
our automaton must have at least 2 states. From this we conclude that the left extrema
of wy and w, are the same.

To complete the proof of the theorem, it is now shown in a similar way that the right
extrema of w; and w, are the same. Let a = u,u, - - - u;, vj and once again choose b,
and b, so that w, = ab; and w, = ab,. We claim that rex(w,) = rex(w,) = rex(a).
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A priori, rex(a) > 0. In the same manner as the previous part of the proof, we
calculate:

end(a) < —8n°A +n, and rex(b,'), rex(b,) < 4n’A + n.

If rex(w;) or rex(w,) are not equal to rex(a) then (4) implies that rex(a) < end(a) +
rex(b)) orrex(a) < end(a) +rex(b,). In either case we would have —4n2A +2n > 0,
which only occurs for values of n between 0 and 1/(24), once again contradicting the
fact that the automaton has at least 2 states. Thus the right extrema of w, and w, are

the same.
This completes the proof that no regular language of normal forms for FI, can
have uniqueness. 0

3. Application and discussion

The remarks in Section 1 together with the theorem of Section 2 allow us to draw
some useful conclusions and conjecture further results.

In contrast with finitely generated free groups and free semigroups which are both
easily seen to be automatic and therefore rational

THEOREM 3.1. No free inverse semigroup is rational. Therefore no free inverse
semigroup is automatic.

PROOF. Let F Iy denote the free inverse semigroup on a finite set X and let x € X.
Then define amap ¢ : X — {x, 0} by

.
o =1 "rTT

0 otherwise

and extend it to a Rees quotient map ¢ : FIy — FI°. If FIy were rational then
Theorem 1.10 would imply that FI?, and by Proposition 1.9, that F I, was rational —
a contradiction. O

Together with Theorem 1.11 this shows that

COROLLARY 3.2. No semigroup can be rational (nor, therefore, automatic) if it is
a free product of a free inverse semigroup with another semigroup.

The class of semigroups which we now know not to be rational is not contained
within the class of semigroups with polynomial growth, since the free inverse semi-
group on more than one generator has exponential growth. This fact is somewhat
intriguing since the proof of Theorem 2.7 is so dependent on the growth of F1,.
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An obvious question which arises is whether a free inverse semigroup may embed
in any rational semigroup, for if not, F Iy would be an interesting semigroup satisfying
the third condition in the definition of a Markov property, while still having solvable
word problem.

Another class of inverse semigroups closely entwined with the present thread of
discourse are defined in [7].

PROPOSITION 3.3. Suppose S is a finitely presented Rees quotient of a free in-
verse semigroup with polynomial growth. Then the following conditions are equiva-
lent:

o S isinfinite;
e S contains a free monogenic inverse subsemigroup;
e S has growth of degree at least 3.

We conjecture that the semigroups defined by Proposition 3.3 are not rational.

As a final remark, the observations of Section 1.2 recall a lecture given by Professor
Rick Thomas at the conference CGAMA at Heriot-Watt University, Edinburgh in July
1998 [14]. For a finitely presented group G the set W(G) of words representing the
identity of G was considered. A number of theorems relating the position of W(G)
in the formal language hierarchy with the algebraic structure of G were cited. We
consider it a promising line of inquiry to investigate the algebraic properties of groups
and semigroups which are known to have a language of unique normal forms in the
various strata of the language hierarchy.
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