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Abstract. The problem considered is the determination of ``lower bounds'' of
matrix operators on the spaces `p�w� or d�w; p�. Under fairly general conditions, the
solution is the same for both spaces and is given by the in®mum of a certain
sequence. Speci®c cases are considered, with the weighting sequence de®ned by
wn � 1=n�. The exact solution is found for the Hilbert operator. For the averaging
operator, two di�erent upper bounds are given, and for certain values of p and � it is
shown that the smaller of these two bounds is the exact solution.

1991 Mathematics Subject Classi®cation. Primary 47B37; secondary 15A60,
26D15, 46B45.

1. Introduction. The notion of ``lower bounds'' of matrix operators was intro-
duced in [11], and has been intensively studied for `p spaces, e.g. [2,4,5]. If E is a
Banach sequence space, we denote by ��E� the set of decreasing, non-negative
sequences in E. For a positive operator A mapping E into itself, the lower bound of
A is

mE�A� � inffkAxk : x 2 ��E�; kxk � 1g:

In [8], lower bounds (as well as norms) were determined for certain classical opera-
tors on the Lorentz sequence space d�w; 1�, with the weighting sequence w � �wn�
de®ned either by wn � 1=n� or by Wn � n1ÿ�, where Wn � w1 � � � � � wn. The pre-
sent paper addresses the problem of ®nding analogous results for the case p > 1.
Under a very mild condition, the lower bound problem is the same for the Lorentz
sequence space d�w; p� and the weighted `p space `p�w�. The norms of these opera-
tors are considered in a companion paper [9].

For matrix operators satisfying fairly general conditions, the lower bound is
given by an explicit formula in terms of ai; j and wn. This reduces the problem to
®nding the in®mum of a certain sequence, denoted in our notation by �Vn=Wn�; (in
the case p � 1, the norm of the operator is the supremum of the same sequence, but
this is no longer true when p > 1). However, the problem of evaluating this in®mum
in particular cases can be far from trivial, and can lead to questions on inequalities
of some interest in their own right.

The analogous problem for the continuous case concerns the space Lp�w�, where
w�x� � 1=x�. This case is much easier, basically because the integral estimate for the
tail of a series now becomes the exact quantity required instead of an approximation.
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Indeed, for a wide class of operators, the function V�x�=W�x� is actually constant,
with its value expressed as a certain integral.

Our solutions need to reproduce the known results for `p when we take wn � 1,
and the results of [8] when we take p � 1. Some speci®c cases are as follows. For one
version of the Hilbert operator, we can give an exact solution in the form of a cer-
tain in®nite series. For the averaging (alias CesaÁ ro) operator, the value of mw;p�A� p
is easily seen to be p=�p� �ÿ 1� in the continuous case. In the discrete case, we are
unable to give a complete solution, but we show that under certain conditions it is
the smaller of this quantity and ��p� ��.

2. General matrix operators on `p�w� and d�w; p�. Let �wn� be a decreasing, non-
negative sequence. We write Wn � w1 � � � � � wn. Let p � 1. By `p�w� we mean the
space of sequences x � �xn� having

Sp �
X1
n�1

wnjxnjp

convergent, with norm kxk`p�w� � S1=p
p . When wn � 1 for all n, this coincides with `p

in the usual sense (the norm of which we denote by k kp). However, we assume
normally that limn!1 wn � 0 and

P1
n�1 wn is divergent. Given a null sequence

x � �xn�, let �x�n� be the decreasing rearrangement of jxnj. The Lorentz sequence
space d�w; p� is the space of null sequences x for which x� is in `p�w�, with norm
kxkw;p � kx�k`p�w�.

Denote by �p�w� the set of decreasing, non-negative sequences in `p�w�. Clearly,
this is the same as the set of decreasing, non-negative sequences in d�w; p�, and the
two norms coincide on it.

Let A be the operator de®ned by Ax � y, where yi �
P1

j�1 ai; jxj. We assume
throughout that:

(1) ai; j � 0 for all i; j,
(2) A maps `p�w� into itself.
Denote by en the sequence having 1 in place n and 0 elsewhere. Also, write

r i;n �
Xn
j�1

ai; j; cm; j �
Xm
i�1

ai; j:

Note that if x � e1 � � � � � en, then yi � r i;n.
We will not explore general conditions ensuring that (2) holds. For the parti-

cular operators considered later, this property is easily veri®ed. (The problem of
determining their norms is considered in [9].) However (2) implies in particular that,
for each n, the element A�e1 � � � � � en� is in d�w; p� so that

P1
i�1 wir

p
i;n is convergent.

(This in turn is equivalent to the statement that
P1

i�1 wia
p
i; j converges for each j.)

The next lemma is what we need to convert statements for `p�w� to ones for
d�w; p�.

Lemma 1. The following condition is equivalent to the statement that A�x� is
decreasing for every decreasing, non-negative sequence in d�w; p�:

(3) r i;n decreases with i for each n.
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Proof. Suppose that �xj� is decreasing and y � A�x�. By Abel summation,

yi �
X1
j�1

ai; jxj �
X1
j�1

r i; j�xj ÿ xj�1�:

If (3) holds, it follows that yi � yi�1 for all i. The converse follows from the fact that
yi � r i;n when x � e1 � � � � � en.

Write

mw;p�A� � inffkA�x�k`p�w� : x 2 �p�w�; kxk`p�w� � 1g:

This is the ``lower bound'' of A as an operator on `p�w�. In the presence of condition
(3), Lemma 1 shows that it is equally the lower bound of A as an operator on
d�w; p�, since then A�x� is decreasing, so has the same norm in `p�w� and in d�w; p�.
We also write mp�A� for the lower bound of A as an operator on `p.

We now give a characterization of mw;p�A� that simultaneously generalizes the
known results for `p [2, Theorem 2] and for d�w; 1� [8, Proposition 1]. The following
lemma is a variant of [2, Proposition 1]. The proof is short and so we include it.

Lemma 2. Let p � 1. Suppose that �aj�, �xj� are non-negative sequences, and that
�xj� is decreasing and tends to 0. Write An �

Pn
j�1 aj (with A0 � 0), and

Sn �
Pn

j�1 ajxj. Then

(i) Sp
n ÿ S

p
nÿ1 � �Ap

n ÿ A
p
nÿ1�xpn, for all n;

(ii) if
P1

j�1 ajxj is convergent, then

X1
j�1

ajxj

 !p

�
X1
n�1

Ap
n�xpn ÿ x

p
n�1�:

Proof. Di�erentiation shows that if c > 0, then �x� c� p ÿ xp is an increasing
function of x for x > 0. Since xj � xn for j � n, we have Snÿ1 � Anÿ1xn. Now

Sn � Snÿ1 � anxn;

Anxn � Anÿ1xn � anxn:

Statement (i) follows. Summing for 1 � n � N, we obtain

S
p
N �

XN
n�1
�Ap

n ÿ A
p
nÿ1�xpn;

for each N. By letting N!1 and applying Abel summation, we obtain statement
(ii).

Corollary. If �xj� is decreasing and non-negative, and Xn � x1 � � � � � xn, then
for each n,

Xp
n ÿ X

p
nÿ1 � �np ÿ �nÿ 1� p�xpn:
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Proof. Take aj � 1 in statement (i).

Theorem 1. Suppose that the operator A satis®es conditions (1) and (2). Write
r i;n �

Pn
j�1 ai; j and

Vn �
X1
i�1

wir
p
i;n:

Then
mw;p�A� p � inf

n�1
Vn

Wn
;

and mw;p�A� is determined by elements of the form e1 � � � � � en.

Proof. Denote the stated in®mum by c. Take x 2 �p�w�, and let y � A�x�. By
Lemma 2(ii), we have

y
p
i �

X1
n�1

r
p
i;n�xpn ÿ x

p
n�1�:

Hence X1
i�1

wiy
p
i �

X1
i�1

X1
n�1

r pi;n�xpn ÿ xpn�1�

�
X1
n�1
�xpn ÿ x

p
n�1�

X1
i�1

wir
p
i;n

�
X1
n�1

Vn�xpn ÿ x
p
n�1�

� c
X1
n�1

Wn�xpn ÿ x
p
n�1�

� c
X1
j�1

wjx
p
j by Abel summation:

This shows that mw:p�A� p � c. If x � e1 � � � � � en, then
P1

j�1 wjx
p
j �Wn, andX1

i�1
wiy

p
i �

X1
i�1

wir
p
i;n � Vn:

This shows equality, and the su�ciency of the elements e1 � � � � � en.

Note 1. In the same way, one can show that if A is regarded as an operator
from `p�w� to `q�w�, where p � q � 1, then its lower bound is infn�1�V1=q

n =W1=p
n �. See

[10, Chapter 3].
Note 2. In the case p � 1, the sequence �Vn=Wn� also determines the norm: in

fact, kAkw;1 � supn�1�Vn=Wn� by [8]. For p > 1, the last part of the proof of Theo-
rem 1 shows that kAkpw;p � supn�1�Vn=Wn�, but equality does not hold. See [9].

Write

un �
X1
i�1

wia
p
i;n;

vn � Vn ÿ Vnÿ1 �
X1
i�1

wi�r pi;n ÿ r
p
i;nÿ1�;
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so that Vn � v1 � � � � � vn (in accordance with our convention). When p � 1, we
have un � vn. It is elementary that infn�1�Vn=Wn� � infn�1�vn=wn�, and that equality
will hold if (together with the other assumptions about �wn�) the in®mum of �vn=wn�
is either its ®rst term or its limit. By a further application of Lemma 2, we have also
the following result.

Proposition 1. If A satis®es the conditions of Theorem 1, and also �ai; j� decreases
with j for each i, then

mw;p�A� p � inf
n�1
�np ÿ �nÿ 1� p� un

wn
:

Proof. By the Corollary of Lemma 2,

r
p
i;n ÿ r

p
i;nÿ1 � �np ÿ �nÿ 1� p�a p

i;n:

Hence

vn � �np ÿ �nÿ 1� p�
X1
i�1

wia
p
i;n � �np ÿ �nÿ 1� p�un;

and so the stated expression is not greater than infn�1�vn=wn�.

Next, we identify a class of operators for which the lower bound problem is very
easy.

Proposition 2. Suppose that A satis®es conditions (1), (2) and also: (4) A is
upper triangular, i.e. ai; j � 0 for i > j; (5) cj; j � 1 for all j (in other words, A is a
quasi-summability matrix). Then mw;p�A� � 1 for any w and any p � 1.

Proof. Take a decreasing, non-negative element x. Then

Xn
i�1

yi �
Xn
i�1

Xn
j�1

ai; jxj

�
Xn
j�1

xj
Xn
i�1

ai; j

�
Xn
j�1

xj;

since
Pn

i�1 ai; j �
Pj

i�1 ai; j � 1 for j � n. Hence we have Yn � Xn for all n. By the
majorization principle (also known as Karamata's inequality) [1, Section 1.30] this
implies that

Pn
j�1 y

p
j �

Pn
j�1 x

p
j for all n. By Abel summation, it follows that

kyk`p�w� � kxk`p�w�. Further, a1;1 � 1, and so A�e1� � e1. The statement follows.

In particular, this applies to the ``Copson'' operator C, de®ned by
yi �

P1
j�1�xj=j�, which is given by the transpose of the CesaÁ ro matrix:

ai; j � 1=j for i � j;
0 for i > j:

�
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3. Integral operators on Lp�w�. Let w�x� be a decreasing, non-negative function
on �0;1�. We assume that W�x� � R x0 w�t� dt is ®nite for each x; (hence 1=x� is per-
mitted for 0 < � < 1, but not for � � 1). Then Lp�w� is the space of functions f
having

Ip �
Z 1
0

w�x�jf�x�jp dx

convergent, with norm kfkLp�w� � I1=pp . Let A be the operator de®ned by

�Af��x� �
Z 1
0

a�x; y�f�y� dy:

We assume that a�x; y� is non-negative and that A maps Lp�w� into itself. Again we
denote the lower bound of A on Lp�w� by mw;p�A�, and de®ne

r�x; y� �
Z y

0

a�x; t� dt;

V�y� �
Z 1
0

w�x�r�x; y� p dx:

Note that r�x; y� � �Af��x� when f is the characteristic function of �0; y�.
Corresponding to Theorem 1, we have the following result.

Theorem 2. With the above notation,

mw;p�A� p � inf
y>0

V�y�
W�y� :

We omit the proof, which is a routine adaptation of the proof of [2,Theorem 7],
inserting w�x� where appropriate. It is also essentially a smoother version of the
above proof for the discrete case.

However, at this point the similarity between the discrete and continuous cases
breaks down. When we take w�x� � 1=x�, the next result shows that for a wide class
of operators (including those considered below), the function V�y�=W�y� is actually
constant and so the problem is already solved.

Proposition 3. Suppose that w�x� � 1=x� (where 0 < � < 1) and that a�x; y�
satis®es

a��x; �y� � 1

�
a�x; y�;

for all x; y; � > 0. Then, with the above notation, V�y�=W�y� is constant, and mw;p�A� p
� �1ÿ ��V�1�.

Proof. We have W�y� � y1ÿ�=�1ÿ ��. Also,
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r��x; �y� �
Z �y

0

a��x; t� dt

�
Z y

0

a��x; �u�� du

�
Z y

0

a�x; u� du
� r�x; y�:

Hence

V�y� �
Z 1
0

1

x�
r�x; y� p dx

�
Z 1
0

1

y�t�
r�yt; y� py dt

� y1ÿ�
Z 1
0

1

t�
r�t; 1� p dt;

so that V�y�=W�y� � �1ÿ ��V�1�.

4. The Hilbert operator. In the continuous case, the Hilbert operatorH is given
by the kernel a�x; y� � 1=�x� y�. This kernel satis®es the condition of Proposition 3
and so we obtain the following result.

Proposition 4. Let w�x� � 1=x�, where 0 � � < 1. Then

mw;p�H� p � �1ÿ ��
Z 1
0

1

x�
log 1� 1

x

� �� �p
dx:

Proof. We need only note that

r�x; 1� �
Z 1

0

1

x� y
dy � log 1� 1

x

� �
:

When � � 0, this integral equates to ÿ�p� 1���p� by [2, p. 97].
In the discrete case, two versions of the Hilbert operator, which we denote by

H1 and H0 respectively, are given by the matrices

ai; j � 1

i� j
; ai; j � 1

i� jÿ 1
:

We consider the lower bound of H1. In the case p � 1, this was shown in
[8, Theorem 13] to be

P1
i�1 1=�i��i� 1��. We generalize this, using our Proposition 1.

Theorem 3. Let wn � 1=n�, where 0 < � < 1, and let p � 1. Then

mw;p�H1� p �
X1
i�1

1

i��i� 1� p :
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Proof. Firstly, ke1kw;p � 1, while if y � H1�e1�, then yi � 1=�i� 1�; hence

kykpw;p �
X1
i�1

1

i��i� 1� p :

Therefore mw;p�H1� is no greater than the quantity stated. To prove the reverse
inequality, we use Proposition 1. With the notation used there,

un �
X1
i�1

1

i��i� n� p ;

and

mw;p�H1� p � inf
n�1
�np ÿ �nÿ 1� p�n�un:

Now np ÿ npÿ1 � npÿ1�nÿ 1� � �nÿ 1� p; hence np ÿ �nÿ 1� p � npÿ1, and mw;p�H1� p
� infn�1 Cn, where Cn � np��ÿ1un. A small adaptation to the proof of [8, Theorem
13] shows that Cn � C1 for all n; hence infn�1 Cn � C1 � u1, as required. (With
rather more work, it is shown in [6] that Cn increases with n.)

Corollary. We have mp�H1� p � ��pÿ 1�.

Proof. This is the case wn � 1 for all n.

We conclude this section with some brief remarks about H0. It was shown in [2]
that mp�H0� p � ��p�. The discussion in [8] shows that when wn � 1=n�, there are no
easy candidates for mw;p�H0�, even when p � 1 (though a solution is found for the w
de®ned by Wn � n1ÿ�). However, it is not hard to give a lower estimate.

Proposition 5. If wn � 1=n�, then

mw;p�H0� p � 1

p� �ÿ 1
:

Proof. We now have

un �
X1
i�1

1

i��i� nÿ 1� p �
X1
j�n

1

j p�jÿ n� 1��� �
X1
j�n

1

j p��
:

By integral estimation, this is not less than 1=�p� �ÿ 1�np��ÿ1. The statement fol-
lows, by Proposition 1.

5. The averaging operator. In this section, A will mean the averaging operator,
de®ned in the discrete case by y � A�x�, where yn � 1

n �x1 � � � � � xn�. It is given by
the CesaÁ ro matrix

ai; j � 1=i for j � i;
0 for j > i:

�
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In the continuous case, the operator is given by �Af��x� � 1
x

R x
0 f, so that

a�x; y� � 1=x for y � x;
0 for y > x:

�
This function satis®es the condition of Proposition 3 and so we have the following
result.

Proposition 6. Let w�x� � 1=x�, where 0 � � < 1, and let A be the averaging
operator on Lp�w�. Then

mw;p�A� p � p

p� �ÿ 1
:

Proof. With our previous notation, r�x; 1� equals 1 for x � 1 and 1=x for
x > 1, so that

V�1� �
Z 1
0

1

x�
r�x; 1� p dx �

Z 1

0

1

x�
dx�

Z 1
1

1

xp��
dx

� 1

1ÿ ��
1

p� �ÿ 1
:

Hence

mw;p�A� p � �1ÿ ��V�1� � 1� 1ÿ �
p� �ÿ 1

� p

p� �ÿ 1
:

Note. The norm of A as an operator on Lp�w� is p=�p� �ÿ 1� by [12, Chapter
1, Theorem 9.16].

As usual, the problem is much harder in the discrete case, and we can only give
a partial solution. It is shown in [2] that mp�A� � ��p�1=p for p > 1, and in [8] that
mw;1�A� � 1=� when wn � 1=n�. With our usual notation,

r i;n � 1 if i � n;
n=i if i > n;

�
so that

Vn �
X1
i�1

wir
p
i;n �Wn � np

X1
i�n�1

wi

i p
:

Now let wn � 1=n�, where 0 < � � 1. Write

Rn �
X1
i�n

1

i p��
:

By Theorem 1, mw;p�A� p � infn�1 Bn, where

Bn � Vn

Wn
� 1� npRn�1

Wn
:

Clearly, mw;p�A� � 1 in all cases. Note that B1 � 1� R2 � ��p� ��.

OPERATORS ON WEIGHTED `p SPACES 219

https://doi.org/10.1017/S0017089500020061 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500020061


Lemma 3. Let Sn �
P1

i�n 1=i
1��, where � > 0. Then n�Sn! 1=� as n!1.

Also,

n�Sn � 1

�
� 1

2n
:

In particular, ��1� �� � 1=�� 1
2.

Proof. By comparison with the integral of 1=x1��, we have

1

�n�
� Sn � 1

��nÿ 1�� ;

which proves the stated limit. The function 1=x1�� is convex and so the trapezium
rule overestimates its integral on each interval �k; k� 1�. The second statement fol-
lows on combining such intervals.

Lemma 4. Let Bn be as above, where 0 < � � 1: Then

Bn! p

p� �ÿ 1
as n!1:

Proof. By Lemma 3, np��ÿ1Rn�1! 1=�p� �ÿ 1� as n!1. Also, for
0 < � < 1, integral estimation gives

1

1ÿ � �n
1ÿ� ÿ 1� � Wn � n1ÿ�

1ÿ � ;

hence

n1ÿ�

Wn
! 1ÿ � as n!1:

It follows that

Bn � 1� n1ÿ�

Wn
np��ÿ1Rn�1! 1� 1ÿ �

p� �ÿ 1
� p

p� �ÿ 1
as n!1:

If � � 1, then npRn�1 ! 1=p and Wn!1 as n!1, so that Bn! 1.
Hence we have the following result.

Theorem 4. Let wn � 1=n�. If 0 < � < 1, then

mw;p�A� p � min ��p� ��; p

p� �ÿ 1

� �
:

If � � 1, then mw;p�A� � 1.

Either of ��p� �� and p=�p� �ÿ 1� can be smaller. Indeed, for a ®xed value c of
p� �, the latter is smaller when p � p0 � �cÿ 1���c�, so that � � �0 � cÿ p0. (In
this, �0 increases towards 1 as c increases.) The next lemma gives a simple su�cient
condition for p=� p� �ÿ 1� to be smaller.
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Lemma 5. If p � 1� �; then
��p� �� � p

p� �ÿ 1
:

Proof. By Lemma 3,

��p� �� � 1

p� �ÿ 1
� 1

2
:

Hence the required inequality holds provided that

pÿ 1

p� �ÿ 1
� 1

2
;

or 2� pÿ 1� � p� �ÿ 1; which is equivalent to p � 1� �:
Numerical examples suggest that �Bn� either decreases for all n or increases for a

certain number of terms and then decreases. This would imply that mw;p�A� p is the
smaller of ��p� �� and p=�p� �ÿ 1�. We shall use Proposition 1 to prove that this is
correct when p � 2 and � exceeds a certain number f�p�. With the notation of
Proposition 1,

un �
X1
i�1

wia
p
i;n �

X1
i�n

1

i p��
� Rn;

and hence mw;p�A� p � infn�1 Dn, where

Dn � n� np ÿ �nÿ 1� p� �Rn:

(Lemma 2 is not used, since for the averaging operator, it is easily seen that
r
p
i;n ÿ r

p
i;nÿ1 � �np ÿ �nÿ 1� p�a p

i;n.) Note that D1 � R1 � ��p� ��.

Lemma 6. For 1 � p � 2; we have

np ÿ �nÿ 1� p � p

2
npÿ1 � �nÿ 1�pÿ1� �

:

Proof. The function f�t� � tpÿ1 is concave and hence

np ÿ �nÿ 1� p � p

Z n

nÿ1
tpÿ1dt

� p

2
f�n� � f�nÿ 1�� �:

Lemma 7. For 1 � p � 2 and n � 2, we have

np ÿ �nÿ 1� p
npÿ1

� p

2
1� nÿ 1

p� nÿ 2

� �
:

Proof. By Lemma 6,

np ÿ �nÿ 1� p
npÿ1

� p

2
1� nÿ 1

n

� �pÿ1" #
:
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By the elementary inequality �1� x�pÿ1 � 1� � pÿ 1�x, we have
n

nÿ 1

� �pÿ1
� 1� pÿ 1

nÿ 1
� p� nÿ 2

nÿ 1
:

The statement follows.

Note. Equality holds in Lemma 7 when p is 1 or 2. This rather strange looking
inequality is a companion to the more elementary fact that the left-hand side is not
greater than p.

Theorem 5. Suppose that 1 � p � 2 and � � f �p�, where

f �p� � �3ÿ p��pÿ 1�
p� 1

:

De®ne Dn as above. Then Dn � p=�p� �ÿ 1�, for all n � 2. Hence if wn � 1=n�, then

mw;p�A� p � min �� p� ��; p

p� �ÿ 1

� �
:

Proof. Note that

Dn � np ÿ �nÿ 1� p
npÿ1

np��ÿ1Rn:

By Lemmas 3 and 7,

Dn � p

2
1� nÿ 1

p� nÿ 2

� �
1

p� �ÿ 1
� 1

2n

� �
;

so that

Dn ÿ p

p� �ÿ 1
� p

4n
1� nÿ 1

p� nÿ 2

� �
ÿ p

2�p� �ÿ 1� 1ÿ nÿ 1

p� nÿ 2

� �
:

Call this En. Then

2

p
� p� nÿ 2�En � 1

2n
� p� 2nÿ 3� ÿ pÿ 1

p� �ÿ 1

� �

p� �ÿ 1
ÿ 3ÿ p

2n
:

Hence, to ensure that En � 0 for all n � 2, it is su�cient if the right-hand side is non-
negative when n � 2. This equates to 4� � � p� �ÿ 1��3ÿ p� and hence to
� p� 1�� � � pÿ 1��3ÿ p�.

Corollary. If p � 1� �, then mw;p�A� p � p=�p� �ÿ 1�.

Proof. Since � � 1, we have p � 2. Also, 3ÿ p � p� 1, since p � 1. Hence
� � pÿ 1 � f �p�, and Theorem 5 applies. By Lemma 5, p=� p� �ÿ 1� � �� p� ��.
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Further Remarks. Some values of f are: f �1� � 0, f �32� � 3
10, f �2� � 1

3. For p in
�1; 2�, the greatest value of f�p� is 6ÿ 4

���
2
p � 0:343, occurring when p � 2

���
2
p ÿ 1.

There are cases where � � f �p� and �� p� �� is smaller than p=� p� �ÿ 1�. For
example, let p � 2 and � � 1=3: Then �� p� �� � 1:415; while p=� p� �ÿ 1� � 3=2.

When 2 � p < 5, similar methods show that the conclusion of Theorem 5 holds
when � � g� p�, where g� p� � � pÿ 1�2=�5ÿ p�. Then again g�2� � 1

3, but g� p� > 1 (so
that no conclusion follows) when p > 2:56.

The conclusion of Theorem 5 holds more widely than these results suggest, but
there are values of p and � for which D2 < p=� p� �ÿ 1�; e.g. p � 2, � � 1

10. Of
course, this does not disprove our conjecture concerning mw;p�A�.
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