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Abstract

Let£beanS0<n>-burkltei»rr i vmipK connected manifold M with a spin structure Q -* M. The string
class is an obstruction i. l.r- itv vtrvxiure group LSpin(n) of the loop group bundle LQ -*• LM to the
universal central exicriMifi i>t Z.1'^" *% i h\ the circle. We prove that the string class vanishes if and only if
1 /2 the first Pontrjajrin ,.:J>* . •• >onivhc^ when M is a compact simply connected homogeneous space of
rank one, a simplx conrx^tn! 4 ammsumal manifold or a finite product space of those manifolds. This
result is deduced h> uMn:- trir \ ikr^crj: Moore spectral sequence converging to the mod p cohomology
of LM whose f :-iern> i- ttw ^*.l^.^vhllJ homology of the mod p cohomology algebra of M. The key
to the consideration is rxivirrxr ..i t rmcphism of algebras, which is injective below degree 3, from an
important graded cnmmuun>r *-;rtva mi« the Hochschild homology of a certain graded commutative
algebra.

1991 Mathematics \uh,r, •.»„<«.» -:.. »• • \mrr Math. Soc): primary 57R20; secondary 55P35, 57T35.

1. Introduction

Let X be a simply connected space and LX the space of continuous closed paths
on X. If M is a simply connected manifold, then we regard LM as the space of
smooth free loops on M. Throughout this paper, the map /5, oev* : H*(X;Z) -»•
H—' (LX; Z) will be denoted by 3>x and called the D-map ofX, where /s, : / /*(5' x
LX; Z) ->• H*~[(LX; Z) is the integration map along S1 and ev : S1 x LX - • X is
the evaluation map. We say the D-map 3JX is good if ®x : H4(X; Z) ->• H\LX; Z)
is a monomorphism.

Let | be an 5 O (n )-bundle over a simply connected manifold M with a spin structure
Q ->• M. In [8], McLaughlin denned the string class /*(£>) in H2(LX; Z) which

©1998 Australian Mathematical Society 0263-6115/98SA2.00 + 0.00

129
https://doi.org/10.1017/S1446788700039446 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039446


130 Katsuhiko Kuribayashi and Toshihiro Yamaguchi [2]

is an obstruction to lift the structure group of the LSpin(w)-bundle LQ -*• LM to
LSpin(n), where T —> LSpin(n) —*• LSpin{n) is the universal central extension of
LSpin(n) by the circle and n > 5. It is asserted in [8, Lemma 2.2] that the first
Pontrjagin class p\ (f) is two times the pullback of the generator i of H4(BSpin(n); Z)
by the classifying map of a spin structure Q —> M for f. Following [8], we denote
the pullback of i by \p\ (£). The argument of the proof of [8, Theorem 3.1] enables
us to conclude that the D-map QiM : H4(M;Z) ->• H3(LX;Z) carries \p{<£) to
the string class fi(Q). Therefore if the D-map of M is good, then \i(Q) vanishes if
and only if \p\(%) vanishes for any S0(rc)-bundle £ with a spin structure Q -± M.
In this case we can deduce that the L5p/n(n)-bundle over the infinite dimensional
manifold LM has a string structure if and only if 1/2 the first Pontrjagin class of the
S0(n)-bundle over the finite dimensional manifold M vanishes. Our goal is to study
which manifolds have a good D-map. In [8, Theorem 3.1], it has been proved that
every 2-connected manifold has a good D-map. Recently, Kuribayashi has proved

THEOREM A ([4, Theorem 1]). Let M be a simply connected manifold. If
H4{M; Z) is torsion free and dim H2(M; R) < 1. Then the D-map of M is good.
Therefore, in this case, ^pt (£) vanishes if the string class \x(Q) vanishes.

We can deduce from Theorem A that the complex Grassmann manifold has a good
D-map.

In this paper, the following theorem will be proved. As a consequence we can
obtain many manifolds whose D-maps are good.

THEOREM 1.1. Let X be a simply connected space. Suppose that

(1.1) H4(X; Z) = Z © • • • © Z ® Z//?| © • • • Z/pk, where p, is prime for any i, and
(1.2) x2 = 0 for any element x e H2(X; Z/2) if H\X\ Z) has 2-torsion.

Then the D-map ofX is good.

Theorem 1.1 is a generalization of Theorem A. Applying Theorem 1.1 to simply
connected 4-manifolds and compact, simply connected homogeneous spaces of rank
one, we have

THEOREM 1.2. Let M be a simply connected 4-dimensional manifold, compact
simply connected homogeneous spaces of rank one or a finite product of those mani-
folds. Then the D-map of M is good. Therefore the string class fi(Q) vanishes if and
only ifjpt(ij) vanishes.

The classification of compact, simply connected, homogeneous space of rank one
has been made by Oniscik [9]. In [7], McCleary and Ziller have determined the
mod p cohomology of the homogeneous spaces completely for any prime p. These
results are also used to prove Theorem 1.2. Following [7, p. 767], we now list such
homogeneous spaces which are not diffeomorphic to spheres or projective spaces:
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(1) (S0(2n + 1), SO(2n - 1) x 50(2), 1), (2) (50(2w + 1), SO(2n - 1), 1),
(3) (SUQ), 50(3), 4), (4) (5p(2), SUQ), 10),
(5) (G2, 50(4), (1, 3)), (6) (G2, U(2), 3),
(7) (G2, SU(2), 3), (8) (G2) 50(3), 4),
(9) (G2, 50(3), 28),

where the triple (G, H, i) consisting of the Lie group G, the subgroup H and the
integer or a pair of integers means the homogeneous space G/H of G by the subgroup
H with the index i. Here the index of the subgroup H of G is that of the subalgebra
Lie(H) of the Lie algebra Lie(G) of G in the sense of Dynkin [2]. If a Lie group G
has n simple factors, then 7T3(G) is isomorphic to a free abelian group of rank n, that
is, 7T3(G) = ®"Z. Therefore in the above cases we can regard j , : n^H) —> n^(G)
as multiplication by an integer n or a pair of integers (n, m) associated to the inclusion
j : H -*• G. The assertion of [9, Lemma 4] guarantees that the index of the subgroup
H of G can be interpreted as the above integer or pair of integers determined by the
inclusion j .

In order to prove Theorem 1.1, we need to consider the injectivity of the D-
map ®x • H4(X;Z) -» //3(LX;Z). To this end, we study the algebra struc-
ture of H*(LX; Z/p) and the injectivity of the modpD-map SXp — fs<

 oev* '•
H\X; Z/p) -+ H\LX\ Z/p) for any prime p. The behavior of 0X.P in H4(X; Z/p)
is determined by Theorem 1.3 and Theorem 1.4. We note that the £>-map S>x is a
derivation (see [5, Section 3]). More precisely, ®x(xy) = S'x(x)y+(-l)desxx^x(y).
Here H*(LX; Z) is regarded as a two sided H*(X; Z) -module via the homomorphism
induced from the evaluation map n : LX —*• X at zero.

NOTATION. Let A be a graded algebra and 5 a subset of A. Then the ideal of A
generated by elements of 5 will be denoted by (5)A. For any graded vector space
V = ©,->oV', V-" means ©o<,<nV'. We denote the commutative algebra with the
2-simpIe system of generators {z;}j=i „ by A(z,,. ..zn)- Let T be a subset of a
vector space W over a field k. We denote the subspace of W generated by elements
of7byk{r} .

THEOREM 1.3. Suppose that X is a simply connected space and that there exists
a morphism of algebras

4>:B = A(yu. •., y,)®Z/p[xu ... ,*«] / (p l f . . . , Pm) - • H*{X\ Z/p),

which is an isomorphism below degree 4, where pu ..., pn are decomposable elements
with degree 4, deg Xj = 2 or 4, deg y, = 3 and I = 0, deg Xj = 2,3 or 4 if p = 2. We
regard H*(LX; Z/p) as a B-module via the composition map n*<f>. Then there exists
a morphism of algebras and of B-modules

: A(y,, ...,y,) <g) r[yt, ...,y,]<8 {Ap/{d(a>{),..., d(com))A) - • H*(LX; Z/p)
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which is a monomorphism below degree 3, where d(a)j) = £"=l(9/O,/3;c,);c,, degjt, =
degxj - 1, degyt = 2, degw, = degp, - 2andAp = kp[xu ..., xn]/(p , pm) <g>
A(xu...,xn) if p ^ 2, and A2 = k2[x,,... ,xn]/(pu ..., pm) (g> A(x,, ...,.*„) if
p = 2, vv/iere A(Jci , . . . , xn) is the commutative algebra with the 2-simple system of
generators {Xj}j=l „.

We identify the elements yj and xt with <p(yj) and <p(Xj), respectively. Let a* :
H*{X\ Z/p) -»• //*~'(f2X; Z / p ) be the cohomology suspension and i : QX -»• LX
the inclusion map.

THEOREM 1.4. One can choose the elements yt and Xj in Theorem 1.3 so that

i*{y~i) = cF'(yi), i*(xj) = cr*(xj) and

j=\ axJ

Notice that, for any simply connected space X, one can construct an algebra
and a morphism of algebras <f> satisfying the condition of Proposition 1.3 by using
indecomposable elements x, and yt in H*(X; Z/p).

This paper is organized as follows. In section 2, Theorem 1.2 is proved by applying
Theorem 1.1. Our main tool to prove Theorem 1.3 is the Eilenberg-Moore spectral
sequence converging to H*(LX; Z/p) whose £2-term is isomorphic to the bigraded
Hochschild homology of H*(X; Z/p). We will determine the indecomposable ele-
ments in H*(X; Z/p) with degree below 3 and relations between the elements via
the £2-term of the spectral sequence. To this end, Section 3 is devoted to studying
the Hochschild homology below degree 3 of a commutative algebra. In section 4,
Theorem 1.3 and Theorem 1.4 are proved. Moreover we study the structure of the
kernel of the mod pD-map 3>X.P • HA(X\ Z/p) -+ H3(LX; Z/p) as a vector space.
Finally, by using Theorem 1.3 and Theorem 1.4, we prove Theorem 1.1.

The authors are grateful to Professor Akira Kono for helpful conversations on the
proof of Theorem 1.4.

2. Proof of Theorem 1.2

Let X and Y be simply connected spaces satisfying the condition (1.1). By the
Universal Coefficient Theorem, we see that H2(X; Z) and H2{Y; Z) are torsion free.
Hence it follows from the Kiinneth Theorem that H4(X x Y; Z) is isomorphic to
®i+j=4H'(X; Z) <g> HJ(Y;Z). As a consequence, the product space X x Y also
satisfies the condition (1.1). It is clear that if X and Y satisfy the condition (1.2) then
X x Y also satisfy the condition (1.2). Let M be a simply connected 4-dimensional
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manifold. Since H4(M; Z) is isomorphic to Z, it follows that M satisfies the condition
(1.1). Thus, in order to prove Theorem 1.2, it suffices to show that any compact, simply
connected homogeneous space of rank one satisfies the conditions (1.1) and (1.2).

PROPOSITION 2.1. Any compact, simply connected homogeneous space of rank
one satisfies the conditions (1.1) and (1.2).

PROOF. It is clear that spheres and projective spaces satisfy (1.1) and (1.2). We
will show that the nine homogeneous spaces listed in Section 1 satisfy (1.1) and (1.2).

From the computation of the cohomology of the homogeneous spaces M by Mc-
Cleary and Ziller [7, Theorem 1], one can conclude that H*(M; Z) is torsion free for
the cases (1), (3), (5), (6) and (8).

We consider the case (9). Let it : Spin(n) -»• SO(n) be the universal covering.
By the Hurewicz theorem, (j71)* '• H3(Spin(3); Z) -*• H3(G2; Z) is multiplication by
28. In order to prove that j , : H3(SO(3); Z) -*• H3{G2; Z) is multiplication by 14,
we will show that n, : H3(Spin(3); Z) ->• H3(SO(3); Z) is multiplication by 2. Let
us consider the homology Leray-Serre spectral sequence {£» „, dr\ of the universal
50(rc)-bundle. Since £ 2 , = H2(BSO(3); H,(5O(3);Z)) = H2(BSO(3); Z/2) =
Z/2 and £ 2

0 = H4(.BSO(3); Z) = Z, it follows that £^0 = 2Z. Therefore we can
deduce d3 : £*0 -> ££3 is multiplication by 1/2. Note that ££3 = H3(SO(3); Z) -
Z. The index of the map B(TT)* : H\BSO{3); Z) = Z - • H4(BSpin{3); Z) = Z
is 4. From the Universal Coefficient Theorem, it follows that the index of the map
B(JT), : H4(BSpin(3); Z) -»• H4(BSO(3); Z) is 4 also. Thus the naturality of the
differential in the spectral sequence enables us to conclude that the index of n* is
2. Hence we see j , : H3(SO(3); Z) -»• H3(G2; Z) is multiplication by 14. To
prove that the homogeneous space M = (G2, SO(3), 28) satisfies the condition (1.1),
we consider the homology Leray-Serre spectral sequence {£^,, dr] of the fibration
50(3) -*• G2 -* G2/SO(3) = M. Let {FpHt}p>0 be the filtration of H,(G2; Z)
which comes from the spectral sequence {£»«, dr\. Notice that j , coincides with the
boundary homomorphism

H3(SO(3); Z) = £0
2

3 - • £0°°3 = £0
0;3 = F0H3 cFtH3C F2H3 C F3H3 = H3(G2\ Z).

Since E\2 = H2(SO(3); Z) = 0 and E], = 0, we obtain H3(M; Z) = £3
2
0 = £f°0 =

F3H3/F2H3. From [7, Theorem 1 (9)], it follows that £ 2 , = Z/2 and H4(M; Z)
does not have a 2-torsion part and a free part. Therefore we see Z/2 = £ | , =
£~ = F2H3/FiH3. The fact that the index of j is non-zero and ££3 is a subgroup
of H3(G2; Z) = Z allows us to deduce £Q3 = ££°3. Since M is simply connected,
£?_2 = 0. Hence j , coincides with the inclusion Z = H3(SO(3); Z) = ££3 = £^°3 =
£»3 = F0H3 = F\H3 C F2H3 C F3H3 = H3(G2; Z). The above argument yields
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that the inclusion Z = F\H$ —> F2H3 = Z is multiplication by 2. Since the index
of j , is 14, we have the inclusion Z = F2H^ -*• F3//3 = Z is multiplication by 7. It
turns out that //3(M; Z) = Z/7. By using the Universal Coefficient Theorem, we see
the manifold M = G2/SO(3) satisfies the condition (1.1).

The same argument works in cases (2), (4) and (7). From [7, Theorem 1],
we obtain that the only case where H4(M; Z) has 2-torsion is (4): (G, H, i) =
(Sp(2), SU(2), 10). It is clear that the manifold satisfies the condition (1.2) since the
manifold Sp(2)/SU(2) is 2-connected. •

REMARK 2.2. For the manifolds M in the cases (1), (3), (5), (6) and (8), HA(M; Z)
is torsion free. Therefore, by virtue of Theorem A, we can deduce that the D-maps
of these manifolds are good. Since the manifolds in the case (2), (4) and (7) are
2-connected, it follows from [8, Theorem 3.1] that the manifolds have a good D-map.
However, we cannot conclude that the manifold in the case (9) and product spaces of
compact, simply connected homogeneous spaces of rank one have a good D-map by
applying Theorem A or [8, Theorem 3.1].

3. The Hochschild homology below degree 3

The purpose of this section is to prepare the proof of Theorem 1.3. In order
to consider the algebra structure of H*(LX; Z/p), we use the Eilenberg-Moore
spectral sequence converging to H*(LX; Z/p) whose £2-term is isomorphic to the
Hochschild homology of H*(X; Z/p). Before we begin calculating this spectral
sequence, we give an available complex to determine the algebra structure of the
Hochschild homology of a certain commutative algebra. For details of the Hochschild
homology of commutative differential graded algebras, see [1]. For the rest of this
paper, a commutative algebra A will mean a positive graded commutative algebra
over Z/p such that A0 = Z/p and A] = 0. Let A be a commutative algebra
A(y, , . . . , y:) <g> Z/p[x\,..., xn]/(pt,..., pm), where p, is decomposable for any
i. We will suppose that 2 < degjt, < • • • < degjcn, 3 < degyi < • •• < degy;,
deg Pi < • • • < deg pm and / = 0 if p = 2. If p , , . . . , pm is a regular sequence, the
Koszul-Tate complex (see [11], [3, Proposition 1.1]) of A is a complex for computing
the Hochschild homology HH,{h). In the general case, we can also obtain a complex
for computing HHt(A) by extending the Koszul-Tate complex.

PROPOSITION 3.1. The Hochschild homology of A is calculable as the homology
of the following complex {g, d) :

S := A <8> T [ y , , . . . , y,] <g> A ( i , , . . . , xn) ® T[<ou ...,com]®tf.
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d(a>i) = Y^^dpjdxj)*,. d(k) = d(yt) = d(xj) = 0 for k e A, i = 1 , . . . , / ,
7 = 1 nandbidegk = (0, degX)forX € A, bidegi, = ( - 1 , degx,), bidegy, =
(—l,degy,), bidego>, = (—2, degp,). Here "^ is a suitable differential graded
algebra which is a tensor product of an exterior algebra and a divided power algebra.
Moreover, the differential d satisfies

v, y,] ® A( jc , , . . . , xn)}~2

® r[v, y,]®A(x1,...,xn)®r[a>l,...,(om])

r AS n.v, y,]®A(xu...,xn)}-3.

PROOF. Let A and B denote the commutative algebra A(yu..., y,) and
Z/p[jC|, xn]/[p . . . . Pm) respectively. If p , , . . . , pm is a regular sequence, then
there exists the follow mp proper protective resolution & —*• B — • 0 of B as a left
5<8)B-module(|lll. I?. Proposition 1.1]):

> = B V B® A(xu • • •, xn) ® r[a>u ..., com],

fj. : B (gi B —' B is the multiplication of B, d(xj) — Xj ® 1 — 1 ® Xj and d(o>,) =
E"=i Kijir where c ••> an element in B®B satisfying p(®\- \®p, = £ " = I ^(xj ®
1 - 1 <8>x,) and ni; » = "» <<»,-

In particular. \*c can c rH«.>v the element YZ=\ f^fk^ ® 1 + H*=i 1 ® M*^* as the
element £,, mcntunirJ jrxnc it p = JZ"=I £ ^ = 1 ij}^kxkXj.

Let us consider the v-cner j | case where p\,... , pm are decomposable elements. By
modifying the methml i" >. instruct a minimal model of a differential graded algebra,
we obtain the rcqu iroJ J i t! err nt lal graded algebra S. The argument of [11, Lemma 3.3]
enables us to deduce thai // " t » t = 0. When i + j = I, every element in &'••> can
be written by a linear L»>nihi nation of elements i l 5 . . . , xn. Therefore, H'j(^) = 0
for i + 7 = l. Supr*>se that i •*• j = 2 and HiJ(^) ^ 0. Then, from the definition
of the differential d.*e obtain U. j) = ( - 2 , 4 ) . If the element u = £ \ < . a , ; i , i ; is in
Ker J - 2 4 , then 0 = <iw = ^...^^(x,® 1 - 1 <g) jt,-)jcj,- Y.i<jaiMi ® l ~ l ® ^ ) ^ , .
Thus we see that almix £ I - l®x,)H haB_i n(jcn_,<8)l - l<8)xn_,) = 0and hence
a,n = 0 for any i < n. Inductively, we have au = 0 for any i and j . From this fact,
we can conclude that each element of a basis [zi,..., zs} for H~2A(<P) represents an
element ^a^XiXj + Y^bku>k, where bk is nonzero for some k. The element Za and its
representative element will be denoted by the same notation. We define the differential
graded algebra (^,d) by &x - & ® A(z«) and d(Zc) = z«, where bidegz,, =
( -3 ,4 ) . Clearly, HiJ(<?i) = 0 for i + j = 2. From the form of a representative
element of z«, it follows that d(A(z«)) n B ® B ® A(xu ..., xn) = 0. Consider the
case where i + j = 3. It is easy to verify that Kerd'2-5 r\Z/p{XjXj\ 1 <i,j < n] = 0
in the only case where p = 2 and that Kerd~3-6 D Z/p{XjXjXk; 1 < /, j , k < n) = 0.
We define the elements vp with total degree 3 corresponding to representative elements
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vp of a basis of Hij(&{) for (/, j) = ( - 2 , 5) and ( - 3 , 6). Put &2 = &x ® T[vfi] and
extend the differential d by demanding tha.td(vfi) = vfi. The elements of Kerrfn^,"1 4

are characterized as follows:

LEMMA 3.2. Let u be an element ofKerd D ^ j " " 1 ' 4 . Then u can be written as

5 Z " = i d = i *;*•** ® 1 + J2"k=i ! ® *-kjXk)xj with coefficients Xjk satisfying Xn —

a<V;y + • • •+a^njj and (Xjk +kkj) = a<l>QL™ + n™) + • • •+a™(jiff+ n%>)for

some a(l)(for the notation iifk see the definition of the above resolution &). Therefore,

the element 1 ®mA u in A ®A®A &\ belongs to Z/p{d(a>\),..., d(com)}.

Let {ua} be a basis for H " 1 - 4 ^ , ) . We extend the complex &2 to ^ 3 = &2<2>
V[ua] = &x ® r[vp] ® r[iia] with the differential defined by d(iia) = ua. From
this construction, we see that HiJ(&2) = 0 for / + j = 3 and d{T[vp\) n B ® B ®
A(Jci , . . . , Jcn) = 0. By continuing the same process above total degree 4, we can
get a proper projective resolution &B of B as a B <g> B-module : <?8 = ^ ® ^ By
virtue of [11, Lemma 3.2], we conclude that the differential graded algebra (£A,d),
defined by &A = A <S> A <g> F [ j i , . . . yi] and d(yi) = _y, ® 1 — 1 ® y,, is a proper
projective resolution of A as an .A ® A-module. Therefore, the differential graded
algebra § = SA ® SB is a proper projective resolution of A as a A ® A-module. Thus
the Hochschild homology HHt,»(A) = r<?r^A(A, A) is obtained as the homology
of the complex ($, rf) = (A <8>A®A S ,\ ® d). From Lemma 3.2, it follows that
d(ua) = 1 ®A®A d(ua) — 1 <8>A®A «a is in Z/p{d((Ot),..., d(com)}. This fact and the
definitions of d(Za) and d(vp) allow us to deduce that

y,] ® A(jc,, . .

A

This completes the proof of Proposition 3.1. •

PROOF OF LEMMA 3.2. For any element u € Kerd n ^ [ A , we can write u =
, £;i ; , where | y = ^ = 1 Xjkxk ® 1 + E L , 1 ® ^ ^ * - Since d(u) = 0 in J^,04 =

, it follows that the element

; = l k=\ j=\ k=\

j=\

belongs to the ideal (p, ® 1, 1®P,; 1 < « < m) in Z/p[x\,..., xn]®Z/p[x ,xn].
This fact enables us to conclude that £ " = l £^ = 1 A.;ijrt ® x7 = JZ"=I ^ = 1 A.^jr; (8) xk

and so A.;i = k'kJ. Moreover we see Y?j=\ Z!Li ^jk*kXj = «(1)Pi H 1" «<m)Pm =
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<*0)(£U £*=« *#***>>+• • •+a(m)(E •=, E L , /#***,•) inZ/pU,,... , *„]. Thus
we have

J=1

in Z/p[xt,..., xn]. Therefore, the required relations for Xjk are obtained. Let t̂ be
the multiplication of B. Since £i(f,7) = E L i (^;t + V<Vj)xk, it follows that

- E

*='

Thus we have Lemma 3.2. •

Applying Proposition 3.1, we can partially know the algebra structure of the
Hochschild homology of the graded algebra A.

PROPOSITION 3.3. Let A be the graded algebra h.{y\,..., yi)<g>Z/p[xu ...,xn]/
( p , , . . . , pm). Then there exists a morphism of algebras

4> : K(yu ...,y,)® V[yu ..., y,] <g> {A/(dcou ..., da>m)A}

which is a monomorphism below total degree 3, where A = Z/p[x\,.. .xn]/
(P\ pm)®A(xu...,xn).
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PROOF. Let us consider the following commutative diagram:

d
xn) — 0

s s
d

where / and j are the inclusion maps and d is the restriction of d to J ^ <g> 2,/p{a>\,...,
com). Suppose that H(i)[z] = 0 and the total degree of [z] is below 3. Then i(z)
belongs to {d{£) D J ^ } - 3 . From Proposition 3.1, we can see that i(z) is in the vector
space {Imd o j}-2. Therefore z is an element in Imd. The map (j> = H(i) is the
demanded homomorphism. •

4. Kernel of the D-map @x.p

Let X be a simply-connected space. In order to study the structure of the kernel
of 3>x p = fs, oev* : HA(X; Z/p) -» H3(LX; Z/p), it is important to consider
the ring structure of H*(LX; Z/p), in particular, to clarify indecomposable ele-
ments with degree below 3 in H*(LX; Z/p) and relations between their elements
in H3(LX; Z/p). To this end, we use the Eilenberg-Moore spectral sequence con-
verging to H*(LX; Z/p) ([11],[3]) whose E2-tenn is the Hochschild homology of
H*{X-Z/p):

Er = Tor^{X.z/p^H.iX.z/p)(H*(X; Z/p), H*(X; Z/p)) = HH(H*(X; Z/p)).

Proposition 3.3 plays an important role in explaining the algebra structure of H*(LX;
Z/p). Before we prove Theorem 1.3, we prepare a lemma.

LEMMA 4.1. Let C\ and C2 be commutative algebras. Suppose that there exists
a morphism of algebras 9 : C\ -*• C2 which is an isomorphism below degree s. Then
Tore®e(8, 9) : Tor'^J

i&Ci(C[, C|) —> Tor'^<sc^(C2, C2) is an isomorphism ifi — 0 and
j < s, i = — 1 and j<s — lori<—l and i + j < s — i — 2.

PROOF. Let Bar**(C]) be the complex obtained from the bar resolution of C\ as
an C\ ® C\-module and Bar* *(C2) the similar complex constructed from C2. Let a
be an element of Bar~'*(C\). We can write u = a[b\| • • • \bt]c, where a and c are
elements of A and bt is an element of C\ <8> C\. If there exists an element bt such that
deg bt > s, then deg a = deg a + deg b\ + • • • + deg b, + • • • + deg £>, + deg c — i
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> 0 + 2-1 \-2 + s + 2-\ (-2 + 0 - / = s + 1 - 2 when i ^ 0. Thus we
see that the morphism BariJ(9) : Barij(Ci) -*• BatJj(C2), which is induced from 9,
is an isomorphism if —i + j < s + / — 2 and j ^ 0. It is clear that B0j(9) is an
isomorphism if j < s. Therefore we have Lemma 4.1. •

PROOF OF THEOREM 1.3. Let {Er, dr] be the Eilenberg-Moore spectral sequence

converging to H*(LX; Z/p). By virtue of Proposition 3.3 and Lemma 4.1, we have
a homomorphism yj/ from B := A(y,, . . . , y/) ® T [ j i , . . . , yi\ ® [Ap/(d(a)\),...,
d(,<0m))Ap} to £j * which is a monomorphism below degree 3. From [10, Propo-
sition 4.2], it is seen that 7r*(y,) = y, € F°H*{LX; Z/p) and **(*,-) = *,• e
F°H*(LX; Z/p). Therefore the injectivity of n* allows us to conclude that d2 :
£72 * -» £°•* is trivial. Since £2'; = 0 if q < - 2 p , it follows that the ele-
ments in E^' survive in the f^-term if j < 4. Thus we have an monomor-
phism V : B-3 -*• (TotEo*)-3. In order to complete the proof of Proposi-
tion 1.3, we must solve extension problems below degree 3. More precisely, we
need to consider whether it is true that ]T A,.;*,*,- = 0 in H*(LX;Z/p) when
^XijXiXj € Z/p{d(co\),..., d(com)}. Note that the element Xj in £J"'* and its
representative element in H*(LX; Z/p) are denoted by the same notation. Since the
generators with degree 3 and filtration degree 0 are the elements yt,..., yh we can
write the element Yl^ux'Xj ^ 51M*}7* with some constants ixk. Let n : LX —• X
be the fibration defined by n(y) = y(P). From [10, Proposition 4.2], we see that the
element yk in £°'* is identified with the element n*(yk). Hence the given equality is
written as £ ^UX'XJ

 = Yl l^k^*(yk)- Let s be the section of the fibration LX —>• X
defined by s(x) = Cx, where Cx is the constant loop at x. Since we can choose
a representative element of Jc, so that s*(xt) = 0 in H*(X; Z/p), it follows that
^2fj,kyk = s*(£kjjXjXj) = 0 in H*(X\ Z/p) and hence fik = 0 for any k. Thus
Y.KjXiX} = 0 in H*(LX\Z/p) when Y,XijxixJ € Z/p{d(a>t),... ,d(com)}. We
have proved Theorem 1.3. •

REMARK 4.2. In the case p = 2, we cannot solve extension problems completely
by using the usual argument on total degrees and column degrees of the associated
bigraded algebra £Q*. For example, it may be possible that xf is equal to some y;.
However some information about the squaring operations in H*(X; Z/2) allows us to
determine whether or not xf is equal to yy. To be exact, if Sq' x, = syj then xf — sy}•.,
where s = 0 or 1. For details, see the proof of [6, Theorem 2.5].

PROOF OF THEOREM 1.4. Let {£r, dr] be the Eilenberg-Moore spectral sequence
used in the proof of Theorem 1.3. By applying [10, Proposition 4.5] and the same
argument as the proof of [3, Lemma 1.3], we can show that /*(y,) = o*{yd and
i*(xj) = o*(Xj) with any choice of representative elements of y, and Xj in EQ['*. To
proceed with the proof, we need the following lemma:
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LEMMA 4.3. For each indecomposable element Xj in EQ1'*, one can choose its

representative element Xj in H*(LX; Z/p) so that @x.p(xj) = •*/•

From Lemma 4.3 and the fact that the D-map @X.P is a derivation, we can get
<2)x p = Yl"j=\ Xjd/dXj. This completes the proof. •

PROOF OF LEMMA 4.3. Let / , : X -> Kj = K(Z/p, n}) be the map representing
the element xj of H"J(X; Z/p), where«; = degx,. From the naturality of the D-map
@x.P, to prove Lemma 4.2, it suffices that @K._p(ij) = Z,, where ij is the fundamental
element of H"j(Kj\ Z/p) and Tj is the element corresponding to ij (see Theorem
1.3). We denote the map /s, oev* : H*(Kj\Z/p) -+ H*(Sl x QKj-,Z/p) -+
H*~l (£lKj; Z/p) by &. Here QX means the space of continuous loops on X which
map 1 € 51 to the base point of X. Let a* : H\Kj-,Z/p) -± H*-](QKj;Z/p)
be the cohomology suspension. Since /*(!,) = o*(ij) and er*(t,-) is the funda-
mental element in Hni-\Q.Kj-, Z/p) = H"'-\K(Z/p, nj - 1); Z/p), we see that

if &(ij) = a*{ij) then @Kj.P(lj) = h- W e n o w P r o v e ^({y) = CT*('y)- Let
/ : (I"\drj) - • (Kj,*) be a continuous map and g : /">"' ->• QKj a map
defined by g(t)(s) = f(t,s) for t e /" '" ' and 5 6 / . The argument of the
proof of [8, Proposition 2.1] enables us to deduce that the element dual[/] in
d\ia\(7tnj(Kj) <g> Z/p) is mapped to dual[g] in &ud\(Tzn.-\(SlKj) <g> Z/p) by 2> under
the isomorphisms Hn'{K}\ Z/p) = dual(//n;(A:;; Z/p')) = dual(7rnj(Kj)®Z/p) and
H"i-](QKj; Z/p) = dual(7r^_,(S2A'y)®Z/p). Lete, : PKj - • AT; be the path-loop

fibration defined by £i(y) = y(l). Then the homology suspension Hnj_\ (QKj•,; Z) •?-
Hnj(PKj, SlKy, Z) ^ Hnj(Kj-, Z) is regarded as the homomorphism7rny_i(fi^) •?-
nnj (PKj,QKj) -̂ > ^nj (/iTj) under the identification with the Hurewicz maps. We de-
fine the map / : (/">, 3/">, /">-' x 0 U 3 / ^ - ' x /) - • (PATy, QKj, *) by /(r , S)(M) =
* if 0 < u < 1/(5 + 1) and f(t, s)(u) = f(t, u(s + 1) - 1) if 1/(5 + 1) < u < 1.
Then we can deduce that e i *(/) = / and that 3 (/) is homotopic to g by the homotopy
H : ( / " H x / , 3 r - - i x / ) _> (QKj,*) defined by H{t,l)(u) = *i fO<n <//2and
#(r, /)(«) = /(f, (2M - /)/(2 - /)) if 1/2 <u <l. Thus it follows that cohomology
suspension a* maps dual[/] to dual[g]. This completes the proof. •

We can determine the structure of the kernel of the D-map S>x.P '• H4(X; Z/p) ->
H3(LX; Z/p) completely. Let r\p : H4(X; Z) -* H\X; Z/p) be the mod p reduc-
tion. Then we have

PROPOSITION 4.4. Suppose that X is a simply connected space and that there

exists a morphism of algebras T)T to H*(X; Z/p) from an algebra A(yu .. .,yi) ®

Z/p[x\,... , xn]/(pi,... , pm) which is an isomorphism below degree 4, where deg p,

= 4. If x is an element in the kernel of the D-map S>x = fs, °ev* : H*(X; Z) -»•

H3(LX; Z), then r]2(x) = ^ kjxffor some constant A., and rjp(x) = 0 if p ^ 2.
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PROOF. By virtue of Theorem 1.3 and Theorem 1.4, we see that @X.P coincides
with the operator £"_, Jc, 9/9*,. Therefore, the image of the map $X.P is included in
the image of xfr of Theorem 1.3. Hence, we can deduce that if ^x.p(a) = 0 for some
a € H4(X; Z/p), then

9a

We can write a = ax + a2 by using elements c*i and a2 which are linear combinations
of XjXj and xk respectively. From the definition of d(a)j), it follows that a2 = 0 and

in Ap for some £,- in Z/p. Since degp, = 4 and deg9(a! — ££/P;) /9*, = 2 for
any element x, with degree 2, one can conclude that d(a\ — YLHjPj)/^Xi — 0 in
Z/p[xx ,...,xn] for any i. Thus, in Z /p[* , , . . . , j : n ] / (p , , . . . , pm), a, = 0 if p ^ 2
and a, = £ A.,*,2 if p = 2. •

PROOF OF THEOREM 1.1. For any element * in Ker{^M : H4(X;Z) ->•
H3(LX; Z)}, its mod p reduction r)p(x) is zero if p ^ 2 by Proposition 4.4. Therefore
it follows from (1.1) that the free part and odd torsion part of x is zero. Moreover, the
condition (1.2) enables us to deduce that the 2-torsion part of x is zero. •

REMARK 4.5. So far, we have considered the string class of an 5O(n)-bundle
in the case where n > 5. The case n = A must be treated separately as mentioned
in [8, Remark, page 150] because the universal central extension of LSpin(ji) is an
extension by a 2-torus. The fact that SO(4) is not simple causes the difference. In
the case where n = 3, since SO(3) is simple, we can define the string class of an
5 0 (3)-bundle with a spin structure in similar fashion to the case n > 5. However, the
index of the homomorphism Bn* : HA(BSO(3); Z) = Z -> H*(BSpin(3); Z) = Z
is 4, not 2, where n : Spin(3) -*• 50(3) is the universal covering. This fact is proved
by using the same argument as the proof of [8, Lemma 2.2, page 148]. Notice that
H5(BSO(3); Z) is zero though H5(BSO(n); Z) = Z/2 for n > 5. Thus the string
class fi(Q) of an 5O(3)-bundle £ with a spin structure Q -*• M can be regarded as the
image of 1/4 the Pontrjagin class off by the D-map @M : H4(M; Z) -»• H3(LM; Z).
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