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Summary

Most current statistical methods developed for mapping quantitative trait loci (QTL) based on

inbred line designs apply to crosses from two inbred lines. Analysis of QTL in these crosses is

restricted by the parental genetic differences between lines. Crosses from multiple inbred lines or

multiple families are common in plant and animal breeding programmes, and can be used to

increase the efficiency of a QTL mapping study. A general statistical method using mixture model

procedures and the EM algorithm is developed for mapping QTL from various cross designs of

multiple inbred lines. The general procedure features three cross design matrices, W, that define

the contribution of parental lines to a particular cross and a genetic design matrix, D, that specifies

the genetic model used in multiple line crosses. By appropriately specifying W matrices, the

statistical method can be applied to various cross designs, such as diallel, factorial, cyclic, parallel

or arbitrary-pattern cross designs with two or multiple parental lines. Also, with appropriate

specification for the D matrix, the method can be used to analyse different kinds of cross

populations, such as F
#

backcross, four-way cross and mixed crosses (e.g. combining backcross

and F
#
). Simulation studies were conducted to explore the properties of the method, and confirmed

its applicability to diverse experimental designs.

1. Introduction

Most current statistical methods for mapping quan-

titative trait loci (QTL) based on inbred line designs

apply to crosses of two inbred lines (Lander &

Botstein, 1989; Haley & Knott, 1992; Zeng, 1994;

Jansen & Stam, 1994; Kao & Zeng, 1997). However,

many practical breeding programmes utilize a number

of crosses that may originate from multiple inbred

lines, such as diallel crosses. As molecular marker

technology becomes more efficient and is applied to

these breeding populations, the need for general

statistical methods for QTL mapping analyses that

are applicable to these populations becomes apparent.

The advantage of this analysis is that it integrates and

utilizes QTL mapping information for practical

breeding purposes and improves the accuracy and

efficiency of practical breeding programmes. From a

genetic point of view, QTL analysis of these crosses

could be more efficient. In two-line crosses, such as
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backcrosses and F
#
, statistical analyses deal with the

segregation of only two QTL alleles at a locus. If the

lines share a common QTL allele, the QTL will not be

detectable. In multiple-line crosses, multiple QTL

alleles may segregate, and the probability of detecting

segregating QTL alleles increases. Of course, the

statistical analyses with multiple-line crosses are more

complex, particularly when different crosses have

different and irregular crossing patterns.

There have been several studies on statistical

methods of QTL mapping in multiple-line crosses.

Rebai et al. (1994) extended the regression method of

Haley & Knott (1992) to several F
#
populations from

a diallel design of multiple inbred lines. They assumed

that different lines are fixed with different QTL alleles.

Rebai & Goffinet (1993) also examined statistical

power for QTL detection in F
#
populations of a diallel

cross, assuming that a QTL is exactly on a marker. In

a recent paper, Xu (1998) proposed fixed and random

model procedures for a specific cross design of multiple

inbred lines, where the F
#
populations are independent

from each other and t F
"

populations stem from 2t
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parental inbred lines. Thus, he studied multiple

independent two-line crosses for QTL mapping

analysis.

The cross patterns in practical breeding populations

can be very complex. Different crosses can have

different cross patterns and originate from different

overlapping or non-overlapping inbred lines. They

can be related to each other in a variety of ways. In

this paper, we outline a general approach of mixture

model analyses that are applicable to various crosses

from two or multiple inbred lines. We first focus on a

group of F
#

populations from a diallel design of L

lines as an example. In simulation studies, we show

how the methods can be used for different kinds of

combinations of crosses. The methods are sufficiently

flexible to be used for a variety of cross populations,

such as complete and partial diallel cross designs,

factorial cross designs, cyclic cross designs and

multiple two-line cross designs, and a mixture of

different cross populations.

2. Method

(i) Data structure

We first consider a data set of F
#

populations from

a diallel cross (without selfing) between inbred lines

P
i
(i¯1, 2,… ,L). For L inbred lines, there could be

at most L(L®1)}2 different F
#
populations, ignoring

the differences between reciprocal crosses. The data

structures considered in this paper are not restricted

to these F
#

populations. To facilitate description of

data structure, let F
"
(i, j) and F

#
(i, j) be the F

"
and F

#

populations originating from P
i

and P
j
, for i, j¯1,

2,… ,L and j1 i ; that is F
"
(i, j)¯P

i
¬P

j
and F

#
(i, j)¯

F
"
(i, j)¬F

"
(i, j). Furthermore, denote by B[(i, j), j] the

backcross of an F
"
(i, j) to parental line P

j
and B[(i, j),

k] the three-way cross of F
"
(i, j) with P

k
. Likewise, a

four-way cross between F
"
(i, j) and F

"
(k, l ) is denoted

by F
#
[(i, j), (k, l )]. Other crosses may be defined in a

similar way.

In the present study, we assume that the inbred line

origin of each marker allele segregating in the cross

population is known or can be inferred in probability.

Further, we also assume that the linkage map of

markers that is applicable to all crosses is known. Of

course, not all markers are necessarily segregating

with different alleles in all crosses, because some

inbred lines may have the same marker alleles, or

some markers may be uninformative in some crosses.

These markers will be recorded as missing or partially

missing data in some crosses. In QTL mapping

analysis, we can use a Markov chain process (e.g.

Jiang & Zeng, 1977) to infer QTL genotype proba-

bilities conditional on observed marker information.

In the data, each record for an individual consists of

the type of cross, parental inbred lines, genotypes or

phenotype observations of different marker loci, and

trait values. If reciprocal crosses are also involved, we

need to identify them in the data in order to fit the

recoprocal effect in the model.

(ii) Genetic model

In dealing with crosses from multiple inbred lines, we

need a multiple-allele genetic model to specify the

relationship between QTL genotype and trait pheno-

type. Traditionally, a genetic model is constructed

based on the least square principle with genetic effects

defined as deviations from the population mean and

lower-order terms (Cockerham, 1954; Kempthorne,

1957). In such a model, the additive, dominance and

epistatic effects are a function of an array of genotypic

values and are frequency dependent.

In this application, however, our population is not

a single homogeneous population, but a group of

related and heterogeneous cross populations. We are

seeking a genetic model that can link the genetic effect

parameters of different populations together, and also

can be used for different populations more or less

autonomously. This would enable us to utilize the

relatedness of different cross populations at QTL level

for the statistical inference of the genetic architecture

of the traits in the whole population, and also make

the statistical analysis flexible enough to be applicable

to a variety of combinations of cross populations.

For these reasons, we choose to define the genetic

effects as deviations from the mean of the inbred lines,

rather than the mean of the whole population. At one

locus, let

µ¯
3
L

i="

g
ii

L
,

where g
ii

is the homozygote genotypic value in line i

and L is the number of inbred lines. The the additive

effect at the locus for line i can be defined as a

deviation of g
ii

from µ :

a
i
¯ g

ii
®µ.

Clearly, the a
i
values (i¯1, 2,… ,L) sum to zero. The

dominance effect between Q
i
and Q

j
is defined as a

deviation of heterozygote genotypic value g
ij

from the

averaged additive effect and the mean:

d
ij
¯ g

ij
®

a
i
­a

j

2
®µ.

Thus, the model of a multiallelic system for a F
#
(i, j)

population can be written as

E

F

g
ij

g
ii

g
jj

G

H

¯

E

F

"

#

1

0

"

#

0

1

1

0

0

G

H

E

F

a
j

a
i

d
ij

G

H

­

E

F

µ

µ

µ

G

H

(1)
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or in matrix notation

G
ij
¯Dα

ij
­1µ. (2)

The D matrix is designed to summarize the in-

formation of the genetic model and can be different

for different kinds of cross populations. For other

cross populations, other than F
#
, the D matrix can be

specified correspondingly. With mixed cross popu-

lations in a data set, a subscript for D is needed to

indicate the type of cross involved.

For a population of F
#
(1, 2) and F

#
(2, 3), for example,

a
#
is estimated from both crosses, and d

"#
and d

#$
are

estimated from F
#
(1, 2) and F

#
(2, 3) separately. The

constraint a
"
­a

#
­a

$
¯ 0 will ensure the model is not

over-parameterized.

The model can also be used for a single F
#
(say F

#
(1,

2)) population. With the constraint a
"
­a

#
¯ 0 in this

case, (1) is reduced to

E

F

g
"#

g
""

g
##

G

H

¯

E

F

µ

µ

µ

G

H

­

E

F

0

1

®1

1

0

0

G

H

0ad1 .

This model also applies to multiple loci, ignoring

epistasis. The issue of epistasis is, however, com-

plicated and ignored here. Epistatic parameters need

to be defined with reference to a specific cross. In

order to take epistasis into account properly, some

reparameterization of the additive and dominance

effects is required.

(iii) Statistical model and likelihood analysis

Based on the above genetic model, we define the

statistical model of composite interval mapping for

multiple F
#
data from crosses of multiple inbred lines

as

y
ijk

¯ (z["]
ijk

w["]

ijk
­z[#]

ijk
w[#]

ijk
) a­z[$]

ijk
w[$]

ijk
d­x

ijk
β­e

ijk
, (3)

where

z["]

ijk
¯

1

2
3

4

1 if the QTL genotype is Q
i
Q

i

"

#
if the QTL genotype is Q

i
Q

j

0 if the QTL genotype is Q
j
Q

j
,

z[#]

ijk
¯

1

2
3

4

0 if the QTL genotype is Q
i
Q

i

"

#
if the QTL genotype is Q

i
Q

j

1 if the QTL genotype is Q
j
Q

j

and

z[$]

ijk
¯

1

2
3

4

0 if the QTL genotype is Q
i
Q

i

1 if the QTL genotype is Q
i
Q

j

0 if the QTL genotype is Q
j
Q

j
.

y
ijk

is the trait value of the kth individual in the F
#

population originating from inbred lines i and j ; a is

a column vector of additive effects, a¯ (a
"
, a

#
,… ,

a
L
)« ; d is a column vector of dominance effects

between different alleles, d¯ (d
"#

, d
"$

,… , d
ij
,… ,

d
(L−")L

)« for i! j ; w["]

ijk
is a row vector of length L with

the ith element one and others zero, indicating the

allelic transmission from parental inbred line i to the

cross progeny in F
#
; w[#]

ijk
is a row vector with the jth

element one and others zero, indicating the allelic

transmission from parental inbred line j to the cross

progeny; w[$]

ijk
is a row vector of length L(L®1)}2 with

the ijth element one and others zero, indicating the

coincidence of the allele Q
i
from line i with allele Q

j

from line j in the cross progeny; β is the column vector

of fixed effects that may include the overall mean µg,

crossmeans µ
ij
, some systematic environmental effects,

reciprocal effects (if appropriate), and selected marker

effects to control the genetic background; x
ijk

is the

ijkth row vector of the design matrix X that relates the

fixed effects to observations; e
ijk

is a residual of the

model and assumed to be identically, independently

and normally distributed with mean zero and variance

σ#. For the case where e
ijk

CN(0,σ#
ij
) or where

repeated measurements are available, likelihood

analysis and estimation formulae are presented in the

Appendix.

In this model, trait values (Y) are modelled as a

function of parameters including QTL effects (a and

d) and other fixed effects (β) given the indicator

variables (z) for QTL genotypes, line cross information

(W), and design matrix (X) of other fixed effects.

Individual QTL genotypes are generally not observed.

However, because genetic marker genotypes are

observed, the probability distribution of QTL geno-

types can be inferred by a Markov chain analysis

conditioned on marker genotypes, the genomic pos-

ition of the putative QTL and the experimental design

(Jiang & Zeng, 1997). Let p
ijkl

(l¯1, 2, 3) be the

probabilities of the three QTL genotypes for individual

k in F
#
(i, j) conditioned on marker genotypes and the

genomic position of the putative QTL. The likelihood

function of the model for θ¯ (a«, d«,σ#,β«) is

L(θ rY)¯ 0
L−"

i="

0
L

j=i+"

(2πσ#)−
n
ij

#

0
nij

k="

3
$

l="

p
ijkl

exp 9® 1

2σ#

(y
ijk

®µ
ijkl

)#: (4)

with

µ
ijk"

¯w["]

ijk
a­x

ijk
β,

µ
ijk#

¯ ("
#
w["]

ijk
­"

#
w[#]

ijk
) a­w[$]

ijk
d­x

ijk
β,

µ
ijk$

¯w[#]

ijk
a­x

ijk
β.

Generally, the analysis for QTL is performed

through a search process by analysing the likelihood

for different genomic positions. For a given position

(and thus p
ijkl

), the likelihood analysis can be
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performed by the EM algorithm (Dempster et al.,

1977; Little & Rubin, 1987; Kao & Zeng, 1997). We

treat QTL genotypes as missing data. Instead of

maximizing the above likelihood function directly, we

can maximize the conditional expectation of complete

data log-likelihood with respect to QTL genotype

given observation Y and current estimates of para-

meters θ[t] :

Q(θ r θ[t])¯ 3
L−"

i="

3
L

j=i+"

3
nij

k="

3
$

l="

ln[φ(y
ijk

rµ
ijkl

,σ#) p
ijkl

]π
ijkl

,

where φ is a normal density function and

π
ijkl

¯
p
ijkl

φ(y
ijk

rµ
ijkl

,σ#)

3
$

l="

p
ijkl

φ(y
ijk

rµ
ijkl

,σ#)

(5)

is the posterior probability of the QTL genotype.

Calculating π
ijkl

is the E-step of the EM algorithm. To

make the estimation formulae easier to fit different

genetic models, we can express µ
ijkl

in formula (5) as

µ
ijkl

¯Dlα
ij
­x

ijk
β,

where Dl is the lth row vector of the D matrix in (2),

α
ij
¯ (a

i
a
j
d
ij
)«. The M-step is to maximize Q(θ r θ[t])

with respect to θ. The estimators can be expressed as

a# ¯T−"
aa

[S!
a
(Y®Xβ)®T

ad
d], (6)

d# ¯T−"
dd

[S!
d
(Y®Xβ)®T

da
a], (7)

σ# #¯
1

N
[(Y®Xβ)« (Y®Xβ)­α«Tα®2(Y®Xβ)«Sα],(8)

β# ¯ (X«X)−"X«(Y®Sα), (9)

with

T
aa

¯W!

"
²W

"
n [Π(D

"
aD

"
)]´­W!

"
²W

#
n [Π(D

"
aD

#
)]´

­W!

#
²W

"
n [Π(D

#
aD

"
)]´

­W!

#
²W

#
n [Π(D

#
aD

#
)]´,

T
ad

¯W!

"
²W

$
n [Π(D

"
aD

$
)]´­W!

#
²W

$
n [Π(D

#
aD

$
)]´,

T
da

¯W!

$
²W

"
n [Π(D

$
aD

"
)]´­W!

$
²W

#
n [Π(D

$
aD

#
)]´,

T
dd

¯W!

$
²W

$
n [Π(D

$
aD

$
)]´,

T¯ 0Taa

T
da

T
ad

T
dd

1 ,
α¯ (a«d«)«,

S¯ (S
a
S

d
),

S
a
¯ (ΠD

"
) nW

"
­(ΠD

#
) nW

#
,

S
d
¯ (ΠD

$
) nW

$
,

where the T and S matrices are just intermediate

variables defined to simplify formulae (6)–(9). In these

equations, Π¯²π
ijkl

´
N×$

with N¯3L−"

i="
3L

j=i+"
n
ij
; W

"

is a N¬L matrix with w["]

ijk
being the ijkth row vector;

W
#

has the same size as W
"

with w[#]

ijk
being the ijkth

row vector; W
$

is a N¬L(L®1)}2 matrix in the

diallel design with w[$]

ijk
being the ijkth row vector. D

"
,

D
#

and D
$

are the first, second and third column

vectors of the D matrix in (2), corresponding to the

indicator variables z["]

ijk
, z[#]

ijk
and z[$]

ijk
respectively. The

symbol a stands for the Hardamard product, which is

an element-by-element product of two same-order

matrices. The symbol n is used here to denote the

element-by-element product of each column in a

matrix by a column vector, i.e. for A¯²a
ij
´
n×m

and b

¯²b
i
´
n×"

, A n b¯²a
ij
b
i
´
n×m

. The EM is performed in

iterations between the E-step (5) and the M-step (6),

(7), (8) and (9), starting with an initial guess of

parameter values. The converged values of parameter

estimates are the maximum likelihood estimates

(MLE).

Though the above formulae were derived based on

the connected F
#

populations, it is also directly

applicable to a single F
#

populations, two backcross

populations from which dominance effects are es-

timable, a single or multiple four-way crosses, etc.

When there is only one QTL effect in the model for

each cross of a data set, such as backcrosses, the

formulae can still be used directly by setting D
#
and D

$

to zero and not estimating other parameters.

The above formulae have a very neat structure and

can be used for diverse data structures and ex-

perimental designs. Their general nature will be more

apparent if we rewrite the formulae for location

parameters in terms of normal equations:

E

F

S!
a
X

X«X

S!
d
X

T
aa

X«S
a

T
da

T
ad

X«S
d

T
dd

G

H

[t]
E

F

a[t+"]

β[t+"]

d[t+"]

G

H

¯

E

F

S!
a
Y

X«Y

S!
d
Y

G

H

[t]

.

These are the mixture model normal equations for

ML estimation and can accommodate different

numbers of parameters just as normal equations for

least square estimation. Note that the row dimension

of matrix D is equal to the number of mixture

components and the column dimension is the number

of genetic parameters for each cross, which depends

on genetic models and can be different for different

kinds of cross populations. Thus, in analysing map-

ping data with mixed kinds of cross populations, it is

necessary to add a code in the data to distinguish

different types of crosses in order to let the computer

program associate the appropriate D matrix to each

cross.

(iv) Hypothesis testing

A test for QTL is performed through a likelihood

ratio test under the hypotheses :

H
!
: a

i
¯ 0 and d

ij
¯ 0 for i, j¯1, 2,… ,L and i1 j, i.e.

no QTL at the testing position;
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H
"
: At least one of the genetic effects a

i
or d

ij
is not

zero, implying that the testing position may contain a

QTL.

For crosses of multiple inbred lines, the likelihood

ratio test statistic takes the form

LR¯®2 log

L 04L
i="

a
i
¯ 0 and 4

L

i!j

d
ij
¯ 0,βW

!
,σW #

!1
L(aW

i
, dW

ij
,βW ,σW #)

, (10)

where aW
i
, dW

ij
, βW , σW # are MLE of parameters a

i
, d

ij
, β, σ#

under H
"
, and βW

!
and σW #

!
are MLE under H

!
.

Determining the threshold of the test statistic is a

complicated issue. Many factors, such as the sample

size, genome size, genetic map density and proportion

of missing data, could affect the distribution of the

test statistic under the null hypothesis (Lander &

Botstein, 1989; Zeng, 1994; Churchill & Doerge,

1994; Kao, 1995). With appropriate adjustment to the

critical level based on an estimate of the effective

number of independent tests involved (Lander &

Botstein, 1989; Zeng, 1994), an approximate threshold

can be calculated. However, when multiple parameters

are tested simultaneously, the issue can be further

complicated. Therefore, we recommend using the

union intersection method (Casella & Berger, 1990)

and split the above hypothesis into many subsets of

hypotheses. Taking the diallel design of three lines as

an example, the hypothesis can be split into the

following six subsets :

H
!
1 : a

"
¯ 0, H

"
1 : a

"
1 0,

H
!
2: a

#
¯ 0, H

"
2: a

#
1 0,

H
!
3: a

$
¯ 0, H

"
3: a

$
1 0,

H
!
4: d

"#
¯ 0, H

"
4: d

"#
1 0,

H
!
5: d

"$
¯ 0, H

"
5: d

"$
1 0,

H
!
6: d

#$
¯ 0, H

"
6: d

#$
1 0.

Each subset of hypotheses tests one parameter. If all

the subsets of the null hypothesis are not rejected

based on the separate likelihood ratio tests, the null

hypothesis will not be rejected. The rejection of any

subset of the null hypothesis will lead to rejection of

the null hypothesis. The subsets of the null hypothesis

can be tested for every position along the genome or

only at the positions where the total LRT statistic

reaches its local maximum to save computing time.

The position of a QTL is estimated at a position where

the null hypothesis is rejected and the maximum

likelihood is achieved. Correspondingly, the effects of

the putative QTL are estimated by MLE at the

estimated QTL position.

The maximum likelihood estimates of parameters β

and σ# under the null hypothesis are the estimates

based on the reduced model

y
ijk

¯x
ijk

β­e
ijk

with all a
i
’s and d

ij
’s constrained to zero. Since it is a

multiple regression model, the MLE of β and σ# are

simply

βW
!
¯ (X«X)−"X«Y, (11)

σW #
!
¯

1

N
(Y®Xβ)« (Y®Xβ). (12)

In testing a subset of the hypoothesis, the maximum

likelihood under a specific null hypothesis is obtained

with appropriate parameters in vector a and}or in

vector d constrained to zero.

3. Simulation study

(i) Simulation methods

For simplicity, we simulate only one QTL in a linkage

group of 100 cM with five different combinations of

cross populations to demonstrate the general ap-

plicability of the procedure. The markers are evenly

distributed in the linkage group with interval size (int)

5 or 10 cM. The position of the QTL is set to 34 cM.

We simulate several crosses from three inbred lines,

each fixed with different alleles in the first four cases.

The genotype values of the three homozygotes, Q
"
Q

"
,

Q
#
Q

#
and Q

$
Q

$
, and the three heterozygotes, Q

"
Q

#
,

Q
"
Q

$
and Q

#
Q

$
, in the populations are assumed to be

®0±3, ®0±4, 0±6, ®0±45, 0±25 and ®0±1 respectively.

In the fifth case, we assume Q
"
3Q

#
, i.e. Q

"
and Q

#

are the same allele. No systematic environmental

effects are simulated for simplicity. The mean values

of crossbred populations F
#
(1, 2), F

#
(1, 3), F

#
(2, 3),

B[(1, 2),1], B[(1, 2), 2] and B[(2, 3), 3] are assumed to

be 1±50, 2±00, 2±50, 1±25, 1±75 and 2±75, respectively.

The residual variance is scaled to give the variance

explained by the QTL, R#¯ 0±1, 0±3 or 0±6. One

hundred replicates are simulated for each parameter

combination, and the search analysis for the QTL is

performed at 1 cM intervals for each replicate. The

five cases of population structures and genetic models

are :

Case 1 : Three F
#

populations, F
#
(1, 2), F

#
(1, 3) and

F
#
(2, 3), from a diallel cross design of the three inbred

lines. The sample size of each cross is assumed to be

50, 100 or 1000.

Case 2 : Three F
#

populations, F
#
(1, 2), F

#
(1, 3) and

F
#
(2, 3), plus three backcross populations, B[(1, 2),1],

B[(1, 2), 2] and B[(2, 3), 3], from the three inbred lines.

The sample size for each F
#
population is 50, and for

each backcross population 50, 100 or 500. This case is

used to show the advantage of combining different

types of crosses in the analysis.

Case 3 : A single F
#

population, F
#
(1, 2), with sample

size 150, 300 or 1500. This case is used for comparison

with other cases.

Case 4 : Two backcross populations, B[(1, 2),1] and

B([1, 2), 2], each with sample size 75, 150 or 750. This
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Table 1. The expected additi�e and dominance effects as well as means (¬10−$) in the fi�e cases of simulation

µg µ
"

µ
#

µ
$

µ
%

µ
&

µ
'

a
"

a
#

a
$

d
"#

d
"$

d
#$

Case 1 1967 ®500 0 500 — — — ®267 ®367 633 ®100 100 ®200
Case 2 1925 ®458 42 542 ®708 ®208 792 ®267 ®367 633 ®100 100 ®200
Case 3 1150 — — — — — — 50 ®50 — ®100 — —
Case 4 1150 ®250 250 — — — — 50 ®50 — ®100 — —
Case 5 1933 ®500 0 500 — — — ®333 ®333 667 0 ®200 ®200

µ
"
, µ

#
, µ

$
, µ

%
, µ

&
and µ

'
stand for cross means of F

#
(1, 2), F

#
(1, 3), F

#
(2, 3), B[(1, 2), 1], B[(1, 2), 2] and B[(2, 3), 3], respectively. µg

stands for the overall mean of the whole population.

Table 2. Means and standard de�iations of QTL position estimates (cM ) o�er 100 replicates

N R# Case 1 Case 2 Case 3 Case 4 Case 5

int¯ 5
150 0±1 35±7 (10±1)a 35±4 (7±31) 33±9 (6±41) 35±5 (9±31) 33±5 (9±77)d

0±3 34±5 (4±11) 33±8 (2±43) 34±5 (1±92) 33±9 (4±00) 34±7 (4±78)
300 0±1 33±8 (6±61) 34±8 (4±61) 34±1 (2±51) 33±0 (5±90) 33±8 (5±95)

0±3 34±3 (2±35) 33±8 (2±01) 34±1 (1±35) 34±2 (1±46) 34±3 (1±99)
1500 0±1 34±5 (1±46) 34±4 (1±73) 34±1 (1±45) 34±2 (1±41) 34±4 (1±53)

0±3 34±2 (0±84) 34±0 (0±90) 34±0 (0±50) 34±0 (0±83) 34±1 (0±73)

int¯10
150 0±1 33±7 (15±7)b 35±4 (12±0)c 36±4 (9±76) 35±1 (13±3)c 35±2 (15±9)e

0±3 33±9 (7±17) 33±4 (4±75) 35±1 (2±31) 34±2 (5±56) 34±4 (7±69)
300 0±1 34±8 (11±4) 34±4 (9±44) 35±4 (2±98) 33±2 (9±75) 34±5 (11±0)

0±3 33±3 (3±01) 33±6 (2±97) 35±1 (1±44) 33±5 (2±21) 33±3 (2±77)
1500 0±1 33±4 (1±93) 33±7 (2±81) 34±8 (1±26) 33±8 (2±01) 33±7 (2±06)

0±3 33±8 (0±91) 33±9 (1±05) 34±1 (0±72) 34±2 (0±96) 33±7 (0±92)

a,b,c,d and e denote means based on the 96, 94, 98, 97 and 92 significant replicates respectively. N is the total sample size.
The sample size is N­150 in Case 2. int stands for the size of marker intervals. R# is the proportion of the variance explained
by the QTL.

case is used to show that with two backcrosses, both

additive and dominance effects of the QTL can be

estimated.

Case 5 : The same as case 1 except that line 1 is fixed

for the same allele as that of line 2, i.e. Q
"
3Q

#
. Thus

the genotypic values of both Q
"
Q

"
and Q

#
Q

#
are

®0±4. The genotypic values of heterozygotes, Q
"
Q

$

and Q
#
Q

$
, are all ®0±1 and Q

"
Q

#
is the same as

Q
"
Q

"
and Q

#
Q

#
.

The expected additive and dominance effects are

calculated from the genotypic values, based on the

genetic model, and listed in Table 1. The expected

values of cross means in five simulated cases are also

listed in Table 1 and calculated under the constraint

that the sum of cross mean parameters in each

simulated case is zero.

(ii) Results

The estimates of QTL position and sampling variances

of estimates are shown in Table 2 for the five cases.

The estimates of QTL effects and sampling variances

of estimates are shown in Table 3 for Case 2 and Table

4 for Case 5. For all the cases, the simulation results

clearly show that consistent estimates for QTL

position and effects are obtained. As expected, the

sampling variances of estimates of QTL position and

effects decrease as the sample size increases.

Besides the sample size, the marker interval size and

the proportion of genetic variance explained by the

QTL are two other important factors affecting

estimates of QTL position and effects, as observed for

the case analysis of two inbred line (Kao & Zeng,

1997). As the marker interval size decreases, the

sampling variance of estimates of QTL position and

effects decreases. The proportion of genetic variance

explained by the QTL significantly affects estimates of

QTL position, as expected. The sampling variances of

estimates of QTL position and effects for R#¯ 0±6
(not shown in the tables) are generally about half

those for R#¯ 0±3. The difference in the sampling

variances between R#¯ 0±3 and R#¯ 0±1 are, however,

much larger. It is interesting to note that the sampling

variances of QTL position estimates with the highest

R# (¯ 0±6) but the lowest sample size (N¯150) and

lower marker density (int¯10) (not shown in Table

2) are very similar to those with the lowest R# (¯ 0±1)

but the highest sample size (N¯1500) and higher
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Table 3. Means and standard de�iations (¬10−$) of QTL effect estimates from 100 replicates of the mixed

data simulated in case 2

N R# aW
"

aW
#

aW
$

dW
"#

dW
"$

dW
#$

σW #

int¯ 5
150 0±1 ®270 (144) ®369 (137) 640 (129) ®101 (190) 144 (272) ®213 (202) 1046 (103)

0±3 ®265 (69) ®367 (69) 634 (64) ®102 (93) 124 (131) ®199 (99) 272 (28)
300 0±1 ®288 (94) ®345 (97) 635 (91) ®95 (127) 159 (265) ®228 (144) 1033 (98)

0±3 ®276 (47) ®354 (43) 632 (45) ®100 (56) 127 (137) ®206 (74) 268 (27)
1500 0±1 ®267 (55) ®366 (54) 635 (46) ®100 (59) 87 (200) ®205 (64) 1006 (48)

0±3 ®266 (28) ®366 (27) 633 (24) ®100 (30) 91 (101) ®201 (32) 261 (12)

int¯10
150 0±1 ®274 (161)c ®354 (142)c 630 (135)c ®81 (195)c 59 (318)c ®204 (234)c 1034 (113)c

0±3 ®271 (75) ®358 (72) 631 (57) ®93 (101) 76 (141) ®204 (106) 270 (30)
300 0±1 ®268 (97) ®364 (107) 634 (106) ®99 (126) 113 (247) ®207 (161) 1019 (94)

0±3 ®265 (49) ®363 (54) 630 (55) ®96 (72) 106 (123) ®199 (81) 265 (29)
1500 0±1 ®253 (51) ®374 (53) 629 (46) ®98 (64) 98 (228) ®182 (80) 1011 (53)

0±3 ®259 (27) ®370 (26) 631 (23) ®98 (32) 99 (114) ®190 (39) 262 (15)

c Based on the 98 significant replicates.

Table 4. Means and standard de�iations (¬10−$) of QTL effect estimates from 100 replicates of three F
#

populations with Q13Q2 simulated in Case 5

N R# aW
"

aW
#

aW
$

dW
"#

dW
"$

dW
#$

σW #

int¯ 5
150 0±1 ®386 (210)d ®325 (205)d 714 (198)d 9 (333)d ®162 (295)d ®247 (332)d 1065 (193)d

0±3 ®356 (100) ®327 (98) 685 (97) 4 (146) ®180 (139) ®222 (134) 279 (58)
300 0±1 ®350 (129) ®353 (127) 705 (129) 34 (199) ®235 (216) ®199 (200) 1098 (136)

0±3 ®339 (62) ®343 (61) 683 (64) 18 (101) ®220 (106) ®196 (93) 285 (38)
1500 0±1 ®340 (55) ®327 (55) 669 (54) ®24 (92) ®214 (91) ®224 (85) 1126 (53)

0±3 ®335 (27) ®329 (27) 666 (27) ®12 (45) ®205 (40) ®210 (43) 292 (17)

int¯10
150 0±1 ®328 (234)e ®317 (223)e 647 (237)e ®29 (375)e ®176 (361)e ®202 (404)e 1032 (197)e

0±3 ®333 (102) ®328 (101) 663 (102) ®7 (164) ®190 (149) ®208 (174) 273 (56)
300 0±1 ®315 (159) ®344 (143) 661 (156) 16 (231) ®183 (216) ®160 (221) 1107 (139)

0±3 ®325 (74) ®340 (67) 666 (67) 15 (102) ®190 (101) ®176 (99) 289 (46)
1500 0±1 ®328 (57) ®328 (57) 658 (61) 0 (90) ®178 (82) ®195 (97) 1116 (59)

0±3 ®329 (29) ®329 (29) 660 (31) 0 (45) ®187 (42) ®195 (49) 290 (18)

d Based on the 97 significant replicates.
e Based on the 92 significant replicates.

marker density int¯ 5. By increasing sample size and

marker density, the ability to detect QTL with smaller

effects can be significantly increased. In Cases 3 and 4,

the QTL additive effects were estimated both as allelic

effects (as defined in the model) and as the difference

of the two allelic effects. Both parameterizations lead

to the same estimated QTL position, as expected.

In comparing results of different cases, several

interesting conclusions can be made. First, compared

with Case 1, Case 3 has smaller sampling variances of

estimates of QTL positions and effects for the same

sample size. This reflects the fact that the number of

QTL effects to be estimated is reduced from six in

Case 1 to two in Case 3. Secondly, compared with

Case 4, Case 3 has smaller sampling variances of

estimates of QTL position and effects (results not

shown), indicating that an F
#
population is better than

two backcross populations with the same total sample

size. Third, as expected, the sampling variances of

additive effects are generally smaller than those of

dominance effects in all simulated cases.

4. Discussion

Many current statistical methods for QTL mapping

are developed for crosses from two inbred lines.

However, in many practical breeding programmes

there could be multiple crosses originating from

multiple inbred lines and these crosses can be used for

QTL mapping (Rebai et al., 1994). One advantage of

using multiple crosses is to increase the chance of

identifying different QTL alleles that are segregating
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in different crosses (Xu, 1996, 1998). Another ad-

vantage is to increase the statistical power to identify

more QTL if data from different crosses are analysed

together (Rebai & Goffinet, 1993).

In order to combine different crosses in a single

analysis, it is necessary to take the genetic structure of

different crosses into account in the statistical model.

The genetic structure of a cross population in a

multiple-cross data set is the same as that of the

corresponding single cross. The genetic relationship

between different crosses, however, needs to be

connected through a design matrix indicating allelic

transition. In this paper we outline a statistical method

for a joint QTL mapping analysis in multiple crosses

from multiple inbred lines. The method is an extension

of composite interval mapping from crosses of two

inbred lines (Zeng, 1994; Jiang & Zeng, 1997) to those

of multiple inbred lines. The generalization of the

method is realized through the introduction of an

experimental design matrix W and a genetic model

matrix D. The experimental design matrix W contains

information on allelic transition from parental inbred

lines to cross progeny. The genetic model matrix D

specifies the relationship between genotypes and

genetic parameters in a two- or multiple-allelic system.

The introduction of the W matrix makes the method

applicable to a variety of cross designs from two or

multiple inbred lines, such as complete or partial

diallel, factorial and cyclic cross designs, or designs

with more complex structures. The use of the D matrix

also makes the method applicable to different cross

populations, such as backcross, double haploid,

recombinant inbred lines, F
#
, F

$
, three-way cross,

four-way cross. With appropriate specification of the

W and D matrices together, the method can be applied

to a variety of cross designs, data structures and

genetic models. In analysing the mixed cross data we

need to put a code for each individual in the data to

identify the type of cross and apply the appropriate D

matrix configuration accordingly.

In the simulation, we have demonstrated the

application of the method in a partial diallel cross

design with three inbred lines in case 1 and a mixed

group of crosses (F
#
and backcrosses) in Cases 2 and

4. To test the general applicability of the methods for

large data set we have applied the methods and

procedures to a simulated data set of many irregular

crosses from 10 inbred lines and also to another

simulated data set of partial diallel crosses of 30

inbred lines. Consistent results (not shown here) are

obtained in both cases. However, as the numbers of

inbred lines and crosses increase, it would be more

appropriate to regard the genetic effects as random

effects for hypotheses testing and parameter esti-

mation. This would not only make the statistical

inference applicable to other related populations but

also make the statistical analysis more efficient

computationally. Sample size is not a major limiting

factor to computation, but the number of parameters

is. With hundreds of cross populations from many

inbred lines in some large-scale breeding programmes

it is appropriate to use a random genetic effect model

for QTL mapping analysis. We have extended the

current study to include random genetic effects, and

the results will be published elsewhere.

Of course, the method can be used to analyze a

single F
#
or backcross population, as shown in Case 3.

In the Appendix we show how to specify the W and D

matrices to reduce the formula for a cross of two

inbred lines and to produce results corresponding to

those of Kao & Zeng (1997).

In specifying the D matrix, some reparameterization

may be required for some experimental designs. This

is the case, for example, when the number of crosses

is smaller than the number of inbred lines, such as a

backcross or a four-way cross. For four-way cross

data, the number of parameters can be quite large

compared with the number of cross populations. A

solution to reparameterization for this is to define

differences of genetic effects as parameters. For

instance, the genetic model can be specified with three

genetic parameters as in two-way ANOVA design

(Seber, 1977) : one for the difference between allelic

effects a
"
and a

#
, one between a

$
and a

%
, and the third

for the interaction between the two differences. The D

matrix under this definition will be

D¯

E

F

"

#

"

#

®"

#

®"

#

®"

#

"

#

"

#

®"

#

®1

1

®1

1

G

H

.

The three columns specify the configuration for the

three corresponding genetic parameters. For more

complex cross designs, sometimes reparameterization

or constraints need to be made on certain subsets of

parameters to ensure the estimability of parameters in

the model. If each cross involves different inbred lines,

mapping analysis on different crosses can proceed

separately, but some joint analyses may still be needed

to test certain hypotheses concerning QTL position

and some QTL effects, such as QTL by environment

or genotype interaction, a situation similar to design

II or Jiang & Zeng (1995).

When mapping data are composed of crosses from

multiple inbred lines, it might be tempting to extend a

two-line cross mapping analysis directly to the cross

populations from multiple lines by fitting the data into

a model like

y
ijk

¯ a
ij
x$
ijk

­d
ij
z$
ijk

­x
ijk

β­e
ijk

.

The likelihood of the whole data set under this model

is equal to the summation of likelihoods of all

individual crosses in the data set. However, it is easy

to show that this direct extension is appropriate only
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for crosses involving different and non-overlapping

lines, such as the case studied by Xu (1998), and is not

appropriate for crosses involving some common lines.

This is because different crosses that descended from

some common lines share some common alleles and

are genetically correlated. This genetic structure is not

utilized in the above model. Also, the number of the

genetic parameters in the above model can be

substantially higher than necessary, reducing the

power and resolution of the analysis. For example, for

a diallel cross design of L parental lines (without

reciprocal crosses) there are L(L®1)}2 crosses, and

the above model would fit L(L®1)}2 additive

parameters, whereas there are only L®1 additive

parameters necessary in our model. Thus whenever

there are common alleles in different crosses, the

information on common alleles should be utilized in

the construction of the genetic model.

In practice, one of the purposes of using multiple

crosses for mapping QTL is, of course, to use the

mapping results to improve the efficiency of a breeding

programme.QTLmapping analysis provides estimates

of genetic parameters, and these estimates can be used

to predict individual genotypic values in a practical

breeding programme. There are two points that need

to be emphasized in relating QTL mapping to marker-

assisted selection. First, a genetic model defined for

QTL mapping analysis is population (inbred lines)

dependent. The allelic effects in a two-allele model are

defined as a difference between two alleles. In a

multiple-allele model, allelic effects are defined with

reference to a different base. Thus, estimates of genetic

parameters of a two-allele model from a cross between

two inbred lines can be applied to crosses of the same

inbred lines, not crosses from other inbred lines. If a

breeding programme has crosses from multiple inbred

lines and selection needs to be practised in these and

other related populations from the same genetic

materials, a multiple-allele model that depicts the

genetic structure of multiple lines and their crosses has

to be used for mapping QTL in order to obtain

mapping results applicable to those populations. This

point emphasizes the importance of the current study

in the application of genetic marker technology in

practical breeding programmes. Secondly, when map-

ping results are applied to a population that is

selected, individual genotypes at QTL loci are not

necessarily observed, but their distribution can be

inferred from genetic marker information given the

estimated genomic positions of QTL. Thus, in

predicting individual genotypic values, this distri-

bution of different genotypes can be used to weight

different genotypic values for the prediction, a

situation similar to the mixture analysis in QTL

mapping. Essentially, QTL mapping and marker-

assisted selection are better evaluated in the same

framework.

Appendix

A. The formulae for heteroscedastic models

When different crosses have different residual

variances, i.e. e
ijk

CN(0,σ#
ij
), the likelihood function

of the parameters is

L(θ rY)¯ 0
L−"

i="

0
L

j=i+"

(2πσ#
ij
)−

n
ij

# 0
nij

k="

3
$

l="

p
ijkl

¬exp 9® 1

2σ#
ij

(y
ijk

®µ
ijkl

)#:
and the conditional expectation of the complete data

log-likelihood with respect to QTL genotype given

observation Y and current guess of parameters θ[t] is

Q(θ r θ[t])¯ 3
L−"

i="

3
L

j=i+"

3
nij

k="

3
$

l="

ln [φ(y
ijk

rµ
ijkl

,σ#
ij
) p

ijkl
]π

ijkl
,

where

π
ijkl

¯
p
ijkl

φ(y
ijk

rµ
ijkl

,σ#
ij
)

3
$

l="

p
ijkl

φ(y
ijk

rµ
ijkl

,σ#
ij
)

.

The formulae for parameter estimation are listed as

follows:

a# ¯T−"
R,aa

[S!
a
R−"(Y®Xβ)®T

R,ad
d],

d# ¯T−"
R,dd

[S!
d
R−"(Y®Xβ)®T

R,da
a], (13)

βW ¯ (X«R−"X)−"X«R−"(Y®Sα), (14)

where

T
R,aa

¯W!

"
R−"²W

"
n [Π(D

"
aD

"
)]´

­W!

"
R−"²W

#
n [Π(D

"
aD

#
]´

­W!

#
R−"²W

"
n [Π(D

#
aD

"
)]´

­W!

#
R−"²W

#
n [Π(D

#
aD

#
)]´,

T
R,ad

¯W!

"
R−"²W

$
n [Π(D

"
aD

$
)]´

­W!

#
R−"²W

$
n [Π(D

#
aD

$
)]´,

T
R,da

¯W!

$
R−"²W

"
n [Π(D

$
aD

"
)]´

­W!

$
R−"²W

#
n [Π(D

$
aD

#
)]´,

T
R,dd

¯W!

$
R−"²W

$
n [Π(D

$
aD

$
)]´.

Here, R−" is the inverse of the variance matrix of

residual vector e¯²e
ijk

´. T
R,aa

, T
R,ad

, T
R,da

and T
R,dd

are different from T
aa

, T
ad

, T
da

and T
dd

by including

matrix R. S, S, S
a
, S

d
and α are defined in the main

text.

σW #
ij
¯

1

n
ij

[(Y
ij
®X

ij
β)« (Y

ij
®X

ij
β)­α«T

ij
α

®2(Y
ij
®X

ij
β)«S

ij
α]. (15)

Here, Y
ij
, X

ij
, S

ij
are the subset of Y,X,S, respectively,

that corresponds to cross ij. The matrix T
ij

and its

elements T
aa,ij

, T
ad,ij

, T
da,ij

and T
dd,ij

are calculated

from the subsets of W
i

(i¯1, 2, 3) and Π corre-

sponding to cross ij, using the formulae in the main

text.
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The formulae are applicable to the data of multiple

measurements on each experimental unit. In that case

the elements in matrix R are variances of average

residual error over the repeated measurements,

σ#
ea
¯

1­(k®1) t

k
σ#

e
,

where t is the repeatability, and k is the number of

repeated measurements, which can be different for

different experimental units.

B. The reduced form of the general formulae for

single-cross data

In a two-line cross there are only two elements in each

row of matrices W
"

and W
#
. All elements in the first

column of W
"
and the second column of W

#
are one,

and the others are zero. W
$

will become a column

vector with all elements being one. Consequently,

formulae (6)–(9) can be simplified as

01HΠ(D
"
aD

"
) 1HΠ(D

"
aD

#
)

1HΠ(D
#
aD

"
) 1HΠ(D

#
aD

#
)1 0

aW
"

aW
#

1
¯ 0(Y®Xβ)«ΠD

"

(Y®Xβ)«ΠD
#

1®01HΠ(D
"
aD

$
)

1HΠ(D
#
aD

$
)1 d,

dW ¯

(Y®Xβ)«ΠD
$
®(1HΠ(D

$
aD

"
) a

"
­1HΠ(D

$
aD

#
) a

#
)

1HΠ(D
$
aD

$
)

,

σW #¯
1

n
[(Y®Xβ)« (Y®Xβ)®α«Tα®2(Y®Xβ)«ΠDα],

with

T¯

E

F

1HΠ(D
#
aD

"
) 1HΠ(D

#
aD

#
) 1HΠ(D

#
aD

$
)

1HΠ(D
"
aD

"
) 1HΠ(D

"
aD

#
) 1HΠ(D

"
aD

$
)

1HΠ(D
$
aD

"
) 1HΠ(D

$
aD

#
) 1HΠ(D

$
aD

$
)

G

H

,

βW ¯ (XHX)−"XH(Y®ΠDα).

In a two-line cross design, we usually constrain

a
"
­a

#
¯ 0. Let a

"
¯ a, a

#
¯®a. Then the genetic

design matrix D for an F
#

becomes

D*¯

E

F

0

1

®1

1

0

0

G

H

and the formulae can be simplified further as

aW ¯
(Y®Xβ)«ΠD$

"
®1HΠ(D$

"
aD$

#
) d

1HΠ(D$

"
aD$

"
)

,

dW ¯
(Y®Xβ)«ΠD$

#
®1HΠ(D$

"
aD$

#
) a

1HΠ(D$

#
aD$

#
)

,

σW #¯
1

n
[(Y®Xβ)« (Y®Xβ)­γ«Tγ

®2(Y®Xβ)«ΠD*γ].

where

T¯ 01HΠ(D$

"
aD$

"
) 1HΠ(D$

"
aD$

#
)

1HΠ(D
#
aD$

"
) 1HΠ(D$

#
aD$

#
)1 ,

γ¯ (a d )«,

βW ¯ (XHX−"XH(Y®ΠD*γ).

These formulae are reduced to those for a two-line

cross presented by Kao & Zeng (1997). By further

specifying the coefficients in the genetic design matrix

D, we can obtain the specific formula of the composite

interval mapping for a backcross population (Zeng,

1994) or for an F
#

population (Kao, 1995). When

further taking out the fixed effects β, we can get the

formulae for interval mapping (Lander & Botstein,

1989).
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