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LETTER TO THE EDITOR

Dear Editor,
On the time spent below a random threshold by a system

driven by a general counting process

Recently, Kirmani and Wesołowski [1] studied the time spent under a random threshold by
a stochastic process driven by Poisson events. This is the process

S(t) =
∫ t

0
1(YN(u) ≤ X) du, t ≥ 0,

where Y = (Yi)i≥0 is a sequence of independent and identically distributed (i.i.d.) random
variables, independent of a nonhomogeneous Poisson process N = (N(t))t≥0, X is a random
variable independent of all else, and 1(·) is the indicator function. Let the Yi have distribution
function G and tail Ḡ = 1−G. Kirmani andWesołowski proved the following two propositions.

Proposition 1. ([1].) In the model defined above, for any t ≥ 0,

E(S(t)) = t E(G(X)), (1)

var(S(t)) = χ(t) E(G(X)Ḡ(X)) + t2 var(G(X)), (2)

where

χ(t) = 2
∫∫

0<u<v<t

P(N(u) = N(v)) du dv.

Proposition 2. ([1].) If N is a homogeneous Poisson process, then

S(t)

t

d−→ G(X) as t → ∞. (3)

We show that all of these results hold in more general settings and that (3) holds in a
more general sense. Extending (1) and (3) is trivial. Our main result is an extension of (2).
Furthermore, our proof of (2) is simpler and more transparent than the proof in [1].

Our assumptions for (2) and initially for (1) are the same as those above except that now
N is a general point process with points denoted by 0 ≤ T1 ≤ T2 ≤ · · · , where Ti → ∞ as
i → ∞, and we define T0 = 0. For any fixed t , let τi = Ti+1 − Ti , for i ≥ 0 and Ti+1 ≤ t ,
and τi = t − Ti , for Ti ≤ t and Ti+1 > t . For any fixed x, let 1i be the indicator of the
event Yi ≤ x, i ≥ 0. The 1i are i.i.d. with E(1i ) = G(x) and var(1i ) = G(x)Ḡ(x). Let
Sx(t) = (S(t) | X = x). By definition,

Sx(t) =
N(t)∑
i=0

τi 1i and
N(t)∑
i=0

τi = t.
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For any t , let A be the collection of random variables {N(t), τ0, . . . , τN(t)}. We then obtain

E(Sx(t) | A) = E

(N(t)∑
i=0

τi 1i

∣∣∣∣ A

)
=

(N(t)∑
i=0

τi E(1i )

∣∣∣∣ A

)
=

(N(t)∑
i=0

τiG(x)

∣∣∣∣ A

)
= tG(x),

E(Sx(t)) = tG(x), (4)

var(Sx(t) | A) =
(N(t)∑

i=0

var(τi 1i )

∣∣∣∣ A

)
=

(N(t)∑
i=0

τ 2
i var(1i )

∣∣∣∣ A

)
= G(x)Ḡ(x)

N(t)∑
i=0

τ 2
i ,

var(Sx(t)) = E[var(Sx(t) | A)] + var[E(Sx(t) | A)] = G(x)Ḡ(x) E

(N(t)∑
i=0

τ 2
i

)
. (5)

Now, (1) follows immediately from (4) and, as E(Sx(t) | A) is a constant, it has zero variance.
We now show that

E

(N(t)∑
i=0

τ 2
i

)
= χ(t).

For each (u, v) on a two-dimensional uv-plane, let 1(u, v) be the indicator of the event {N(u) =
N(v)}. We first claim that

∫∫
0≤u,v≤t

1(u, v) du dv =
N(t)∑
i=0

τ 2
i . (6)

Consider a realization of N(t) = 2. The integration above is carried out over the square
(0, t) × (0, t) on the uv-plane. In Figure 1, we show where the jumps in N occur for the same
realization, where the jump locations for {N(u)} are represented horizontally and the jump
locations for {N(v)} are represented vertically. Note that (0, t) is cut into three segments, of
lengths τ0, τ1, and τ2, in each dimension. We have 1(u, v) = 1 if and only if (u, v) is in one of
the three squares along the diagonal, with sides of length τ0, τ1, and τ2, respectively. Hence,∫∫

0≤u,v≤t
1(u, v) du dv = τ 2

0 + τ 2
1 + τ 2

2 for this realization. The same idea holds in general,
and (6) holds on every sample path.

Taking the expected value, we have

E

(N(t)∑
i=0

τ 2
i

)
= E

(∫∫
0≤u,v≤t

1(u, v) du dv

)

=
∫∫

0≤u,v≤t

E(1(u, v)) du dv

=
∫∫

0≤u,v≤t

P(N(u) = N(v)) du dv

= χ(t).

Interchanging expectation and integration above is valid because the 1(u, v) is nonnegative
(Fubini’s theorem). Combining this expression with (5), we have var(Sx(t)) = χ(t)G(x)Ḡ(x)

and, as var(S(t)) = E[var(S(t) | X)] + var[E(S(t) | X)], we obtain (2).
In the derivation of (4), we see that independence of the Yi is not needed. Hence, for (1),

we require only that the Yi all have the same distribution.
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Figure 1: Illustration of
∫∫

0≤u,v≤t 1(u, v) du dv = τ 2
0 + τ 2

1 + τ 2
2 .

Regarding limiting behavior as t → ∞, we write

N(t)

t

∑N(t)−1
i=0 τi 1i

N(t)
≤ Sx(t)

t
=

∑N(t)
i=0 τi 1i

t
≤ N(t) + 1

t

∑N(t)−1
i=0 τi 1i +K

N(t) + 1
,

where K = (TN(t)+1 −TN(t)) 1N(t). Thus, Sx(t) converges with probability 1 to G(x) provided
that N(t)/t converges to a finite constant with probability 1. This will occur when N is a
stationary and ergodic point process and, when it does, S(t)/t converges to the random variable
G(X) with probability 1, a stronger mode of convergence than in (3), under weaker conditions.
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