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LIMIT THEOREMS FOR STOCHASTIC

DIFFERENCE-DIFFERENTIAL

EQUATIONS

TSUKASA FUJIWARA AND HIROSHI KUNITA

1. Introduction

There are extensive works on the limit theorems for sequences of stochastic

ordinary differential equations written in the form:

(1.1) ήjf=ftH(<Pt) +gU<Pt),

where ft

n = ftn(x), t > 0 is a stochastic process and gn

t — gΊ(x), t > 0 is a

deterministic function, both of which take values in the space of vector fields. The

case where {ft

n}n satisfies certain mixing conditions has been studied by Khas-

'minskii [7], Kesten-Papanicolaou [6] and others. The limit process is characterized

as a diffusion process governed by a stochastic differential equation based on a

Brownian motion. Further, the approximation theorem of stochastic differential

equation studied by Wong-Zakai [18], Ikeda-Watanabe [4] etc. is also formulated

in this way. A unified method of treating these problems was proposed by Kunita

[9].

On the other hand, a lot of attention has also been shown to the discrete time

approximation of stochastic differential equations. Approximating sequence of

equations is written as

(1.2) φk+ι = φk + fnφk)ξnk+ gίiψk), Λ = 1,2,.. .

where {ζϊ) is an array of random variables with certain mixing conditions and

ifk1, gί} n is an array of continuous maps of the state space into itself. See Kush-

ner [13], H. Watanabe [17] and Fujiwara [2]. The limit process is either a diffusion

process mentioned above or a diffusion process with jumps governed by a stochas-

tic differential equation based on a Levy process.

In this paper we will present a unified method which is applicable both

to stochastic ordinary differential equation (1.1) and to stochastic difference
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equation (1.2). Equations are written as stochastic difference-differential equa-

tions of the form:

(1.3) (ft = xo + £ ifun(φnu-) + gnu(φnu-)} dAl.

Here {/£} is a sequence of vector field valued stochastic processes and {g£\ is a

sequence of deterministic vector field valued functions of u. iAZ) is a sequence

of deterministic nondecreasing cadl&g (right continuous with left hand limits)

functions of u.

Assumptions required for equations (1.3) and techniques employed for the

proof of the limit theorem, are closely related to those in [9], where stochastic

ordinary differential equations are discussed. However there are some important

differences. In this paper, we get a sharper estimate of the solution. This enabled

us to obtain a better result than authors' previous works. Another different point

in this paper is that we introduced Levy measures so that the limit process can

have jumps and can be characterized as a Markov process associated with Levy's

infinitesimal generator.

The organization of this paper is as follows. In the next section we state our

main theorem (Theorem 2.1). Assumptions on equations are presented in an

abstract manner. They appear to be technical and complicated. A reason why we

presented the theorem in this form is that we want to apply the theorem to

various types of limit theorems. The theorem will be proved at Section 3. Since

the proof is long, it will be divided into four subsections.

In the last section we will apply the theorem to stochastic ordinary differen-

tial equations. Two cases will be discussed separately. The first is the case where

certain uniform mixing (or 0-mixing) conditions are satisfied (Theorem 4.2). The

second is the case where certain strong mixing conditions are satisfied (Theorem

4.6). Our typical results are Corollaries 4.5 and 4.8. There we discuss the weak

convergence of solutions of equations

(1.4) ήfr = >fcf{φt,nt),

where f(x, t) = (f1(xf 0 , . . . ,fd(x, 0) is a stationary process with mean 0.

We show that the sequence of solutions {φn} converges in law to a diffusion pro-

cess if the following (a) and (b) are satisfied:

(a): E[suplx\<.N I d2f(x, 0) I2] < °° for all N > 0 and | a \ < 2.

(b): The uniform mixing rate φ(t) satisfies fo°° φ(s)1/2ds < °°,

or if the following (a)'δ and (b)'r are satisfied for some δ e (0, °o) and γ^

(0, 5/2(2 + 5)(1 +d)).
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(a)'δ: E[sup\x\£N \ d£f(x, 0) |2+<5] < °o for all N > 0 and | a \ < 2,

(b)f

r: The strong mixing rate a(t) satisfies /0°° a(s)rds < °°.

Here d£ = (d/dx1)"1 (d/dxd)ad and | α | = cti + + ad. The diffusion and

drift coefficients (characteristics) of the limit process are given by

(1.5) aij(x) = £ [ ( / > ( * , s)ds)f'(x, 0)] + £ [ ( / > " Cr, s)ds)fi(x, 0)],

(1.6) &'(*) = ΣE[(Γ^fj(x9 s)ds)fi{xJ 0)].
;=1 W 0 dX} '

Similar limit theorems have been discussed by many authors. See Khas'mins-

kii [7], Kesten-Papanicolaou [6], Kunita [8], [9], Kushner [13], and references there-

in. Conditions assumed in these works are much stronger than ours. Concerning

moment conditions, f(x, t) is assumed to be bounded in [7], [13] and is assumed

to satisfy Condition {a)'δ with δ > 2 in [9]. It seems to us that our present condi-

tion (a) (existence of the second moment) would be the best possible one as far as

the moment conditions are concerned, since our assertion can be regarded as

a central limit theorem. Conditions (β)i and (b)r

7 with δ^ (0, °°), γ^

(0, <5/2(2 + <5)(1 + d)) is also a relaxization of conditions in [6] and [8].

Another interesting application of our main theorem will be to the sequence of

stochastic difference equations (1.2). We show in Fujiwara [3] that the sequence of

solutions of stochastic difference equations of the form (1.2) converges in law to a

certain Markov process with jumps under mixing conditions for {ξk) similar

to (a) or (a)'δ. Futher, we show in Kunita [11] that the sequence of random mea-

sures of the form

1 [nt]

(1.7) Bn(t, E)=^Σ ilEi^ξΐ) ~ πn(E)},

where Iε is the indicator function of the set E and πn is the law of Jnζu con-

verges in law to a Brownian random measure B(t, E) and the sequence of ran-

dom measures

(1.8) N"(t,F) = ΣlF(ω,

converges to a Poisson random measure N(t, F). These limit theorems are ap-

plied for the limit theorem of solutions of stochastic difference equations (1.2).

2. A convergence theorem

We begin by introducing some function spaces. Let A: be a nonnegative integer
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and let Ck = C*(R', Rd) be the set of all CA-maps from Rd into itself. For

C*, we define the norm | | / | | * by

(2.1) ll/llg = sup( | f f l j . ) + Σ sup\d2f(x) I

We denote by C£* the set of all / e C* such that | | / | |* < °°. The space C£* and

the norm | |/ | |* are often denoted by C 6 * and | |/ | |*. We also denote by | | / | | (||/||*)

the supremum norm (the C*-norm, respectively).

Now let (Ω, 2F, P) be a probability space with a family of nitrations {2?ΐ;

t > 0}WeN Suppose that for each n e N we are given an {HF?} -adapted cadlag

stochastic process ft

n = ft

n(x), t> 0 with values in Cf* and a determinitic

cadlag function g* = gl{x), t>0 with values in Ci* . Suppose further that we

are given a sequence of nondecreasing, deterministic and cadlag functions {A?}

such that Ao = 0. We often use the following abbreviations. For nondecreasing

processes A and JS, we denote by A <€ B if B — A is also nondecreasing. We set

ΔAf = Af- AU

(2.2) fiδix) =ff(x)hfSΔA$*ίδ), fίAix) =fu(x)I{δ<\\fu»ΔAZ\\*<.M),

and

(2.3) JlΛx) = E[fM*)Ί, fuAx) =funAχ) -flAx),

for 0 < δ < M, where it is assumed that the expectations fZ,δ(x) exist for all

n, δ, w, x and fZj, u > 0 is a Cf*-valued cadlag function for any n and δ. Note

t h a t / ώ = /*? and/ώ£ = 0 hold if AAl = 0 . We denote by ftM) the i-th component

of /tt

w. We also denote by Rd ® R e (Sd) the set of all d X e real matrices (the set

of all d X d real, symmetric, nonnegative definite matrices, respectively).

Consider the sequence of stochastic difference-differential equations (1.3).

For almost all ω e β, it has a unique global solution φf, t ^ 0. It is a cadlag

process with values in Rd. The purpose of this paper is to discuss the weak con-

vergence of the sequence of cadlag processes {φ")n. Let Όd = D([0, °°), Rrf) be

the space of all cadlag functions from [0, °°) to Rd, endowed with Skorohod's

/i-topology. See Jacod-Shiryaev [5] for the Skorohod space. We denote by SB(Drf)

its topological Borel field. Then the law of the cadlag process φ", t > 0 can be de-

fined on the space (Dd, 38(Dd)) as usual. The sequence of cadlag processes {φ"}n

is said to converge in law if the corresponding sequence of laws on (Dd, 38(Dd))

converges weakly.

To establish the weak convergence of {φn)n we introduce the following

system of conditions (A. I )~(A.IV) for {ft

n(x)> gϊ(x), A?}w.
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(A.I): (1) For every compact set K in Rd and positive constants M, T, there

exists a sequence of nondecreasing cadlag processes {Dn} n satisfying following

properties (i) and either, (ii) or (ii)'

(1) For all 5 < t < t' < T,

(2.4) Σ { f sup I E[ f dfflM{y)dAZ \ ?ζ]\ \ dffn

v,M{x) I dAS
|α|<2,|0|<a J{s>t]x,veK J (υ.t'\

+ f sup I dίfMx) \2ΔAn

v dAϋ) < Df - D?.
J (s,t] x<=κ

(ii) The sequence of compensators {Dn'p} n of {Dn} n is C-tight in the space

Di, that is, it is tight and any limit law is supported on the space of continuous

paths C([0, °°), R 1 ). In addition, Φ?'p}n is uniformly integrable for each t

(iiy {Dn)n is C-tight in the space Di and {Df} n is uniformly integrable for

each t.

(2) For every compact set K and for every pair of positive constants δ < M,

there exists a sequence of deterministic nondecreasing functions {Dn}n satisfying

the following properties.

(i)

(2.5) Σ if sup\dί(fn

u,M(x)+gnu(x))\dAn

u
HI < i J(0M x e K

+ f E [sup I dSf£A(x) |] dAZ) « DI
J (0,t] χ s K

(ii) For every T > 0, supW€=N DT and

(2.6) lim lim sup sup (5? - 5?) = 0.

(AJI): (1) There exists a family of σ-finite measures vu(df), u > 0 on

satisfying the following properties of (i) and (ii).

(i) For every T > 0

(2.7) Γ f \\f\\ΐ2vu(df)du < oo and Γ vu (||/||* > l)du < oo.
•̂ 0 J{\\f\\*<.l} Jθ

(ii) For every bounded continuous function h on Rd, compact set K in

and δ<M such that δ, M e C(v) = : {r > 0; / 0

Γ y«({/; ll/ll * =

for any T >0),

(2.8) lim£[sup|£:[ Σ
s<« ^ t

- Γ ί h(f(x))Ild<\w±M)vu(df)du |] = 0.
J s J Cb*
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In addition, 1 e C(v).

(2) There exists a cadl&g function ao(u) = ao(x, u) with values in

Sd) such that for every compact set K and s < t

(2.9) lim lim sup £[sup | E[ f flfix) flf (x)AAldAl \ SF?]

j'Or, «)<*«|] = 0 .

(3) There exist c&dl&g functions a\(u) = dι(x, u) with values in

Cf*(Rrf, R d ΘR d ) and c(«) = c(x, u) with values in CU(R r f, Rrf) such that

for every compact set K, M > 0, and s < t

(2.10) lim£[sup|£[ Γ Γ f*$(x) Jn

v:$(x)dAldM \ 3F*\
«-oo x&K J lS,t) J (V,t)

- Γa[j(x, u)du\] = 0 ,
J s

and

(2.11) lim £[sup \ E[ [ f Σ (^y/S

Γ ' ( i , u)du\] = 0 ,

respectively.

(4) There exists a c&dl&g function b(u) = ft(j;, w) with values in

CJ* (Rrf, Rrf) such that for every compact set K and 5 < /

(2.12) limsupl [ {flι(x) + gl{x)} dA& - Γ b(x, u)du\] = 0.

(A.III): (1) For every compact set K, s < t, M > 0,

(2.13) lim sup ΣE[sup\E[f dfflM{x) dAn

u \ &*]\] = 0.
n->°° s(=[O,t] \a\<,2 OCBK J is,t]

(2) For every compact set K, s < t, M > 0,

(2.14) lim Σ E[ f s u p | £ [ Γ dϊfn

uM(y) dAZ I FS]\
»-°° |α | ^2 ^ ( s ' ί ] x.V*K J (v't]

x | / 5 ^ ( J : ) | 2 4 A S Λ 4 S ] = 0 .

(A.IV): For every / > 0,

(2.15) lim lim sup P[sup WffΔAi ||* > M] = 0.

Our main theorem in this paper is stated as follows.
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THEOREM 2.1. Assume (A.I) ~ (A.IV). Then, the family ofΌd-valued random

variables {φn)n satisfying (1.3) converges in law to the unique solution of the following

stochastic differential equation:

(2.16) φt = Xo+ f σ(φu-> u)dBu+ f (b + c)(φu-, u)du
J (0,f] J (0,ίl

+ ί ί f(φu-)N(dudf)

+ f f f(φu-)N(dudf),
J(O,t] J{| |/| |*>lΓ Ψ J

where (i) σ(u) = σ(x,u) is a cddlάg function with values in C U (Rd, Rd Θ RO

such that σ(ύ)σ(u)* = ao(u) + {aι(u) + a\(u)*} where α* denotes the transpose of

the matrix a,

(ii) Bt is an r-dimensional standard Brownian motion, and

(iii) N(dudf) is a Poisson random measure with the intensity measure duvu{df)

and N(dudf) denotes the compensated measure defined by N (dudf) — N(dudf) —

duvu(df).

See Ikeda-Watanabe [4] for stochastic integrals based on Poisson random me-

asures and stochastic differential equations of jump type such as (2.16).

We defer the proof of Theorem 2.1 to the next section.

3. Proof of Theorem 2.1

In this section, we will give a proof of Theorem 2.1, by applying the so-called

martingale method. However, since it seems diffcult to apply the method for {φn)n

satisfying (1.3) itself, we divide the proof into several steps. First, we introduce a

family of stochastic processes which are uniformly bounded and have uniformly

bounded jumps, as follows. For given L > 0, let TL(X) be a nonnegative smooth

function from Rd to R 1 such that rL(x) = 1 for | x\ < L and that rL(x) = 0 for

I x\ ^ L + 1. We fix such a function YL for each L in the following discussion.

For given M e C(v) and L > 0, define the localized and truncated process φnML

of φn as the solution of the following equation:

(3.1) φ?ML = Xo + f {funM,L(φnu^L) + glΛφl^'1)} dAn

Ui

where we set fuM,hix) = rL{x)fΐM{x)i gl,L(x) = rL{x)gl(x). Then for arbitrary

T > 0 there exists a positive constant CM,L,T such that | φfM>L \ < CM,L,T and

I AφψMtL I < CM,L,T for all n, t<T, and ω e Ω. Throughout section 3, we denote
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by K the compact set ί r ; | x \ < CM,L,T).

The first step of our proof is to show the weak convergence of {φnML}n for

fixed M and L. For this aim, we will apply the martingale method for {φnML}n. In

fact, in subsection 3-1, the tightness is shown. See Proposition 3.2. Further, in

section 3-2, it is shown that any weak limit is unique and coincides with the law

of some stochastic differential equation. See Proposition 3.4. After establishing the

first step (Proposition 3.10), we will proceed into the second step of removing the

restriction of localization in (3.1). This problem is discussed in section 3-3. See

Proposition 3.11. In final section 3-4, we will remove the restriction of truncation

on jumps, and then we will complete our proof of Theorem 2.1. Though the outline

of the proof follows that given in Fujiwara [2], it should be noted that the proof

given below does not depend on the specific property of mixing arrays of random

variables.

First of all we give a formula of the change of variables for the process <p?,

which will be often used in the proof of Theorem 2.1.

LEMMA 3.1. Let F(x), x ^ Rd be a ^-function and let φt = (φi,. . . , φf) be

an Hd-valued cάdlάg process of bounded variation. Set Δφl = φι

u — φl-. Then for any

S<t,

(3.2) F{φt) -F(φs)

= Σ f J ^ (φu-) dφi + Σ (F (φu) - F (φu.) - Σ | 4 (φu~) Δφί)

d r r\ ftp
= Σ I { / 7Γ7 (Φu- + ΘAψu)dθ)dψl

ι=i ^ (s,t] J o OX

Here we note that

Γ ψ-. (φu. + ΘAφu) dθ = ψτ (φu.) if Δφu = 0.
Jo dxι dx*

The proof is easy and is left to the reader.

3-1. Tightness of {φn'M'L}n

The aim of this subsection is to prove the following proposition.

PROPOSITION 3.2. Let M and L be fixed. Then {φnML)n of {2.1) is tight in Όd.

For simplicity, we discuss only on 1-dimensional case (d = 1). Also, in order

to avoid the notational complexity, we consider the equation (3.1) as if rL = 1, and
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we omit the superscripts and the subscripts M, L in φnML, f£M, fZ,M^ fuja, fu$, and

fu,M Further, we will give the proof under the assumption (A.I)-(l)-(ii) because

the proof goes similarly when we assume (A.I)-(l)-(ii)'. In order to show the

tightness of {φn = φnML} n, we refer to a criterion originated by Aldous [1]. Fol-

lowing Kurtz [12] Theorem 2.7, it is sufficient to prove that for all T > 0,

(3.3) lim lim sup sup E[\ φ*+θ - φn

τ |
2] = 0 ,

where ΐf\ denotes the set of all {^f}-stopping times not greater than T. Note that

{φn)n which we are now considering is uniformly bounded. To show (3.3), we pre-

pare the following lemma.

LEMMA 3.3. There exist a positive constant C, stochatic processes M£t, and non-

decreasing processes Rf satisfying the following (i) ~ (iii):

(i) For alls < t< T and n<ΞN,

(3.4) I φn

t - φn

s |
2 < C{D? - D! + ELD? ~ Df] + Dΐ - D§ + Ms

n

t + R?.

(ii) For all τ e °T$, θ > 0 and n e N, E[Mτ

n

τ+θ ] = 0 holds.

(iii) For all t, limw_oo E[R?] = 0 holds.

Proof Note that fu + gu = fl+ (fϊ + gϊ) By integration by parts, we

have

on

s |
2 = 2 I (φl- - φf)dφZ + Σ I Aφl | 2

= 2 Γ (<p«_ - # ) / ; (pS-)Λ42
•J (s,f]

+ 2 f (φl- ~ φf) {Jl(φl- + gi(φϊ-)}dAS + Σ I Aφl I2

We first estimate / " for i = 2,3. For I", we have

(3.5) I IS I < 2GU.Γ J^s (] sup I f*(χ) + g»{x) I dΛ2 < 2CΆL,TΦl ~ Df),

because | ψZ \ < CM,L,T for all n, u, and ω.

For /a", since Aφl = ifZ(φZ-) + fliφl-) + gl(ψl-)}ΔAl we obtain by (A.I)

(3.6) I IS I ̂  2 f sup {| /S(x) |2 + I /2(z) + gl(x) \2)AAldAn

u

^ 2 {ft" - ft" + 0 ? - 5?) sup 5?}.
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We next consider I". Applying the formula of the change of variables (Lemma

3.1) to the function (x — φί)fZ(x), we have

(3.7) (φn

u- ~ φί)fn

u(φnu-)

= ί Γ (fu(φnv- + ΘΔφϊ) + (ψn

v. + ΘΔφn

v - φί)dfn

u{φn

v- + ΘΔφn

v)}dθdφn

v.
J (s,u) J 0

Therefore,

(3.8)

Λ" = f f Γ {fUψv- + ΘΔΨΪ) + (φ?_ + ΘΔφn

υ - φί)d]n

u{φn

υ- + ΘΔφΐ)}dθ
J (s,t] J (s,u) J 0

x ifvn(ψnv-) + gϊW-))dAϊdAl.

For fixed s, set

(3.9) h«M(x, z) = f Γ {fZ(x+ θz) + (x + θz - φΐ)djn

u(x + θz))dθdAl.
J (v,t] J 0

Then Fubini's theorem implies that

(3.10) IΓ = Js) KΛφΐ-, AφT){fυ

n(φnv-) + gnvW-))dAn

v.

Further, set

(3.11) fiSΛx, z) = ElhΐΛx, z) I 9%\ kΛx, z) = KΛx, z) - hUx, z).

Then, by (3.11), we have

(3.12) /f = f kΛφϊ-, Aφϊ){fv

n(φnv-) + gΐ(φ"v-)}dAn

v
J (S,t)

+ f kΛψi-, Aφ%yfnAφΊ-)dAn

v
J (s,t)

+ f KΛΨ"-, Δφt)Qn

v{φnv-) + gϊ(ψi-))dAS
J (S,t)

— . Tn _L in _|_ in

Define M£t = /fl. We show that it satisfies (ii). For arbitrary r e J n

Γ and S > 0,

it holds that

(3.13) E[ f hn

v,τ+θ(φn

v-, Δφί) {fΐiφΐ-) + gnv(<Pnv-)}dAΐ]
J (τ,τ+θ)

= E[ I Iiτ<V<τ+θ}E[hlt+θ(X, Z)\ ^v]\^τ>x=φ^z=Δφ'ί
J (0,T]

X {fv"(φ"v-) +&{<!%-))dAS\ = 0 ,

because /{r<t/<τ+βi is ^ ? measurable and r is so on the set /(T<i><τ+β> For /f2, we
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have

(3.14) |/f2| < (1+3CW)

x 2L, I sup I El j dyfZ{y)dAu \&ϊ \\\ f"(x) I dA".

Hence, combining this with (3.5), and (3.6), it is easily seen that (A.I) implies that

(3.15) I I2

n I + I U I + I ΛW21 < CiD? - D? + D7- Dn

s},

for some constant C depending only on M, L, T. For I&, by (A.I)-(2), we have

(3.16) | / β | < C Σ Γ £[sup |£[Γ dSfi(
I/.K1 J is>ri xeK J (v,t)

Define a nondecreasing process R? by the right hand side of (3.16). Then, it is

easy to see that (A.I)-(2) and (A.III)-(l) imply (iii). Thus, we have completed the

proof of Lemma 3.3, D

We continue the proof of Proposition 3.2. By Lemma 3.3, we have for all τ e

Jn

T and 0 < θ < 1

(3.17)

E[\ φn

τ+θ - φn

τ | 2] < C{ E[ ΌnΛ ~ Dϊ'p 1 + E[ Dn

τ+Θ ~ Dn

τ ]} + E[ Rn

τ+1],

Since {Dn>p}n is C-tight, it is easy to see that

lim lim sup sup P[ D?& ~ D?'p > δ] = 0
θ i 0 n-*oo resrn

for all δ > 0. Combining this with the uniform integrability of Df'th we obtain

lim lim sup sup E[ D?& - D?p ] = 0.
θ 1 0 «-°° re^"»

On the other hand, by (A.I)-(2)-(ii), the second term of the right hand side of

(3.17) converges to 0 as n—» oo. Further, by the property (iii) in Lemma 3.3, we

see that (3.3) holds for {φn>M'L}n. D

3-2. Identification of limit process

In the previous section, we have shown that {φn>MtL}n is tight in D<* for each

M and L, namely, any subsequence of the laws of {φn'M>L}n contains weakly con-

vergent subsequence. The aim of this subsection is to show that the limit laws are

identified with the law of the unique solution of a stochastic differential equation.

What we would like to show is stated as follows.
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9 4 TSUKASA FUJIWARA AND HIROSHI KUNITA

PROPOSITION 3.4. Let Q be any weak limit of the laws of {φnM'L} n. Then, Q is

equal to the law of the solution φMfL of the following stochastic differential equation:

(3.18) φf'L = Xo+ f σL(φifLL,u)dBu+ f (bL + cL)(φίfLL

f u)du
J (0,t] J (0,t]

+ f ί fL(φ%-L)N(dudf),

where ai(x, u) = rL(x)σ(x, u), bL(x, u) = rL(x)b(x, u), cL(x, u) = rL(x)2c(x,u)

+ aι(x, u) x rL(x) VxrL(x), andfL(x) = rL(x)f(x).

By Jacod's theorem ([5], Theorem III. 2.26. p. 144), we know that the unique-

ness of the solution of stochastic differential equation implies that of the marting-

ale problem for the corresponding generator. Therefore, to show Proposition 3.4,

it is sufficient to prove the following.

PROPOSITION 3.5. Let Q be any weak limit of {φnMtL}. Define a linear operator

£fL by

( 3 1 9 ) 1 - dΨ -" dF
= J Σ a¥(x, u) ̂ f - (x) + Σ (bί (x, u) + d(x, u)) ψj (x)

* <i-i dx'dx' i-ι dxx

+ f {F(x+fL(x))~F (x) - ΣfΠx)Iιm**i>ψj
J {\\f\\*£M) ,=1 OX

where OL{X, U) = GL(X, U)OL(X, «)*. Then, Q satisfies for all s ^ t and F

(3.20) EQ[F(φt) - F(ψs) - f'<e*LF(φu)du\$sl = 0,
J S

where φ denotes a canonical element of Όa and ® s denotes the right continuous

sub-σ-field generated by {φu u < s).

In the remainder of this section, we prove Proposition 3.5. We give the proof

only in 1-dimensional case and we omit the superscripts and the subscripts M, L

as in the section 3-1. For the limit measure Q, set / = ft > 0; Q(Δφt Φ 0) > 0},

which is at most countable. To prove (3.20), it is sufficient to show that

(3.21)

EQ[{F(φt) -F(ψs) ~ j <euF(φu)du}Ψ(φul,φU2,...,φUm)]=0
J S
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for all s, t e Jc, m e N, M, e / c ( ί = 1,2, . . . ,m) such that «i < w2 < * <

MW < s, and for bounded continuous function Ψ : Rw—•R 1. In the sequel, we may

assume that the law of φn converges weakly to Q.

Applying Lemma 3.1 repeatedly as in the proof of Lemma 3.3, we can obtain

for s < ί a n d F e CΓCR1)

(3.22)

t) - F(φn

s) = f Ff(φn

u-)fn

u{φnu-) dAl
J (s,t]

tΛ F'{φl-)Cfl{ψn

u-) + gliψl-) dAl

+ Σ {F{φl)-F{ψn

u-)-F'{ψl-)Δψl}
s<u<t

= ί ί {F'ft)'{φn

v-) dAlftitfJ) dAΐ
J (s,t) J (v,t]

+ f F'(φZ-) {fl(&-) + m<pl~)y dAl
J (S,t)

+ Σ {F{ψl) - F(φZ-) - F'{φl-) ΔφZ)
s<u<.t

" + [ ί (FfZY(φ1-)dAZ{fUφ1ί-)+gί(φnv-)}dAn

v

J (S,t) J (V,t)

+ f Σ {F'fKφΐ) - F%{φn

v-)

- (F'fiy(ψn

v.) Δφi) dAl

= ΣI?(s,t).
ί = l

Set Jin(s, t) = E[I?(s, t) I SF?], i = 1, . . . ,6. We first show that the terms

Pis, t) (i = 4, 5, 6) are neglected when n tends to infinity. Since

\ m s , t ) \ < \ \ F \ \ 2 Σ E l E ί f s u p I E [ f d S f n

u ( x ) d A n

u \ ^ ] \ ]
| α | < l J (*»« xeK J to,tl

X sup I fn

v(x) + gn

v{x) I dAn

v I ̂  ] ,
xeK

(A.I)-(2) and (A.III)-(l) imply that for i = 4

(3.23) lim£[|/Γ(s, ί)|] = 0 .
n—»oo

Similarly, (A.III)-(l) implies that (3.23) holds for i = 6. For i = 5, since we have

https://doi.org/10.1017/S0027763000004116 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004116


9 6 TSUKASA FUJIWARA AND HIROSHI KUNITA

| / 5

w ( s , 0 1 < 2 | | F | | 3 Σ E[ f s u p \ E [ f d2fnu(y)dAl\&n

υ]\
| α | < ς 2

 J {sΛ) *>V*K J iv't]| α | < ς 2

x ί| fϊ{x) I2 + I gΐ(x) + fϊ(x) I2) ΔA$dAϊ\&S],

(A.I) and (A.III) imply (3.23) for i = 5.

Next, we consider IΓ(sf t). To show the next lemma is one of principal parts

of the proof.

LEMMA 3.6. For u{ (i = 1, . . . ,m) and Ψ given in (3.21), set Ψs

n = Ψ(<tZl9

. . . ,φlm) and Ψs = Ψiψuu . . 9<Pum)- Then we obtain

(3.24) lim£[ Γ Γ F"(φn

v-)f»(φ»-)f»(φnv-) dAldA" x Ψ«\

= E[f F"(φv)a1(ψv,v)dvxψs],
•J (S,t]

(3.25) lim£[ f f F'(ψn

v-)(Jl)'(ψn

v-)~fnΛψnv-) dAldAϊ x f/]

= £ [ / * F'(φv)c(φv, v) dv * Ψs].
J (S,t)

Proof. We will give a proof only for (3.24) because (3.25) can be proved

similarly. For s < v < t, x and n, set

(3.26) g*t(x) =E[ f fnu(x)dAnu\&n

v]fn

v(x).
J (v,t]

Then, note that (A.I)-(l) and (A.II)-(3) imply that for all s < t < V < T and

\a\ < 1

(3.27) Γ sup \dίgts(x)\dAS£Dϊ-D!9

and

(3.28) X\mE[sλxv\E[ f gZt(x)dAΐ\&n

s] - Γ adx,v)dυ |] = 0 .

Now, since φn converges in law to φ in D^, by Proposition 2 in Slomiήski

[15], we know that there exist a sequence of positive constants {p*}* which con-

verges to 0 as ί-*oo and a sequence of {^f}-stopping times {σtn}i,n>k satisfying

the following properties (i)~(iii):

(i) For each i and n

(3.29) 0 = σ<T < σtn < , lim σtn = oo.
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(ϋ)

(3.30) lim lim sup P[ min {σ&i - σf; σϊn < T) < p"\ = 0.
ί —00 «-»OO k

(ϋi)

(3.31) lim lim sup P[ max { sup | φn

v - φfy | σίn < T) > ε] = 0,
ί-»oo n-o

for all ε > 0. Hence, by (3.30) and (3.31), for arbitrary η, ε > 0, there exist i0

and n0 such that for all i > i0 and n > n0 we have

(3.32) P[min {σίii ~ σtn; σtn < T) < p*] < η,
k

and

(3.33) P[ max { sup | φn

v - <pfy» \ σtn < T} > ε] < η.

In the discussion below, we fix η, ε, and i satisfying (3.32) and (3.33). For them,

set

(3.34) Ωn = \ ω; min {σ/fi - σtn; σtn< T) > pi

k Ί
and max { sup | φζ — φn

σγ \ σl'n < T) < ε .

Set τtn = (σtn V s) A i Then, we have

(3.35) \E[{f gϊΛΦS-)<MS- f aι{φn

v-1υ)dv}Ψsn]\
J (s,t] J is,t]

" ' v ) d υ ) m

\ in ln adqfy, υ)dv- I adφi-, υ)dυ}Ws"]\
J <rr,r/ti] J (s,t)

For/Γ, (A.I)-(l) implies that

(3.36)
A:=0 ^ ( r * 'ϊfc+iί

sup\dxg?Λx)\\φnv--φ"τ>f\dA"v]\\W\\
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9 8 TSUKASA FUJIWARA AND HIROSHI KUNITA

E[ f I ψ%- - ψ\nI dDϊp; ί?- ]| | Ψ\\

IT £[ f \qS-- <fr I < W ; (ΩΎ ] || r I

Since

sup I ςpj- — ί)?j3 I < ε
veirk ,rk+1)

on β w and D?tp is a nondecreasing process, we have

(3.37) J&£εsupE[D?'*]\\Ψ\\.
n

Note that (A.I)-(l) implies that supwE[D?'P] < oo for each t. On the other hand,

by (3.32), (3.33) and (3.34), we have

Jin2<2CM,L,τE[D?>p; (Ωn)c]

< 2CHL>T{E[D?'P; Dΐ*

^ 2CHLtT{E[D?'p; Dfp

Combining this with (3.37), we can see that lim supw-oo/ί = 0 because {Df>p}n is

uniformly integrable and ηf ε > 0 are arbitrary.

For Jz we have

(3.38) Jί £ Σl' I Eli f } gfΛ φnΛ»)dAϊ - f(τi>nt]ad <&», v)dυ} Ψs

n]\

+ Σ I E[{ J • (] g«t( ψψ^dA" - J aad 9\», v)dυ} Ψs

n] |

Further, for m e N, set ri'"1"1 = t A ([mτ'k
 n] + \)/m. Then we have by (3.27)

(3.39) J& <, Tf I E[ J ^ gU φP»)dAΐΨs"] I

E[ f ^ ^ aι(φ\», υ)dA«vΨs»]\

Ψ\\ + mm + ιι Λ l ιιιι Ψ\\
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where we set

/ 2 r = T^\E[iJ^nm^ υ)dυ)Ψf\\.

Since (A.I)-(l) implies that

lim lim sup sup E[ D":L - D"i] = 0,
m^oo n-*oo k^T/ρi k k

we have
T/pi

(3.40) lim lim sup Σ E[ Dn/n.m - Dfn\ = 0.
m_*oo «-oo k=0 k k

We next show that for each m ^ N

(3.41) lim sup Λΐ* = 0.

To see this, note that

(3.42)

((U+l)/m)vs,t]

ψ I E[ E[ f(τinmt] gU <Pty)dAn

v - f^Λmt] ad <ftk», υ)dυ \ 2fy~\ Ψs

n]\

T/pi [mt] r

Σ Σ E[sup\E[

- ΓU(l+l)/m)vs,t]

Therefore, by (3.28), we obtain (3.41). Combining this with (3.40), we get limM-oo

JΆ — 0, because we can take m as large as we want in (3.39). If we note that φ% »

is ^4»-measurable for all /c, we can see that the similar argument on Jζ\ implies

that limw_oo/2

W2 = 0. Hence, we have shown that lim,,-* Jz — 0.

For /3

n, by the similar argument on J*, we can show that limw-»oo/3M = 0. Thus,

we have completed the proof of Lemma 3.6. Π

We continue the proof of Proposition 3.5. For I?{s,t) and Ig(syt) in (3.22),

the following lemma holds.

LEMMA 3.7. Let Ψs

n and Ψs be the functions given in Lemma 3.6. Then we have

(3.43) lim E[I2"(s, t) Ψs

n] = E°[ Γ Fr{ψu)b{ψu)duΨs]

+ EQ[ Γ F'(φu) f(φu)Ia<Wz* vu(df)du¥,].
J S

Proof. By (A.Π)-(l) and (A.II)-(4), we can obtain the conclusion similarly
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as in the proof of Lemma 3.6. •

Finally, we consider I"(s, t), for which we get the following lemma.

LEMMA 3.8. Let Ψ$ and Ψs be the same functions as in Lemma 3.6. Then we

have

(3.44)

lim Elms, t)Ψs

n]

= EQ[ Γ ao(ψu,u)F"(φu)duΨs]
J S

«)) - F(φu) - f(ψu)F'(φu)}

x pu(df)duΨs].

To prove this lemma, we give a preparatory lemma. Set

Φl = Γ Γ aF"(ψl- + aβΔφDdadβ.

Jo Jo

Then, note that the mean value theorem gives

(3.45) I3

n(s, 0 = Σ ΦUΔφn

u)
2= f Φl {fu

n(φnu-) + gKφLWΔASdAZ.
s<u<Lt J ( s ' t ]

Since it is difficult to calculate the limit of the above term directly, we interpo-

late it by some terms which make the limit clear as follows.

LEMMA 3.9. (i) For every δ > 0,

(3.46) limsup|£[Γ Φz({fu

n(φnu-) + gliφl-))2

n->oό J (s,t] \

-JlΛψl-)2 ~ fu"
 δ(ψnu-)2) AAn

udAHΨs"}\ = 0.

(ϋ)

(3.47) lim lim sup | E[ [ { Φl - \ F"(ψ"u-)} fZAψu-)2 ΔAZdAζΨs

n] \ = 0.
S I 0 B-,00 J IS,!} &

(iii) For every δ > 0,

(3.48)

lim sup \E[ f {ΦS~ Γ Γ <*F"(φl- + aβff>δ(φZ-.)ΔAZ)dadβ}
W -oo J (S,t] Jθ Jθ

x f«n'sW-)2ΔA"udA«uΨsn]\ = 0.

https://doi.org/10.1017/S0027763000004116 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004116


LIMIT THEOREMS FOR STOCHASTIC DIFFERENCE-DIFFERENTIAL EQUATIONS 1 0 1

Proof, (i) Let 0 < δ £ M. Then /,» + gl = fit + W + (fl.s + gl)
holds. Therefore

= (fl.s + gl)2 + 2ft >( hi + hi + 8l) + 2f"uAh.6 + gl) •

Since \hι + gl I £ΔDl, we have

(3.49)

I E[ f ΦS{(fun(φn

u-) + gl(ψl-))2 ~ flΛψl-Y -fu"
 δ(φl-)2}ΔAldA"uΨs»]\

J (S,t] \ I

5s) Φi - Df,
s<,u<.t

+ 2 Σ EIsupl/ί 'ίxJAASpίsup E[sup\ fSΛx)ΔAl\\ + sup
5<M^ί X^K S<U<,t X^K S<U<,t

+ 4 sup £ [ sup I fXAx)ΔAl |] 0 ? - 5 5 )>•
s<u<,t x^K

By (A.I)-(2), we have

Σ £ [ sup l/ί *(J?)4i4S |] < sup Ώn

t < oo,

and sup5<M<ς, | ΔDl \ —• 0. Therefore the first term of the right hand side of (3.49)

converges to 0 as n—* oo. Further, (A.I)-(l) implies that the second term con-

verges to 0 as n—• oo. Therefore we get (3.46).

(ii) If we note that sup« supM,* |/2,δOr)ΛA2 | < 2(1 + CM,L,T)5, we can see that

I E[ f {Φl - ^F"(φn

u-)} fnuA<Pnu-)2 ΔAn

udAn

uWs

n]\

< \\F\\31 Ψ\\{E[ f sup\f"u(x) I Jl,Ax)2{ΔAWdAΐ\

+ sup sup I H(x) +fl(x) \ΔAl x E[ f sup fn

u,δ{x)zΔAldAl]}

^ || F H, || f||{ 23(1 + C ^ r ) + sup Δϊ)n

u} £ [ A"1*]

Therefore, (A.I) implies (3.47) by the same way as in the proof of (3.46).

(iii) Note that we have

I E[ f {Φl - Γ Γ oF"{<&- + aβfu

n'δ(φn

u.)ΔAZ)dadβ} fu

n'δ(φn

u-)2

J (s,t) Jθ Jθ

x ΔAldAlΨ?}\
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^ || FII, II Ψ\\{ E[ Js t] sup (l gl(x) + f"uAx) I ΔAl

+ \fiAx) I ΔAl)tf δ(x)2ΔAldAi\

< 1F N, || f||{ sup 4P2 + sup £[sup | fl,(x)ΔK |]} £[ A n ί ] .

Hence, by the same argument as before, we have (3.48). •

We continue the proof of Proposition 3.5. As the discussion in the proof of

Lemma 3.6, we can show that (A.Π)-(l) and (A.II)-(2) imply that

(3.50) lim lim sup | E[ f F"{φl-) jlAψl-Y ΔAldAlΨs

n]

- EQ[ f F"(Ψu) ao(φu)duΨs]\ = 0,
J S

and

(3.51) lim lim sup \ E[ f Γ Γ aF"(φn

u- + aβffδ(φZ-)ΔAΊ)dadβ
5 | 0 »—• J {s't] J ° J θ

- EQ[ Γ f Γ Γ aF"(φu + aβf(φj) dadβf(φu)
2vu(df)duWs]\

J s J {||/||*<il} J 0 ^ 0

= 0.

Since the proof is similar to that of (3.24) and (3.25), we will only consider (3.51).

For any fixed δ > 0, set

(3.52) gS(x) = Γ Γ aF"(x + aβtf δ(x)ΔAΪ)dadβff δ(x)2 ΔAl.
Jo Jo

Then, as (3.27), we have for all s <> t and | a | <, 1

J sup I dSgSte) I dAl « C x Dϊ.

In fact, since | fϊ δ{x)ΔAn

u \ = | fZ&(x)ΔAl \ < M ( l + CM,L,T), it follows from

(2.4) that

fioΆsυp\d2gS(x)\dAi

Σ sup {| dSfiΛ{x)ΔΛi \\fϊ δ{x)ΔAl \2 + | d$(ft*{x)ΔAl)21>
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« | | F | 3 Σ sup {M(l + CHL,T) I dSf^(x)ΔAt \\fu"
 δ(x)ΔA»|

+ \d?(fun'δ(x)ΔAn

u)
2\}

« | |F | | 3 Σ sup {(M(l + CHJL,T) + 1) I d?(tf ΰ(x)ΔAS)2\}
u<t re/f

Then we can prove (3.51) similarly as in the proof of Lemma 3.6. Thus, we have

completed the proof of Proposition 3.5. D

Therefore, combining Proposition 3.2 and Proposition 3.4, we obtain the fol-

lowing.

PROPOSITION 3.10. For each M e C(v) and L > 0, φnML of (3.1) converges in

law to φM'L which is the solution o/(3.18).

3-3. In this subsection, we will remove the restriction of localization in the

equation (3.1). Though the procedure seems routine or similar to the dicussion in

section 3-5 in Fujiwara [2], we will give it for the completeness.

For each n ^ N and M ^ C(v), we define the truncated process φnM of φn

by

(3.53) φfM = xo + ί {funM(φnu^) + gKφΐ-)) dAL

The aim of this subsection is to show the following proposition.

PROPOSITION 3.11. For each M ^ C(v), the family of Ώd-valued random vari-

ables {φn>M} n converges in law to the unique solution φM of the stochastic differential

equation:

(3.54) φf = xo+ f (J«_, u) dBu + f (b + c)«_, u)
J (o,t) J ω,f]

+ Γ ί f(ψϋ-) N(dudf)
J(o,t) J{|i/ιι*<;ir Ύ J

du

Γ
(o,t)

+ ί ί f(φ{f-)N(dudf).
J (0,t) J{K||/H*<;MΓ ^

Proof For given L > 0, define SL(φ) = inf it > 0; | φt \ > L or | φt- \ ^ L)

for φ ^ Όd. Then, it is a {®J-stopping time and lower semicontinuous from Όd to

[0, oo]. Set ®sL = { A e ® ; i Π { S L < ί } £ $,} as usual. Then, since it is clear

that SL(φnML) = SL(φnM) and that φΐ>M'L = φfM for t < SL(φn>M), we have
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(3.55) P ^ = PW

M on 2)Sι,

for each n, where Pn'L and Pn denote the laws of φn>M>L and, φnM respectively.

Similarly, we have

(3.56) pM,L = pM o n ^

where PML and PM denote the laws of φMtL of (3.18) and φM of (3.54), respective-

ly. Combining (3.55) and (3.56) with Proposition 3.10, we obtain the conclusion

by a similar argument in Lemma 11.1.1 in Stroock-Varadhan [16]. •

3-4. In this subsection, we will remove the restriction of truncation for

jumps in the equation (3.53) and complete the proof of Theorem 2.1. First, we pre-

pare the following lemma.

LEMMA 3.12. The family {(PM)M of (3.54) converges in law to the solution of

(2.16) asM-> oo.

Proof Let N(dudf) be the Poisson random measure in (2.16), and for M>

0 define a stopping time τM by TM = infft; N((0, t], | |/ | |* > M) > 0}. Then, it is

clear that φf = φt if t < τM, where φM(φ) is the solution of (3.54) ((2.16) respec-

tively). Hence for arbitrary t and bounded ®ί-measurable continuous function G,

we have

E[G(φM)] = E[G(φM)]; t < τM] + E[G(φM); t > τM]

= E[G(φ)];t < τM\ + E[G(ψM); t > τM]

= E[G(φ)] -E[G(φ);t>τM] + E[G(ψM); t > τM].

Therefore we have

\E[G(φM)] -E[G(φ)]\ ^ 2 || G \\P[τM ^ t\

= 2 I G1 {1 - exp(- Γ VuύfW* > M)du)} - 0
Jo

as M —• oo, because /</ vu (11/11* = °°)du = 0. Since t is arbitrary, we can con-

clude that φM converges in law to φ of (2.16). Π

Finally, we show that for every bounded continuous function G on Όd

(3.57) lim E[G(φn)] = EQ[G(φ)].
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For arbitrary t > 0, suppose that G is ©^-measurable. Then, it holds that

E[G(φn)] = E[G(φn); sup WfSΔAl ||* < M] + E[G(<p); sup H/JdASlI* > ilfl

= £[G(<p" M)] - E[G(φnM); sup ||/«"4AS II* > Aί]

+ E[G(φn); sup \fSΔAl ||* > Λfl.

Hence, we have

^ I E[G(ψn)] - E[G{φnM)}\ + I E[G(ψnM)] - ElG{φM)}\

+ \E[G(φM)] -E9[G(φ)]\

< 2 || G || P[sup ||/«MA2 || > Afl + | £[G(<p"'M)] - E[G{φM)}\
u<.t

+ \E[G(φM)] ~EQ[G(φ)]\.

Therefore, by (A.IV), Proposition 3.11, and Lemma 3.12, we get (3.57). Further,

since t > 0 is arbitrary, (3.57) holds for every bounded continuous function G.

By the above discussion, we have proved Theorem 2.1. [H

4. Case of diffusions

As applications of Theorem 2.1, we will consider a sequence of stochastic

ordinary differential equations:

(4.1) Udt=f'^'

where {ft1} is a sequence of {^?}-adapted c&dlag process with values in C | * . It

is assumed that /?Cr) = E[ft

n(x)] exists for all t, x and / ? = / ? ( J J ) is a

C£*-valued c&dlag function for any n. We set/?Cr) = ft

n{x) — / ? ( # ) as before.

We denote by φ" the solution starting at a fixed point Xo at time 0. Since condi-

tions for Theorem 2.1 can be simplified in this case, we state it for a reference.

We will follow the notations in section 2.

(A.I)': For every N, T > 0, there exists a sequence of nondecreasing con-

timuous processes {Dn)n satisfying the following properties (i) and (ii).

(i) For all 5 < t < V < T,
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106 TSUKASA FUJIWARA AND HIROSHI KUNITA

(4.2) Σ { P sup I E[ P dffn

u(y)du \ %ΐ ] | | dffn

v(x) \ dυ

+ P sup I dlfKx) \du) <Df- Df.
J s \x\<N

(ii) {Dn}n is tight in the space C([0, oo), R1), and {Df}n is uniformly integr-

able for all t.

(A.II)7: There exist a cadlag function dι(t) = dι(x, t) with values in

CU(R", R d ® R d ) and cadlag functions b(t) = b(x, t), c(t) = c(x, t) with

values in Ci* (Rd, Rd) such that for all N > 0 and s < t

(4 3) , r r- - > r
lim £ [ sup I E[ J J fu'ω(x)fv'0)(x)dudv \2F?] — J aι{{x, u)du |] = 0,

(4.4) lim£[sup |£[ Γ Γ Σ (^-/ί'
«-« IXI^ΛΓ J s J v j=ι ^dxJ

and

(A.IIiy: For all N > 0 and t > 0,

(4.6) lim sup Σ E[ sup | £ [ Γ' dffn

u{x)du \ 9ϊ ]|] = 0.
«-oo seI0il |α|<2 IJ I^ΛT S

- Γc'Or, «)rfw|] = 0,

(4.5) lim sup | \ fl(x)du- \ b(x, u)du\ = 0.

|α |<2

Then, by Theorem 2.1, we obtain the following diffusion approximation

theorem. It can be regarded as an improvement of the previous work by Kunita [9].

THEOREM 4.1. Assume (A.I)', (A.II)', and (A.III)'. Then, the family of con-

tinuous stochastic processes iφn}n satisfying (4.1) converges in law to the unique solu-

tion of the following stochastic differential equation:

(4.7) φt = xo+ f σ(φu, u)dBu + \ (b + c) (φu, u)du,
Jo Jo

where σ(u) = σ(x, u) is a cadlag function with values in Ci* (Rd, Rd ® R0 such

that cr(w)cr(w)* = a\(u) 4- a\(u)* and Bt is an r-dimensional standard Brownian

motion.

The solution φt of (4.7) is often called a diffusion process with characteristics

, b(t)+c(t)).
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We shall apply the above theorem to the case where the driving processes

iftn(x))n satisfy suitable mixing conditions. Define the nitrations {2F%t: s < u

<t} by

(4.8) &h = σ[fun; s<u<t].

The strong mixing rate an(t) and the uniform mixing rate φn(t) of the family of

the σ-fields {S^s,t)s^t are defined by

(4

(4

.9)

.10)

α"(ί)

Φn(t)

= sup

= sup

sup

sup

\P(A

\P(Λ

n B)

\B)~

-P(A)P(B)

P(A) |.

We will first consider the case where a uniform mixing condition is satisfied.

We introduce the following conditions.

(C.I): For all positive numbers N, Γand | β | < 1,

sup sup sup I d§f"(x) I < °°.
n t<T \x\<.N

(C.2): The sequence of the uniform mixing rates {φn(t)} satisfies

lim [T φn(s)1/2ds = 0

for all T. Further the following family of random variables are uniformly integr-

able for any N, T and | a | < 2

{( Γ φn(s)1/2ds) sup I dSfUx) I2; t e [0, Π , n = 1,2,. . .] .

(C.3): There exists a sequence {hn} of positive numbers converging to 0 such

that the limits

(4.11) b(x, t) =lim-Λ- / fn

u(x)du,

(4.12) aHx, t) =lim-f- / / E [fn

u

M)(x)fϊΛi)(x)] dudv,

(4.13) c*(x, t) = lim~- E[Σ ^ t V (x) fΐ{i)(x)} dudv

exist uniformly on compact sets of Rrf X [0, °°).

THEOREM 4.2. Assume that {ft

n}n in equation (4.1) satisfies (C.I) ~ (C.3).

Then {φn)n converges in law to a diffusion process with characteristics (a(t) + a(t)*,

bit) +c(t)).
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1 0 8 TSUKASA FUJIWARA AND HIROSHI KUNITA

Before the proof we show a lemma. We fix N, T and set

(4.14) Kn(υ) = Σ { sup Γ\ E[dy

afUy) \ 9*A\ du | dffn

v{x)\
\<x\<2\B\<l \x\^N\y\<NJυ\a\<.2,\β\<l

+ sup |9ί/;(x)|}.
\x\<.N

LEMMA 4.3. The family of random variables {Kn(v); n = 1,2,. . . 9υ ^ [0,T]}

is uniformly integrable for any T.

Proof. By a uniform mixing inequality, we have

(4.15)

I EldffK y) 19ϊ ]I < 2φ"(u - v)k E[\ dffli y) I21 9% ]i + E[\ dffli y) \2]h.

See [9], Proof of Lemma 5.6.2. Consequently K"(v) is dominated by the sum of the

following four terms.

(4.16) £~V φn{u)\ sup E[\ dffn

u+υ(y) |21 9i ] du,

ΓT—v i _

(4.17) I φn{u)1z s u p JE[| dgfZ+viy) | 2 ] dw,

(4.18) ( fT~Vφn(u)2du) sup I 9ί/?(j?) |2,

(4.19) sup \dffn

υ{x)l

Clearly (4.17) and (4.19) are bounded by a positive constant not depending on υ

and n. Further (4.18) is uniformly integrable by (C.2). We will consider (4.16). By

(C.2), there exists a positive convex increasing function G(λ), λ > 0 such that

lim^oo G (λ)/λ = °o and

(4.20) sup sup E[G(cn sup | dy

afUy) I2)] = K< oof

n t<,T \v\<.N

where cn — f0

T φn(t)1/2dt. See Meyer [14]. By Jensen's inequality, we have

(4.21) E[G( Γ Vφn{u)\ sup E[\ dy

afn

u+v(y) \2\&n

v]du)]

< cnι Γ φn(u)ΪE[G(cn sup E[\ d?fl+v(v) I 2 I^ W ] ) ] du
J θ \V\<.N

< cή1 Γ φn(u)\E[G(cnEV sup I dyafn

u+v(y) N ^ Π ) ] du.
J θ \V\<.N

By Jensen's inequality concerning conditional expectation, the above is bounded by
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Cn1 Γφn(u)ΪE[G{cn sup | dy

afn

u+y(y) I2)] du<K<oo,

Consequently, (4.16) is uniformly integrable. •

Proof of Theorem 4.2. We take Df = J o ' Kn(v)dv. Then, (A.I)'-(i) is obvious-

ly satisfied. Since {Kn(v); n = 1,2,. . ., v ^ [0, T\) is uniformly integrable, it is

easily verified that {f0* Kn{v)dv)n is also uniformly integrable for each t. We will

prove that the latter sequence is tight. The property

(4.22) lim sup P[ Γ Kn(v)dv > c] = 0

is obvious from the uniform integrability of {/</ Kn(υ)dυ)n. Let 0 < θ < T be a

constant and σ be a stopping time such that σ + θ < T. Then we have

Γ+θKn(v)dv= Γ+θ Kn(v)I[0,c](Kn(v))dv+ Γ+$ Kn(v)I(e,-ΛKn(v))dυ
J σ J σ J σ

<cθ+ ΓKn{υ)hc,~AKn(υ))dυ
Jo

for any c > 0. Therefore

(4.23) El [σ+βKn{υ)dυ\ < cθ + Γ E[Kn(υ);Kn(v) > c]dv.
J σ Jo

For any ε > 0, there exists c > 0 such that E[Kn(v); Kn(υ) > c] < εT~ι holds

for all n and #, since {Kn(v)}n,v is uniformly integrable. Next choose θo > 0 such

that cθo < ε. Then we have for any | θ | < θ0

X
σ+Θ

Kn(v)dυ] < 2ε,

where S'T is the set of all stopping times less than T. Therefore {f0' Kn{v)dυ) n

satisfies Aldous's condition. Then it is tight. Thus we have proved (A.I)'.

We will next prove (A.II/. Set

K " ( u , v, x ) =fn

u'
(i)(x)fn/j)(x), friu, v , x ) = E [Kn(u, υ, x ) ] .

We can show similarly as in [9], Chapter 5 that (4.12) implies

(4.25) lim Γ Γ Kn(u, v, x)dudv = Γ ali{x, r)dr,
w_oo J S J S J S

for any s < t. Hence it is sufficient to prove

(4.26) lim E[ sup | Γ Γ E[ΪP(u, v, x) \ ??] dudv |] = 0,
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where Kn = Kn - Kn. Let cn = fj φn(s)1/2ds as before. Since

icn sup \fun(x)\2; n= 1,2,..., u e [0,7i]
1 \x\<N }

is uniformly integrable, for any ε > 0 there exists a > 0 such that for all n, u

(4.27) E[cn sup I fu

n(x) I2; cw sup | tf(x) \2 > a] < ε.
\x\<NNow consider the truncated process fu,a — fuI{sup^N\/u

n(x)\<(a/cny
/2). Set fl,a

= E [fu

na] , fίa = /Λ - /S f β and ^ w (w, ι;, x) = fnu${x)]nvH\x). Define ^ 2 and

Kn

a as above. Then ^ M = (Kn

a ~ Kn) + (Kn - ίfl

M) + ^S holds. We have

Kn(u, v, x) — K2(u, v, x)

= fla(χ) (fUx) -fla(χ)) + CfKx) -flAχ))fϊAχ)

+ Cfl(χ) ~fnuAχ)) (fUx) -fϊAx))

= :IΛ + Ln

2 + Ln

3.

Apply (4.15) and (4.27) to each term of the right hand side. Then

E[ Γ Γ sup I E[Lϊ I &ϊ\\ dudυ] < 4Γ(Cε)1 / 2, i = 1,2,
Js Js \x\^N

where C = supw>M icn E[SVLV\X\<>N I fu(x)\2]}, and

E[ Γ Γ sup I E[Ln

31 9ί\\ dudv] < 4Γε.
Js Js

 \X\<N

Consequently we obtain

(4.28) sup I Kn

a - Kn I < E[ sup | Kn - KS |] < 4Γε 1 / 2(2C 1 / 2 + ε 1 / 2).
\x\<N \x\<N

Further by a uniform mixing inequality ([9], Lemma 5.6.3),

(4.29) I Γ Γ E[Kl(u, v, x) I 2FS] dudυ \
J s J s

< 4 Γ Γ ^B(M - o)V(» - s)ί ||/Si()(x) II w ll/^1^) II ωdudυ,
J s J s

where ||X||(/,) (1 ^ p ^ °°) is the Z/ norm of the random variable X with respect

to the measure P. The right hand side of the above is dominated by

( Γ φn(s)UsY sup WniHx) II (co) sup \\fn

vi
j)(χ) II <»).

w 0 ' u v

Since U/Sά0 ||<oo) ^ 2(α/cM)1/2, the above is bounded by 4acn. It converges to 0 a.s.

asw-^oo. This fact together with (4.28) proves that (4.26) holds. Therefore (4.3)
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in Condition (A.II)' is verified. Other properties in (A.II)' and (A.Ill)' can be

proved similarly. O

We will apply Theorem 4.2 to two problems. The first is the approximation

problem of stochastic differential equation.

Let vn(t) = (vUt), . . . , i 4 ( 0 ) , n = 1,2, . . . be a sequence of Revalued

stochastic processes with the uniform mixing rate φn(t). We assume the following

(vΛ) ~ (v.3).

(v.l): E[vn

k(t)] = 0 for any n, k, t.

(IΛ2): lim^oo / / φn(s)1/2ds = 0. Further, { (// φn(s)1/2ds) \ vn

k{t) |2, n = 1,2,

. . .,t ^ [0, 7]} is uniformly integrable for any T.

(v.3): There exists a sequence of positive numbers {hn) converging to 0 such

that the following limit exists uniformly on compact sets of [0, °°):

Hm-jM / E[vn

k(u)v1(v)] dudυ = vkl(t).

Now define

(4.30) Xn(t) = Γ vn(s)ds.
J o

It can be regarded as a solution of the equation d(pt/dt — vn(t). Then Theorem 4.2

tells us that {Xn(t)} converges in law to a Brownian X(t) — (Xι(t),. . . ,Xm(t))

with mean 0 and covariance / 0 Vki(u)du.

Now let fk, k — 0 , . . . , m be deterministic functions of C | * . Consider a sequ-

ence of stochastic ordinary differential equations:

(4.31) ^ =M<Pt, t)+Σfk(ψ,, t)vΐ(t).

Let φn

t be the solution starting at Xo at time 0. Then we obtain the following from

Theorem 4.2 immediately.

COROLLARY 4.4. Assume that {\A(f)}n sastisfies (v.l) ~ (IΛ3). Then the sequ-

ence iφn}n converges in law. The limit ψt satisfies the stochastic differential equation:

J*t m rt

{fo(<Pu, u) + c(φu, u)}du+ Σ / fk(φu, u)dXk(u),

where cι(x, t) is given by

(4.33) c'(x, t) = Σ Σ fi(xf t) zrjfί(x, t)vkl(t).

Now let / ( 0 = / ( x , t) and g(t) = g(x,t),x<ΞRd,t<Ξ [0,oo) be Cf*-
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valued cadlag stochastic processes. We assume that f(t) is of mean 0, i.e.

E[f(x,t)] = 0 for all x and t. Consider a sequence of stochastic ordinary dif-

ferential equations

(4.34) - ^ = -fefiφt, t) + ±g(φt, t).

For each n, it has a unique global solution φn

t starting at any given point x0 at

time 0. Let n tend to infinity. Then φn

t converges to the trivial stochastic process

φT = XQ. However if we consider the process <p? = φ%t, it satisfies

(4.35) ^ = \?nf(φΐ, nt) + g(φ?, nt).

Then {φn) n does not converges to a trivial process. We shall show its weak con-

vergence applying Theorem 4.2. A similar problem has been discussed by many

authors. See e.g. Khas'minskii [7], Kesten-Papanicolaou [6], Kunita [8], [9]. The fol-

lowing Corollary may be considered as an improvement of Theorem 5.6.1 in [9].

COROLLARY 4.5. Assume that the driving processes f (t) =f(x,t) and g(t) =

g(x,t) are stationary processes satisfying the following (a) and (b):

(a): For every N>0 and\a\ < 2, E[sup]x]^N \ dgf(x,0) |2] < °o and

(b): /o°°0(5)1/2d5<oo.

Then iφn} converges in law to a stationary diffusion process with characteristics (a, b

+ c) which is given by

(4.36) aij(x) = E[( Γf'ix, u)du)fj(x, 0)] + E[( Γf'ix, tfidulfix, 0)],
\Jo / \Jo /

(4.37) cι{x) = ΣE[(f"jpj(x, u)dujfJ(xf 0)],

(4.38) b\x) =E[gi(x,0)].

Proof Set

ft

n(x) = yfnf(x, nt) + g(x, nt), &f = 9nu φn(t) = φ(nt).

Then (a) and (b) imply (C.I) and (C.2) immediately. Further since f{x,t) is sta-

tionary, we have

fnuU){x)fϊλl\x)dudυ\
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= 4= f " E[(f "fix, u)du)f'(x,υ)}dΌ + o(n, x, t)

= E[(f~fi(x,u)du)fj(x,O)]

- J = / o " E^fJ-f'ix, u)du)fj(x,v)]dv + o(n, x, t)

= E[(J~f*(x, u)du)fj(x, 0)] + o(n, x, t),

where o(n, x, t) converges to 0 uniformly in (x9t) on compact sets as n—> oo.

We can show similarly the existence of b and c in Condition (C.3). Π

We will next consider equation (4.1) in the case where a strong mixing condition

is satisfied. We introduce a condition associated with two positive numbers 5, y\

(C.2)i,r: The sequence of the strong mixing rates {an(t)} satisfies

lim fT an(s)rds = 0

for any T. Further, for any N, T and \ a\ <̂  2, the sequence

{( Γ an(tYdt) sup || sup I dSfKx) lll?2+«]

is bounded.

THEOREM 4.6. Assume Conditions (C.I), (C.2)'*,r and (C.3) for some δ e

(0, oo) and γ e (0, δ/2(2 + δ) (1 + d)). Then iφn}n converges in law to a diffu-

sion process with characteristics (a(t) + #(£)*> b(t) + c(0)

/. We shall again apply Theorem 4.1. We shall prove that the sequence

of the driving processes {fn)n satisfies Condition (A.I)'. Condsider Kn(v) of

(4.14). It is sufficient to prove that {Kn(υ)\ n— 1,2,..., v e [0, 7]} is uniformly

integrable since the fact implies the tightness and the uniform integrability of

{ JQ Kn(v)dv}n as in the proof of Theorem 4.2. In the sequel we will prove

(4.39) supE[Kn(v)ι+εo] < oo,
n,v

for sufficiently small positive number ε0, which implies the uniform integrability of

{Kn(υ)} immediately.

The process Kn(υ) is bounded by the sum of the following terms.
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(4.40) K?(υ) = sup Γ" | EidfflUy) I 9ϊ\\ du sup | dίft(x) I,

(4.41) K2

n(v) = sup I dlf1(x) I,

where | α | < 2 and | β | < 1. The property (4.39) is obvious for Kξ(υ) by (C.I).

We will prove (4.39) for Kΐ(υ) only. We consider the case a — β — 0. Since

(4.42) K?(υ) < ΓV sup | E\fn

u+V(y) I ̂ ? ] | sup
^0

we have by Holder's inequality,

Γ~Ίl/0 sup |£[/^(z/)|^]| |U+ ε o))| | sup

where p, q are numbers greater than 1 such that^" 1 + q~~ι = 1. Next let />r and qr

be positive numbers such that {p(l + So))"1 = p'"1 + ^f/~1. Then by a mixing ine-

quality ([8], Lemma 3.10.2), there exists a positive constant C = C(pf, q', d, N)

such that

(4.43) || sup I E[fn

u+V(y) I ̂ J]|ILi+βo» ^ Can(u)y^\\ sup |/;+„(»)

Consequently we obtain

(4.44) \\KΠv)h+soy<c(f\n(u)Vϊhπdu) sup || sup |/S(
W o ' v^u^T \y\<N\y\<,N

SUP | / ? ( ) | | |

Set q = (2 + <5)/(l + ε0) and q'= 2 + δ. Then we have (p'(d + I ) ) " 1 = (δ -

2εo)/(l + ε0) (2 + δ)(d + 1). If ε0 > 0 is sufficiently small, the quantity is not

less than γ of Condition (C.2)'δ,r. Then (4.44) is bounded. Therefore (4.39) is sa-

tisfied for K?(v).

Next, property (4.3) of Condition (A.II)' can be verified similarly as in the

proof of Theorem 4.2. Indeed, set cn = /0 an(s)r ds and define the trancated pro-

cesses fu,a similarly as in the proof of Theorem 4.2. Then we can prove that for

any ε > 0 there exists a > 0 such that

E[ Γ ΓE[ sup I Kn(u, v, x) - KS(u, v, x) \\9i\ dudv] < Cεδ/2{2+δ\
s s \x\^N

where C is a constant independent of n and a. Further, instead of the uniform

mixing inequality (4.29), we have inequality:

(4.45) || P Γ sup I E[ Kί(u, v, x) \ &«\\ dudv ||(1+fo,
J s J s \x\^N
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C (* Γ an(u - v)ran(v - s)r sup
J s J s \x\<

Wflfix) IU
\x\<N

x sup Wffflix) \Voo)dudυ
\x\<N

where r = {2(1 + ε o )(l + d)}'1. See Lemma 3.10.3 in [8]. Since r > γ holds for

sufficiently small So, the right hand side converges to 0 as n—* oo. These two facts

imply (4.3). D

We again consider equation (4.31) in the case where {v"(t)}n satisfies a

strong mixing condition. We introduce:

(v.2Yδ,r: limŵ oo fo

τ an(s)rds = 0. Further the sequence

{( Γ an(sYds) sup \\vn

k(t)\\Ϊ2+8)}

is bounded for any T.

COROLLARY 4.7. Assume that ivW)} n satisfies (v.l), (v.2Yδ>r and (v.3) for

some δ ^ (0, °°) and γ ^ (0, (5/2(2 + δ)). Then the assertion of Corollary 4.4 is

valid.

Indeed inequalities (4.43) and (4.45) are valid even if we replace p'(d + 1)

by p' and {(1 + ε0) (1 + d)}~1 by (1 + εo)~\ respectively. See [8]. Then the

corollary follows.

Finally we consider equation (4.35).

COROLLARY 4.8. Assume that the driving processes f (t) and g(t) are stationary

processes satisfying the following (a)'δ and (b)'7 for some δ £Ξ (0, oo) and y ^ (0,

<5/2(2+ δ) (1 + d)):

{a)'δ\ For every N > 0 and | a \ < 2, || supixi^Λr I d£f(x, 0) |||(2+<5) < °° and

II s u p i ^ i ^ I d£g(x, 0) |||(2+5) < °°.

(bYr: f~a(t)rdt< oo.

Then {φn} converges in law to a diffusion process with characteristics given by Corol-

lary 4.5.

Suppose that if f(t) and g(t) are represented by

fit) = Σfk(χ)vk(t), git) = Σ gkiχ)βkit) + goix),
J f c = l fc = l
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where (vk(t)f μk(t)) is a stationary process with the strong mixing rate a(t),

then (a)'δ and (bYr with δ e (0, oo) and γ e (0, 3/2(2 + 5)) imply the weak

convergence of {φn}.
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