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SMOOTHNESS OF SOLUTIONS OF PARABOLIC

EQUATIONS IN REGIONS WITH EDGES

A. AZZAM AND E. KREYSZIG*

§ 1. Introduction

We consider the mixed initial-boundary value problem for the parabolic

equation

(1.1) Lu = Σ atJ(x9 t)uXiXj + Σ α/x, t)uXj + b(x, t)u - ut = f(x, t)

in a region Ω X (0, T], where x = (xu x2) and Ω C R2 is a simply-connected
bounded domain having corners.

Our main objective will be the study of smoothness properties of
solutions of that problem. Early investigations of that type concern elliptic
equations in domains with a smooth boundary, starting with the Dirichlet
problem for the Laplace and Poisson equations and proceeding to general
second order elliptic equations as well as general boundary conditions; see
S. Agmon, A. Douglis and L. Nirenberg [1]. A more recent survey of the
elliptic case and further references are given by D. Gilbarg and N. S.
Trudinger [6].

Similar work on parabolic equations appeared later; we mention in
particular investigations by A. Friedman [5] on the first boundary value
problem, by Z. Itό [8] and L. I. Kamynin and V. N. Maslennikova [9] on
the second boundary value problem and by N. V. Zitarasu [15] on general
boundary value problems. Further references are given in [12].

The case of a nonsmooth boundary was treated by E. A. Volkov [14],
V. A. Kondrat'ev [10] and others whose work is discussed or mentioned
in [7]; all these papers concern elliptic equations, whereas we shall deal
with parabolic equations.

We want to mention that those problems in regions with edges and
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corners are also of practical importance in applications, for instance in

heat flow (cf. [4]), mechanics of continua and numerical analysis (difference

methods, subtraction of singularities, acceleration of convergence; cf. [11],

which treats elliptic equations but involves ideas which are also relevant

in connection with parabolic equations).

It is known that in the case of a smooth boundary dΩ of Ω, the

smoothness of solutions increases with that of the coefficients of (1.1) and

the boundary data. Indeed, if dΩ is of class C2+α, 0 < a < 1, the coef-

ficients of (1.1) are of class O(G), G = Ω X (0, T], and u is a solution of

(1.1) in G satisfying

u(x, 0) = 0 on Ώ

β(x, t)u + η(x, t)un = 0 on dΩ X (0, T] ,

where un is the outer normal derivative and β e C2+a(dΩ X (0, T]), η e

Cί+a(dΩ X (0, T]\ then ueC2+a(G).

In this paper we show that the increase of the smoothness of solu-

tions with that of the coefficients of (1.1) and the boundary data is no

longer true if dΩ has corners, and obtain a smoothness theorem for this

case.

§2. Main result

Let Ω C R2 be a simply connected bounded domain with boundary dΩ.

For simplicity and without loss of generality we assume that dΩ has a

single corner at the origin with interior angle γ > 0. We assume that the

two arcs Γ1 and Γ2 forming the corner have the representation

Γt: Xi = g2(x2)

with gx and g2 of class C2+a and ^(0) = 0, &(0) = 0, g((0) = 0, and ^(0) =

cot?\

We consider the problem [cf. (1.1)]

(2.1) Lu = Σ atA*> t)u*i*j + Σ afa t)u,s + b(x, t)u - ut = f(x, t) in G,

(2.2a) u(x, 0) = 0 o n f l ,

(2.2b) β(x, t)u + v(x, t)un = 0 o n S = (dΩ\{0}) X (0, T] ,

where βe C2+a(S), ηeC1+a(S)9 and

https://doi.org/10.1017/S0027763000019590 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019590


PARABOLIC EQUATIONS 161

β = 1, η = 0 on Γu β = 0, η = 1 on Γ2 .

If atj9 aj9 b, fe Ca(G), then for any bounded solution of (2.1)-(2.2) we

have

(2.3) ueC2+a(Gx) Π C°(G)

where Gx = ΩXX (0, T] and Ωx is any compact subregion of Ω having positive

distance from 0.

To investigate the smoothness of solutions near the edge, we take any

fixed to e [0, T] and transform the equation

(2.4) Σ± MO, QuXiX} = 0

to canonical form. Then γ at (0, t0) is transformed to

ω(t0) = arctan
«22(0, O cot γ — α12(0, ί0)

Clearly, the value α>(£0) does not depend on the particular choice of that

transformation.

We now state our main result. From (2.3) it follows that it suffices

to consider the smoothness of solutions near the edge.

THEOREM 1. Let u be a bounded solution of (2.1), (2.2) in &c = Ω* x

(0, T], where

Ω* = {x\xeΩ,

Assume aijy aά, 6, fe Ca(&c) in (2.1), where 0 < a < 1, and, furthermore,

ω(t) < \π for every t e [0, T]. Then u, as a function of x, satisfies

(2.5) ueCm,

for some v e (1, 2].

The proof of this theorem will result from Theorem 2 (below) and will

be given at the end.

§ 3. The case of a cylindrical sector

Let t0 e [0, T] be fixed and define

G. = fl. X I . ,

where
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Qa = {(r, θ)\9 0 < r ^ σ, \π - ω < θ < \π)

with ω = ω(t0) < \π and r, θ given by Xj = r cos 0, x2 = r sin 0, and

J, = {ί|fe(0,T], \t-to\^σ}.

Furthermore, let

As the mixed initial-boundary conditions we take

(3.1a) u(x9 0) = 0 on β, ,

(3.1b) u\Γx - wn|Γ2 = 0, 0 < t ^ T .

Then we have the following result.

THEOREM 2. Let u be a bounded solution of the problem (2.1), (3.1) in

Gσ with ω < \π% Suppose that aij9 aj9 b, fe Ca(Gσ), 0 < a < 1, and σ</0, ί0)

= dij. T/ιeτι w, as a function of x, satisfies

(3.2) u e C " ( 5 β ) ,

where a < σ,v = min (2, ;r/2a> — ε) awd e > 0 is arbitrarily small.

We shall obtain a proof of this theorem by first proving two lemmas

in the next two sections.

§ 4. Estimation of solutions

LEMMA 1. Under the assumptions of Theorem 2 there exists a positive

a < a such that in Ga (cf Sec. 3)

(4.1) \u(x,t)\£Mrv ,

where v — min (2, ττ/2ω — ε) and ε > 0 is arbitrarily small.

Proof. In Gσ we consider the function

υ(x) = —Mr cos λ{\π — θ) ,

v = min (2, J L _ Λ < ^ 7 ^ = j , 0 < δ < \π .

We shall prove that v(x) serves as a barrier for the solution u of (2.1),

(3.1). We have
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Lv = M[(λ2 - v2) cos λ(\π - θ) - h(x, t)]r~2 + Mhx{x, t)rv~ι + Mh2(x, t)rv,

where h(x, t) is continuous, /ι(0, tQ) = 0, and ht and h2 are bounded. Thus

for every ^ > 0 we can find an a < σ such that in Gα,

Lv ^ M[(Λ2 - v2) cos ^<iτr - θ) - εjr"" 2

Since for \π — ω <L θ <* | ττ we have

sin <5 ̂  cos ^(|ττ — θ) ^ 1 ,

in Gα we thus obtain

Lv ^ M[(^2 - v2) sin δ - ε j r - 2

with arbitrarily small εj > 0 and sufficiently small a < σ. We now take

εt < (Λ2 — v2) sin £ and use the fact that f(x91) is bounded in Gσ, say, \f(x, t)\ <J

JK". Consequently, by taking M sufficiently large (if v = 2) and a sufficiently

small (if v < 2), we obtain in Ga

Lv^K^ f(x, t) .

We now want to apply in that region the maximum principle to w = u

— v. We have Lw ^ 0 in Gα. Furthermore, wn = 0 on Γ2 X 7α and z# ̂  0

on Γx X /α. Since w is bounded in Gtf, by taking M sufficiently large we

can make w ^ 0 on

{(r, ί ) | r = α, iπ - ω < θ < |ττ} X 7α .

Hence, by the maximum principle (cf. [13]) we have w ^ 0 in Ga with suf-

ficiently small a; that is,

u :> —Mr cos λ(\κ - 0) ^ —Mr*.

The other part of (4.1) can be obtained similarly. This proves Lemma 1.

§ 5. Proof of Theorem 2

To prove Theorem 2, we need another lemma, as follows.

LEMMA 2. Let u be a bounded solution of (2.1), (2.2) in Gσ. Suppose

that atj9 dj, b,fe Ca(Gσ). Then if for some μ, 0 < μ ^ 2, and a<σ we have

\u(x,t)\ ^ Mrμ in Ga ,

it follows that
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^ Mkr
μ-k in Ga

where kx = 0, 1 or 2, kx <̂  k, k — 1, 2.

Proof. It suffices to indicate the basic idea since similar proofs were

used in [2] and [3]. In Ωa we define

Ds = {(r, θ)\2-s-2a ^ r ^ 2 — ^ T̂Γ - α> < 0 < JTΓ} ,

D's = A-i U Ds U A + i , β = 0, 1, ,

and set

The transformation

s = DSX Ia R's = D's X Ia .

4, i = 1, 2 ,xt =

+ ^un = 0 .

transforms (2.1), (2.2) into

Σ άijύy^ + 2~s Σ ajύyj + 2~2sbu - 2~2sut = 2~2γ,

Furthermore, it maps R8 onto Ro and jR£ onto R'o. In i?0 and R'Q we apply

Schauder estimates for the solution of the transformed problem to obtain

This yields in Rs

dku(x, t)

which entails the assertion of Lemma 2.

From this lemma (with μ = v) we shall now obtain Theorem 2.

Proof of Theorem 2. It is sufficient to show that

(5.2) \u,(P) - u.(Q)\
d(P, Q)'-1 H

for any two points P: (ru θiy tj and Q: (r2, θ2, Q in Ga. Here

d(P, Qγ = (x, - x2)
2 + (y, - y2)

2 + |ί t - 4| ,

as usual. Without restriction, let 0 <; r2 ^ Γj. I f r , ^ r,/2 or |ί, — ί2|
1/z ^

r,/2, then d(P, Q) ^ rJ2 and (5.2) can be obtained using the bound (5.1) of

ux. Now let r2 > Γj/2 and consider the region
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SP = {(*, t)\(x, t) e Gα, fa ^ r ^ ru \t - fe| ^ ir?}.

The transformation

x, = Zr&la, i = 1, 2 ,

maps SP onto

Gp = {(*, *>li<* ̂  /o < ia, \t - tx\ ̂  \r$ ,

where ô2 = z\ + 2:|. It transforms equation (2.1) to

Σ at A + ̂  Σ αjαy + (^X
α \ a /

In Gp and

GP = {fe ί) |*α ^ p ^ α, |ί - tλ\ ̂  ir?}

we apply a Schauder estimate to get

As in the proof of Lemma 2 we obtain

(5.3) \\u*\\°i

Now

where H^Ί(ux) is the Holder coefficient of the Holder condition for ux in

GF (with exponent ι> — 1). From (5.3) we thus obtain

This proves Theorem 2.

§ 6. Proof of Theorem 1. Concluding remarks

Consider any point (0, Q, t0 e [0, T]. We straighten the boundary around

(0, t0) by the transformation

(6.1) yx = xx -

Equation (2.1) is then transformed to a parabolic equation with principal

part
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Clearly, (6.1) is of class C2+α and the value of the Jacobian at (0, t0) is 1.

By another linear transformation we cast

2

to canonical form. These two transformations map Ω* in Theorem 1 onto

a sector Ωa of angle ω(t0). In Gσ = Ωσ X (0, T] with a suitable a > 0 the

transformed functions satisfy all the conditions of Theorem 2. Hence the

conclusion of Theorem 2 applies to the transformed solution. Since the

composite of those transformations is of class C2+α and locally injective,

Theorem 1 follows.

Remark 1. In [3] we were concerned with the initial Dirichlet problem

for a parabolic equation with coefficients au independent of t Our present

results now permit us to extend our considerations in [3] for the case n

= 2 as follows.

THEOREM 3. Let u be a bounded solution of the initial-Dirichlet problem

Lu = f in Gc

u(x9 0) = 0 on Ώ

u = 0 on S

with L, Ω and S as in Sec. 2. Suppose that aίj9 aj9 6, fe Ca(Gc) and ω(t)

< π for every t e [0, T]. Then

(6.2) u e CV{GC)

for some v e (1, 2].

To prove this, find a bound for u9 using the idea of the proof of the

above Lemma 1 and then continue as in [3].

Remark 2. If u and the coefficients of the equation in Theorem 2 are

extended by symmetry across Θ = \π9 then in GC\J with Gc = Ωc X Ic and

Ωc = {(r, θ)\0 < r ^ c, \π - ω < θ < \π + ω} ,

= !π, tele}

the extended function satisfies an initial Dirichlet problem (instead of a

mixed problem), and we may still apply the maximum principle for gener-
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alized solutions to obtain a bound for the solution. However, in Lemma

2 it is required that we have a bound for the solution everywhere. Hence

the approach just mentioned would not be of help in the present case.

Remark 3. Combining Theorems 1 and 3 we obtain

THEOREM 4. Let Ω c R2 be a bounded domain whose boundary dΩ is

a simple polygon, with sides Γx -,ΓP of class C2+a and vertices Pj = Γ3 Π

Γj+ί, j = 1, ,p, (Γp+ί = Γt) with angles γ5 such that for the correspond-

ing ωό = ω(Pj91) we have

o)j = *£/*)(*, + tCjΛ 0 < ξ, < π,

tcj = 0 or 1, Kj + κj+1 ΦO, j = 1, ,p (κp+ί = κt).

Let u be a bounded solution of the problem

Lu = f in Ω X I, I = (0, Γ] ,

u(x, 0) = 0 in Ώ ,

^ u + (1 — A:,)Mn = 0 on Γj X I,

with L as in (2.1) and aυ, aj9 6, fe Ca(Ώ X I), 0 < a < 1.

(6.3) ueC2+a(Ώί x ί ) ,

zi /iere .Qj is any compact subregion of Ω with positive distance from the

corners, and

ueC"'([Ω Π
( 6 4 ) ^ = min(2,

teϊ

where ε > 0 is arbitrarily small and Nj is a sufficiently small closed disk

centered at Pj.

The proof is obvious; indeed, for κό + κj+1 = 1 (mixed data) it follows

from Theorem 1 and for κ5 + tcj+ί = 2 (Dirichlet data) from Theorem 3.
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