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ON THE ZEROS OF POWER SERIES WITH 
LOGARITHMIC COEFFICIENTS 

B Y 

U. STADTMÙLLER 

0. Equivalence problems in Riesz-summability lead to the problem of find­
ing the zeros of special power series in the unit circle, i.e. 

oo oo 

/„(*)= I (n + l)Kzn and gK(z)= £ (l-c"+1)«z" (0<c<l , i c>0) . 
n=0 n=0 

These functions were investigated by Kuttner, Miesner, Peyerimhoff, Wirsing 
and others. Peyerimhoff [5] obtained the exact number of zeros of fK(z) and 
gK(z) from results on functions of the more general type 

(0.1) f{z) = kÎKz» + z k [ ^ . 
n = 0 JO ^ Z* 

keN0, bneR for n = 0, l , . . . , f c - l , gCO/' on 
(0,1) and zeC* = {x + i y | y ^ 0 if xs>l}. 

Functions of this type are MacLaurin series with totally monotone coefficients. 
Gawronski and Peyerimhoff [4] generalized the results of [5]. An interesting 

question in this connection is, how the zeros depend on the parameters, like K 
by fK(z) or K and c by gK(z)- Borwein and Kratz [1] proved that the zeros of 
gK(z) are strictly increasing functions of c. 

Wirsing [8] showed that the zeros of fK(z) and gK(z) are monotone in K. The 
proof requires information on the zeros of the functions 

à oo 

— / K U ) = Z (n + l)Klog(n + l)z". 

In this paper we will investigate the zeros of all derivatives of fK(z), i.e. the 
functions 

(0.2) U(z): = < 

£ (n + l)Klogx(n + l)zn A>0 
n=0 

X (n + l)Klogx(n + l)zn A<0 

Like fK(z) these functions admit analytic extension onto C*, and the analytic 
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222 U. STADTMULLER [June 

extension will also be denoted by / K A ( Z ) . The special case À = 1 was treated in 
[3], where power series with negative zeros are investigated. 

In the first two sections of this paper we give a special form of the analytic 
continuation of fKtk(z) onto C*, which allows to use theorem 1 of [4] to obtain 
upper bounds for the number of zeros. We find the following results: (k,me 
No) 

K 

K < 0 
K < 0 

k < K < k + l 

fc<K<fc+l 

À 

À < 0 
m < À < m + l 

À = m + 1 
m < À < m + l 

upper bounds for the number of zeros of 

between 

U(z) in C* 

1 
m + 1 

m + k + 1 
m + k + 1 and m + k + 3 

In the third section we discuss the asymptotic behaviour of / K A ( Z ) as z —» — oo. 
These formulas yield information on the values of K and À which produce a 
zero at z = — oo. In the fourth section we shall give lower bounds for the 
number of zeros. Here functional equations will be derived to control the 
change of the number of zeros when K resp. À is replaced by K 4-1 resp. À + 1 . 
In the cases K < 0 , AGIR or K > 0 and AG N we shall get the exact number of 
zeros. All these zeros are negative. The result is: (k, me N0) 

K 

K < 0 
K < 0 

k < K < k + l 
k < K < k + l 

À 

À < 0 
m <À < m + l 

À = m + 1 
m < À < m + l 

lower bounds for the number of zeros of 
U(z) in C* 

1 
m + 1 

k + m + 1 
m + 1 

In the last case (ÀéN), we do not know the exact number of zeros. Some 
numerical calculations show that there may exist complex zeros. 

1. Analytic continuation of /K,x(z) in C*. In order to obtain the analytic 
continuation of / K A ( Z ) onto C*, we take the following integral representation of 
the moment sequences (K, À < 0) 

(1.1) (n + l)KlogÀ(n + l) 

-fFT^'i^' 
dog i/ty 

r (D-K) 
dvdt n = l , 2 , . . . 

The equation is easily obtained by changing the integrals and using Euler's 
T-integral. (For the case K = 0, see Hardy [2], p. 268) The inner integral does 
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1979] ZEROS OF POWER SERIES 223 

not exist for À>0. But partial integration furnishes a formula for m<A< 
m + l(meN0), K<0: 

(1.2, ,„ + D- ,og> +1) - ; ^ L £,. f „«(£)-*' 
^(logl/O15^-1 

r(u-K) 
dvdt n = 0,1, 2 , . . . 

This integral exists also for n = 0 (for the existence see Lemma 2). For À = m 
the formula simplifies to 

(1.3) (n + i r logm(fi + l) = ( - i r | 1 fn(logy)"K_1 I ( ^ ( l o g ^ ) " 

/ 1 \ (m-p , ) 
x(f<^)) * - f t » - * . -

Using these integral representations of the coefficients, we get the following 
analytic continuation of / K A ( Z ) onto C*: 

a) K, A < 0 

r ( - A ) J 0 1-zf J0 T(V-K) 

b) K < 0 , m < A < m + l (meN0) 

T(m + 1 - A) J0 1 - zf J0 \au / r(u - K) 

In the special case A = m, we have 

c) In the case fc < K < fc + 1 (fee N0), A e R, we consider the function 
(l-z)k+1/K,x(z)- ^ is easY t o verify that the Taylor coefficients of this 
function at z = 0 form a totally monotone sequence for n > k + 1 and A < 0. 
Using similar methods as in a) and b) we obtain for example in case 
k < K < k + l, m < A < m + l 

(1.7) /KA(z) = ( l - z ) - k - 1 { l ?""Ï (k + 1\-lY(n + l-vY\ogHn + l-v) 

+ r ( m + i - A ) I l ^ r l " U) r(»-K) dud'J 
In case A = m the inner integral degenerates to a polynomial in the variable 
log2 lit. The degree of this polynomial is m - 1 for integral K and m 
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224 U. STADTMÙLLER [June 

otherwise. (Note that l / r ( - fc) = 0 for fc = 0 , 1 , 2 , . . . .). In case K > 0 

^ kSv=o( )(-lY(n + l-v)Klogm(n + l-v) can be represented by a 

similar integral and so we obtain 

(i.8) /^(z^u-zr^JY^ 

2. Upper bounds for the number of zeros. Using the formulas in a)-c) we 
can apply theorem 1 in [4]. Observe that the integrals in section 1 are of the 
form 

Jo 1-zt 

In order to obtain an upper bound for the number of zeros of /K,x(z), we count 
the changes of sign of the functions g'Ktk(t) for £e(0,1). Obviously there are no 
changes of sign if K < 0 and À < 0 and at most À - 1 resp. À changes of sign if 
A G A G N and K > 0 and integral resp. K G [ R - N . 

In the other cases we investigate the zeros of 

(2.1) hKjXt) = j V ~ * (£j"+1 f d ^ dv for re (0,1) ( m < A < m + l ) . 

Taking a = log2 1/t (a e U) we obtain 

yda) "K'AV~ ' v ' " J0 " T(V-K) 

/•oo 

) hKA(e-eû) = ( A - m ) - - - A - j vm~k^ -dv. 

H K < 0 then (—J hK,k(e~ea)>0 for aeU. 

M K = 0 then ( — 1 hK+(e~ea)>0 for aeR. 

Hence hKk(t) has at most (m +1) resp. m zeros in (0,1) according to the cases 
K < 0 resp. K = 0. In the case K > 0 a more careful investigation is necessary. 

LEMMA 1. Let k, m eN0. J r / m < A < m + l and k<K<k + 1 then 

\m + l foo / i v m + 1 n~n 1 /^ \ t>-K- l 

has at most 
*-<•> -ïfïrû f •" if) ^ r r ^ * 

r (m + l - A ) J 0 \dv/ T(V-K) 

r m ï 
lm + 2V 

Im + lJ 
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zeros in (0 ,1 ) if 

k is even and K - k + A - m - l < C h 

k is even and K - k + A - m - l > 0 > . • 

otherwise J 

Proof. Let b = \og lit, be(0,°°). Given 6 > 0 w e use Hankel's integral rep­
resentation for l / r (z) , i.e. 

v - K) 2m Jr. T(V-K) 
ewwK~v dw, 

where the contour is chosen such that |z|>£> + <5 with ô > 0 for zeCb. Sub­
stituting this formula into (2.2) and changing the order of integration, we 
obtain 

r (m + l -A)(- l ) m + 1 * K ,x(e- b ) 

n JCb J0 \dvl \wl 2rri 

m-xe-iog(w/b)u dv dw 

fe-K-l r i b,m + l p 
--—— e"w« l o g - v 

2iri JCb \ w) J0 

- | e w w K ( - l ) m + 1 ( l o g ^ V r ( m + l - A ) d w . 
2wî J Q 

Hence by moving the contour onto the real axis, we get 

Im( e l ™(log-+nrJ J dw 

+ j V w M m { ( l o g ^ } d w ] 

^ K , x ( e - b ) = - tr 
L - K - l 

l-f lOg —+I7T sinl7rK+À arctan* 
log w/b 

dw 

- s i n 7TÀ ewwK 

r 
Jo 

1 w 

l o g - dw] 

H'-̂ f e"w bw" 
7T 

+ À arctan 

log w + iV sinl 7T(K - fc) 

—?-)dw + (-l)m+lsm7r(\-m) f e w b w K ( log-Ydw) 
logw/ J0 \ w / J 

= - (* ! (6) + *2(6)) 
7T 
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226 U. STADTMULLER [June 

with 

arctan* - 7T 

log w 

arctan 

arctan 

7T 

log w 

logw 

+ 7T if 0 < W < 1 

if w > l 

(we use the main branch of 
arctan (.)) 

Therefore 

(-l)m+1Q%\b)>0 for b€(0,oo) and 

Oiv)(b) has at most as many zeros as the integrand (see [6], p. 50) 
for v = 0 , l , 2 , . . . 

Considering the behaviour of sin(.) and arctan(.), it is clear that the integrand 
of <&i(b) has m zeros in (0, <*>) if K - k + A < m +1 and m + 1 zeros if K - fc + A > 
m + 1. Since the derivatives have the same structure, the function {4>1(b) + 
<ï>2(fr)} has at most as many zeros as &i(b), if sgn(01(b-^oo)) = 
sgn(02(6-»oo)) = (~-i)m+1 and at most one additional zero otherwise. The 
sgn(<ï>!(6 —> oo)) is given by the sign of the integrand as w —» 0, i.e. the sign 
((-l)k+1sin(7r(K-fc) + 7r • A)). So we find the following cases: (VGN0) 

k=2v K- fc+A<m+l \PK,x(f) has at most m zeros in (0,1) 

k=2v K - k + A > m + l ^K,x(f) has at most m + 2 zeros in (0,1) 

fc = 2i> +1 K- fc+A<m+l ^K,x(0 has at most m + 1 zeros in (0,1) 

k=2i/ + l K - k + A > m + l ^K,x(f) has at most m + 1 zeros in (0,1). 
The following figures illustrate the situation: 

The discussion in section 2 and theorem 1 in [4] yield the following result: 
(k, m e N0) 

K \ À | upper bounds for the number of zeros of/K X(Z) in C* 

K<0 
K<0 

k<K<k+l 
k<K<k+l 

A<0 
m<A<m + l 

m<À<m + l 

1(0 if K2 + À2 = 0) 
m + 1 

m + k + 1 
m4-k4-1 if k is even and K — k 4 À - m - l < 0 
m + k+3 if k is even and K - k + A - m - l > 0 
m 4- k 4- 2 otherwise 
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REMARK. Using the same methods as in Lemma 1 and in No. 80 in [7 , 
one can show that in case A<0 and fc<fc<k + l there are at most 
fc + 2 + min{fc + l,[-A]+2} zeros in C*. 

3. The asmptotic behaviour of /K,x(z) as z —» -oo. In this section we investigate 
the asymptotic behaviour of 

Jo l + xt (3.1) —^-dt as x-*oo. 
v ' Jo 1 + xf 
For g(t) = g'Ktk(t) (as treated at the beginning of section 2) the behaviour of 
(3.1) is essentially determined by the behaviour of g'K^(t) as f-»0. Therefore 
we need the following 

LEMMA 2. Let m, keM0. Then 

(3.2) fv-.«s&-i(,„g ir<i+„<i)) 
J0 T(V-K) t \ t) 

for A<0 and KER 

/or m<A<m + l,K6R 

log2 l/0
m 

<"> r--(i) « ^ - { ^ T(-K) (log 1/0K 

m ,"(-K)7 (log 1/0' 

fort^O. M 

Proof. 

(3.2) Let a = log 1/f, 0 < e < 1/2. Then 

(«y^H») * *-« - » 

poo 

À - 1 t> w zdv = a~x v -x"1— -<fo(l + o(l)) 
'0 J»a+a 1 _ e nv~K 

a_ax~e r(u-ic) 
f a + a l"/ tA- x au 

- =r—r<fo( l+o( l ) ) 
J»_fli-. W r(u + l) 

<fo(l + o(l)) { 
a+al~e -v 

,„_«.-. r(«+i) 

o - a ' - S i r s a + a ' - ' - l J* I U> + 1J 

= I(a)(l+o(l)) for a ->». 

https://doi.org/10.4153/CMB-1979-029-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1979-029-9


228 U. STADTMÛLLER [June 

Using the monotonicity of av/T(v +1) for 1< v < a - 1 and a < v < <», we obtain 

<T+1 

-1(A) 
v<a—2 v* a<v<a+a Av+l)V 

Y a"+l Y ^+fC a ] + 1 a ° dl) 
a - a ' - < v < a - 2 ( l / + l ) ! a<v<a+a — - l *! J[a-2]+l T(l> + 1) 

Hence 

Ka) = (l + o(l)) = ea(l + o(l)) for a ^oo, 
a—a^ssv^a+a1 

which proves (3.2). 

(3.3) 
foo | -1 Too 

• • •du= I •••di> + •••du = 1 + 11. 

It is clear that I = 0(11) as t —> 0. After partial integration of II we apply (3.2) to 
obtain (3.3). (3.4) is trivial since the integral degenerates to a polynomial in the 
variable log2 lit. A. 

Now we can derive the asymptotic behaviour of fKyK(z) for z —» —<*>. 

LEMMA 3. Let KÊ R; k, meN. Then 

(3.5) 

(3.6) 

/ K . X ( - X ) = 
r ( i - A ) 

(log x) - x (l + o(l)) for A<0 

/ _ i y n + i 
U - » ) = i L > M Oog *)~X(1 + o(D) for m < A < m + l | r ( i -A) | 

u-n f ( -x)^f (~ 1 ) m"+ 1 ( l og 2 X ) m + 1+g(-ir+ k l ( -^-i 

(3.7) /K,x( x) | | r ( 1 _ K ) | x ( l o g x ) K + K ( 1) \{Ti_K)) 

^ ( l o g^ ) m}( l + o 
x(logx)K )(1)) for A = m + 1, fe = [K-] if K > 0 

k = 0 if K < 0 

Hoa x)m+1 

(3.8) / ^ ( - x ) = ( _ i ) m + i L J Ë - J ( l + o ( l ) ) for A = m + 1 , * = 0 

/or x —» oo. • 

Proof. (3.5) Let K , A < 0 

- x f1/logx t f" 
~ r ( - A ) i 1 + xJo V

 T(V-K) 

T(V-K) 

t (log l / t ) " - - 1 

dudf(l + o(l)) as x-*<». 
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By (3.2) we find 

rlog2x j j / 1 \ _ X _ 1 1 f 1 / l o e x \ 

hog2x/x 
+ r 

X 

-I c riog2x t j / ix-^-1 1 j-i/iogx 

^(-x)"rëÂjxU T ^ T K ) dt+-xL/xl 
x(logy) X ' d r jd + od)) 

^ / x /, ! \" X - 1
 |1O82X/X - 1 * f1/,ogx 1 

= 0(x)f log- + F T - n " - 7 
\ t) l0 r(-A) x^og2X/3C ( 

x(logy) *(1 + 0(1)) 

= 0(log2 x(log x -log3
 x ) " X _ 1 )+f f^ j • ZX [0o& *)~x 

-Oogx)-(l-^f)-X](l + 0(l)) 
(logx)~x(l + d(l)) as x-»°o. 

r ( i - A ) 

(3.6) fc<K<k + l, m<A<m + l. By (1.7) we know 

t < v- 1 fn r . , (-x)k+1(-l)fc+m 

/K-X( X ) " ( l + x ) k + i r k ( X) r(m + l -A) 

J0 l+xt Jo \<W r(i)-K) 

Pk(z) is a polynomial of degree fc. For x -^œ W e obtain by (3.3) 

/ 1 \ (- l)m + 1 f1/logx 1 

x i ( l o g i ) X ' d , 

/ 1 \ ( - 1 \ m + l r rl/xlog2x 1 

-°(;)+(1+°(1»lfÀïU ITS 
1/ , l \ ' x _ 1 , 1 f1/logx 1 1 / l X ^ - 1 , ] 

xyK) * + ; L _ . Ï - Ï K d,l •'l/xZlogzX , , 
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= o ( i ) + ( l + o ( l ) ) t g ^ ( l o g x ) - ( l + l o g 3 x r 

+ o ( - V - l o g x(log2 x)~x _ 1 + x log2 x(log x + log3 x)~x_1) 

Similar calculations lead to the other cases. 

REMARK. It follows from (3.6) and (3.7) that for fixed AeN, a zero is 
"generated" at z = -°°, when K moves from k-e to k + e (keN) . 

4. Lower bounds for the number of zeros. The upper bounds for the 
number of zeros increase with K and À. If K and A are both less than zero, then 
there exists exactly one zero, namely z = 0. We look for methods which control 
the change of the number of zeros, when K or À increases, since the methods in 
[5], which give exactly the number of zeros in C*, fail in this situation. In the 
following we confine ourselves to the investigation of the real zeros. We 
proceed essentially as follows: If K is fixed and À increases we use the 
functional equation 

(4.1) J - / K A ( * ) = /KA + I (Z) 
OK 

which follows directly from the power series representation. Using (4.1) we 
determine the sign of fK,K+i(z) at the negative zeros of fKiX(z) for K < 0 . We 
denote these zeros by zt = Z((K, À). Now we need the following identity 

(4.2) j - fKA*i) =ï(n +1)" logx(n +1) • log(n + l)z? 
OK M = 1 

= I (n + i r O o g ^ n + l)) f 1—Çdtzï 
log-f 

Jo , „ ! zi Jz, ^ zi l o g - l Zi log-

The sign of (d/dK)fKX(Zi) is determined by the following Lemma. 

LEMMA 4. Given functions fv(x) e Cv(-œ ? 0], v = 0 , . . . , i - 2 (i>2). Assume 
that each function fv(x) has at least i — v zeros, that all zeros are simple and 
denote these zeros by 

0>xl(v)>x2(v)> • • • 
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Suppose furthermore that 

( 4 3 ) (xfvW)' = /,_i(x) in (-oo,0] 

/o(0) = 0 and /0(x)<0 for x2(0)<x<0 , 

and that between two consecutive negative zeros of fv-i(x) there is exactly one 
zero of fv(x) for v = 1 , . . . , i -2. Then 

U (0)1(0). ^(0) J 
- « l o g — 

Proof. The idea of the proof is based on Wirsing's method [8], who proved 
the monotonicity of the zeros of fKi0(z) in K. First observe that /v(0) = 0, i.e. 
xx(v) = 0, that 

(4.4) ft(0)>0 by (4.3) and that /v(x)<0 

in x 2 ( v - l ) < x < 0 for v= 1,2,.. . , i - 2 . 

Next our assumptions on the relative position of the zeros imply 

(4.5) xk(v)<xk_1(v + l)<xk_1(^) for k = 3 ,4 , . . . , i-v, 
v = 0 , l , 2 , . . . , i - 3 . 

Combining (4.5) with (4.4) and with the fact that all zeros are simple, we obtain 

(4.6) sgn(/v(x)) = ( - i r v - 1 for x i _»<x<x £ _ v _ 1 (v + l), 
i> = 0 , . . . , i - 3 . 

By splitting the integral and partial integration we obtain 

J_f -M!L.d„± (-JnJMd, 
Xi(0) JXi(0) - X((0) Xt0 J^o) . Xt log—7- log-

, <fl(0 
, *(0) log—— r « " « 

and after (i — 2) steps 

j_r m At 1 ^2
 H 1V, r—iv+1) fM 

xmLo)log?M xmv%
VA } JL_(v) ( l o g ^°y + 1 

(with X!(i-1) = 0). Our assertion follows from (4.4), (4.6) and xf(0)<0. A 

Now we determine inductively the number of zeros of fKtk(z) for m < À < m +1 
(meN0, in case À <0 we have only one zero, namely z = 0) in case K <0. We 
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start with /KfX_m(z) which has exactly one zero (z = 0) for all K < 0 (for this, 
observe the upper bound for the number of zeros). fK,k-m+i(z) has at least two 
zeros which follows from the asymptotic behaviour of this function (i.e. 
/ K X _ m + 1 (x)>0 for *-»-<», Jc<0). The upper bound for the number of zeros 
shows that /K,x-m+i(z) has exactly two zeros for all K < 0 . For i > 2 and all 
K < 0 we assume now, that /KX_m+i_1(z) has exactly i zeros, which are 
nonpositive and simple. Next we determine the sgn(/KÀ_m+i(z(i(K, À - m + i -
1))) for jut = 2 , . . . , i with Lemma 4, and the sgn(/K k_m+i(z)) as z -* - » by the 
asymptotic behaviour for all K < 0 . TO apply Lemma 4 we define /v(x) = 
/«-vA-m+i-iM f ° r v = 0 , . . . , jut — 2. The assumptions of Lemma 4 are satisfied 
since we know the situation of /K X_w + i_1 (x) for x < 0 and all K < 0 . We find 
that /K,A-m+i(x) has i changes of sign for x < 0 , hence fK^-m+i(x) has at least 
i + 1 nonpositive zeros for all K < 0 . The upper bound for the number of zeros 
shows that this is the exact number. Finally, we find for all K < 0 that /K>x(z) has 
exactly m + 1 zeros which are nonpositive and simple. 
To investigate the cases K > 0, we use the functional equation 

(4.7) (z/K,x(z))' = /K+1,x(z) 

which follows from the power series representation. If fc < K < k + 1, m < A. < 
m + 1 (k, m<N 0 ) we start with /K-(k+D,x(z) which has exactly m + 1 zeros by 
the preceding discussion. Using (4.7) and Rolle's theorem we conclude that 

fK-kAz) h a s a s m a n Y r e a l z e r o s a s fK-(k+i)Az)-If zfK-(k+i)Az) -> 0 as z ^ -oo, 
Rolle's theorem implies that /K_k,x(z) has at least one additional real zero. This 
condition is only satisfied for /K,A(z) if KeN0 and K > 0 . SO we get after k + 1 
steps that / K A ( Z ) has at least m + 1 zeros if À£ l̂ J and m + k + 1 zeros if À e M. In 
case fc<K<k + l, A G N , we could also find the exact number of zeros only 
using the first method (based on (4.1)): Given k, meN 0 , we have shown 

No 

i) 
H) 
iii) 
iv) 

K 

K < 0 
K < 0 

fc<K<fc+l 
k<K=£fc + l 

A 

A < 0 
m < A < m + 1 

A = m + 1 
m < A < m + l 

lower bounds for the number 
of zeros of / K X ( Z ) in C* 

1 (resp. 0 if K2 + A 2 = 0 ) 
m + 1 
m + fc + 1 
m + 1 

Remarks 

2 = 0 
all zeros (except 2 = 0 ) 
negative and 
increasing with K 

REMARKS. 1) In the proceeding proof it was essential to make an induction 
first with respect to A (based on (4.1)) and then with respect to K (based on 
(4.7)), since otherwise Lemma 4 would not be applicable since we do not get 
the exact number of zeros in this case. 
2) The monotonicity of the negative zeros in K follows from the equation 

0 = - f / K , , (z j (<a)) = ^-/K,x('<, A)) + - f zt(K, A)/iA(z,(K, A)) 

and Lemma 4. 
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3) As already mentioned in (1) the number of zeros in case (iv) is not the exact 
number in general, which follows immediately from case (iii). In case (iv) also 
complex zeros occur, as it is shown by numerical calculations for the following 
case: A zero of /5,.i(z) lies in a neighbourhood of z = 0, 54507 + / • 0, 44807. 
Other calculations showed that one might expect complex zeros in case (iv) in 
general. 
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