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A computational iterative method for solving nonlinear ordinary
differential equations

H. Temimi and A. R. Ansari

ABSTRACT

We present a quasi-linear iterative method for solving a system of m-nonlinear coupled
differential equations. We provide an error analysis of the method to study its convergence
criteria. In order to show the efficiency of the method, we consider some computational examples
of this class of problem. These examples validate the accuracy of the method and show that
it gives results which are convergent to the exact solutions. We prove that the method is
accurate, fast and has a reasonable rate of convergence by computing some local and global
error indicators.

1. Introduction

We know very well that most real life problems are modeled using nonlinear differential
equations and in many cases consist of systems of these equations. Therefore, the solution
of coupled systems of nonlinear differential equations is of significant use to researchers in
science and engineering. Of course, these types of systems of equations are always difficult
to solve and, in some cases, solvers resort to combining the equations into one higher-order
equation. When using numerical methods for solving such systems of equations directly, the
challenge is to control the errors, because solutions from one equation form the input to another
and the errors progress deeper into the problem, which sometimes makes the solution go out
of control.

If we consider the problem in detail, it is notable that, in most cases, the difficulty stems from
the nonlinearity of the differential equations. We know that most linear ordinary differential
equations are solvable, and we are familiar with analyzing differential equations and identifying
nonlinearities. An approach which tries to incorporate all of the various tools at a problem-
solvers disposal, that is, a combination of analytical, symbolic and numerical computation, has
been considered in [11]. In essence, the method attempts to linearize the problem and then
considers an iterative approach built around analytical and numerical computations.

Several iterative methods have been studied and applied throughout the years to solve
nonlinear problems such as nonlinear oscillation equations [2, 3, 5, 10], multispecies Lotka—
Volterra equations [9] and van der Pol equations [4]. In fact, one of the most famous iterative
methods to solve nonlinear problems is the quasi-linearization technique [1].

To solve the aforementioned equations, we propose a method that uses an iterative approach
along with analytical computations to provide a solution of a modified reformulated linear
problem. It is worth noting that this was inspired by the homotopy analysis method (HAM)
[6-8]. The HAM is a general, approximate analytic approach that is used to obtain convergent
series solutions of strongly nonlinear problems. Thanks to the free choice of the initial
approximations and auxiliary linear operators, a complicated nonlinear problem can be
transformed into an infinite number of simpler linear sub-problems. Our method was also
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inspired by the well-known fixed point iteration method, which we apply in function space. In
fact, our method can be described as a quasi-linear iterative method based on the fixed point
iteration method, applied in function space.

In addition, we introduce error computation procedures specifically for such problems. In
this paper, we present a method for solving nonlinear differential equations that is based on
a series of earlier papers. However, here, we formulate a generalized semi-analytical method
for solving a reasonably general system of m-nonlinear coupled ordinary differential equations.
We develop the error analysis and show that the method is convergent, efficient and easy to
use. We also present the associated error control procedures for the method.

The paper is organized as follows. In §2, we provide a description of the method. In §3,
we provide an error analysis that will be a useful tool for discussing the performance of
the method. In §4, we present some computational examples proving the convergence of the
iterative scheme. We conclude with a few remarks in §5.

2. Method description

We consider the system of m-nonlinear coupled differential equations

Ly(up(x),uz(x), ... um(x)) + Ny(ug(x), ue(x), ..., um(z)) + g1(z) =0,
Lo(ui(x),uz(x), ..., um(x)) + No(ui(x), uz(x), ..., um(z)) + g2(z) =0,

(2.1)
Lo (ug (), ua(x), .oyt (2)) + Ny (ug (), ua (), . . ., um(2)) + gm(x) =0,
along with boundary conditions
dU1
B sy ) = 07
1 <U1 d )
dU2
B — ] =0
2(”25 dz ) ) (22)
dum
Bm (’an, dl’) = 07
where = denotes the independent variable, uj(x), ua(z), ..., um(x) are unknown functions,
aq1(x), g2(x), ..., gm(z) are known functions, Ly, Lo, ..., L., are linear operators, Ny, Na,

..., N, are nonlinear operators and By, Bs, ..., B, are boundary operators.

This approach is a continuation of a series of papers published by the same authors. Initially,
it was used for solving nonlinear differential equations [11] and later for nonlinear second-order
multi-point boundary value problems [12]. The linearization of the method involves splitting
the problem into a linear and nonlinear part. Thus the main requirement here is that L;,
i =1,2,...,mare the linear parts of the system of differential equations. However, it is possible
to reconstruct the problem by taking certain parts of the linear terms and adding them to the
nonlinear terms N;, ¢ = 1,2,...,m, as needed for smoothness and simplicity of integration.
Also, it is acceptable to reformulate this system by using an expansion of the nonlinear parts
of the differential equations. The method that we propose works in the following way: we start
by assuming that wu; o(z), ¢ = 1,2,...,m are an initial guess for the solutions to the problem
(2.1) and satisfy
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Ll(ul,o(x), UQ’()(:E), e 7’U,m’()($)) + g1 (1’) = 0,
Lo(u0(x), u2,0(x), - s umo(x)) + g2(x) = 0,
(2.3)
Ly, (u1,0(x), u2,0(2), ... s umo0(z)) + gm(z) =0,
along with boundary conditions
du
B, (ULO, dl’o) =0,
dus 0)
Bs | us., — | =0,
2( 20 "y (2.4)
dum 0
B, m,05 : =
(“ “7d )

The first iterative solutions u; 1, ¢ = 1,2,...,m are defined by solving the problem given by
Ly(urg(x),uz,1(), ... tm,1(2)) = =Ni(u1,0(x), u2,0(x), . .., Um,o(z)) — g1(),
Lo(u11(2), u2,1(), oy um,1(2)) = —No(u1,0(2), u2,0(2), - - -, um,0(2)) — g2(2), 25)
L (ur (), ug,1(2), ..o Um,1(2)) = =N (u1,0(2), u2,0(2), . .., Um,0(x)) — gm (),

along with boundary conditions

du
B, (U1,1, d;1> =0,
dus 1)
By us 1, — | =0,
2( U (2.6)

duml
B, m,1s : =0.
(“ b )

Therefore, we establish a simple iterative procedure to find approximate solutions to the
nonlinear problem defined by (2.1)—(2.2) based on solving the system of linear equations

Li(u1n41(2), u2,041(2), - - s Umnt1(2)) = —=Ni(ur,n(2), u2n(2), s Umn () — 91(2),
Lo(u1,n+1 (), u2nt1(2)s -« o Umnt1(x)) = —=No(ug 0 (), u2 n(2), . - ., Umn(2)) — g2(2),

(2.7)
Lm(ul,n+1(x)a u2,n+1(x), cees Um.,nJrl(x)) = _Nm(ul,n(f)v u2,n($), e vumm(x)) — gm (),

along with boundary conditions

duy p,
B1 (Ul,n+17 u;’x+1> :07

dug p,
BZ (UZ,n+17 uz,x+1> = 07

(2.8)

dum n+1
By, mntls — 5 | = 0.
(“ n+l d )
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We believe that this iterative procedure will be attractive to implement because of its simplicity,
efficiency and convergence. Each set of solutions is an improvement on the previous iterate
and, as more and more iterations are taken, the solutions converge to the exact solution of the
general problem (2.1)—(2.2).

Of course, as in any approximate method, the error and its control are vital. We suggest
that the convergence criteria is monitored using standard error control procedures such as the
residual, the £2-norm and £>°-norm.

3. Error analysis

In order to provide a reliable error analysis, we need to recall the £2-norm

1l = (jj I dx)m (3.1)

and we need to introduce the following convergence criteria.
— The pointwise error is given by

Ern(x) = u§** (z) — upn(z), k=1,2,...,m. (3.2)

— The £2-norm reference error with respect to the exact solutions is

exact

Er2 pn = |ug —ugnl, kE=1,2,...,m (3.3)

and the total £2-norm reference error of the problem is defined by

m 1/2
Epom = (Z 5227,6,”) : (3.4)
k=1

— The L£*°-norm reference error with respect to the exact solutions is

Eroo o = r[n%)x [uT* (x) —upn(z)|, k=1,2,....m (3.5)

)

and the total £°°-norm reference error of the problem is defined by

oy = o~ kom- .6
Eroom x| Eroo kon (3.6)
— The residual error of each equation k, k =1,2,...,m is given by

b 1/2
Rin = (J [Li(u1n(®),. o umn(®) + Ng(urn(z), ...y umn(z)) + gr(x) dx]2) (3.7)
0

and the total residual of the problem is

m 1/2
R, = (Z R§n> . (3.8)
k=1

In the following section, we provide an error analysis of a single nonlinear ordinary differential
equation, and a generalization of these theorems applied to systems of differential equations
will be provided later. Let us recall the nonlinear boundary value problem

L(u(z)) + N(u(x)) + g(z) = 0, (3.9)

https://doi.org/10.1112/51461157015000285 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157015000285

734 H. TEMIMI AND A. R. ANSARI

along with boundary conditions
d
B<u, Z) = 0. (3.10)

We can rewrite (3.9) as
o' = fu" v u,x), (3.11)
subject to the boundary conditions
u(0) = uq, u(b) = up. (3.12)

The aim of this section is to show that the sequence of functions w,,, which are solutions of

uerl = f(ufriau;munvm)a (313)
subject to the boundary conditions
un(0) = tq,  un(b) =, (3.14)

converges to the solution of problem (3.11)—(3.12), where f is a nonlinear analytic function
and the initial guess function ug can be taken as a solution of the initial problem

L(ug) +g(xz)=0 (3.15)
subject to the boundary conditions
up(0) = ug, up(b) = up. (3.16)

In order to study the convergence of the above iterative method, we need to recall the Green’s
function G, which was initially introduced by Bellman and Kabala [1] associated with (3.11)—
(3.12): that is,

Gi1, 0<xz<s<hb,
= v].
G(z,s) { 0<s<z<b (3.17)

We let G; = A+ Bz and Gy = C + Dz. We find G and G5 such that G1(s) = Ga(s) and
(dG2(s))/dx — (dG1(s))/dxz = 1. Thus

ua—|—<ub_za+s—1)x, 0<x<s<b,
G(z,s) = (3.18)

ua5+<ubza+s>x, 0<s<z<hb

The maximum of this Green’s function depends on ug, u, and b and will occur when
(z,s) = (%(b + U — Up), %(b + U — up))
or
(2,8) = (0,uq —up +b) or (z,8) = (b,uqg — up).
Let

1 2
@(ub —ug — b)

Ugqg —

}. (3.19)

K= max |G (z,s)| = max{|ua|, [up],
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If up = up = 0 and b = 1, we obtain K =  and we now have the solution of (3.11)—(3.12) in
the linear integral form

b
u= J G(x,s)f(u" v u,s)ds (3.20)
0

and the sequence of solutions of problem (3.13)—(3.14) as

b
i :J G, 5) F(ufs 1l s ) d. (3.21)
0

By subtracting (3.20) from (3.21) and applying the mean value theorem, we obtain

b
Upt1 — U = Jo G(z, 8) fu(On)(un(s) —u(s)) ds, (3.22)

where 6,, € (u,,u) and f, = df /du. Let

M= 0,.)]- 2
Lmax_|fu(6a) (3.23)
In the next theorem, we will prove that the above sequence of functions u,, converges to the
exact solution u of problem (3.11)—(3.12).

THEOREM 1. Let u and u,, respectively, be the solutions of (3.11)—(3.12) and (3.13)—(3.14).
Assume that f is a nonlinear analytic function. Then, if M Kb < 1, the sequence of functions
u,, converges to the exact solution u in the £L2-norm, where M and K are defined, respectively,
by (3.23) and (3.19).

Proof. We start by squaring (3.22) and using the bound for f,(6,), to obtain

(1 — )2 < M2 (Jb Gz, 5)(un(s) — u(s)) ds)z. (3.24)

0
Using the Cauchy—Schwarz inequality gives

b b

Gz, s)? dsJ (un(s) — u(s))? ds (3.25)

(U1 —u)? < MZJ
0

0
and using the bound for the Green’s function leads to

b

(py1 —u)? < MszbJ' (tn(s) — u(s))? ds. (3.26)
0
Then
b b
J (Ui — )2 de < MQKQbQJ (un(s) — u(s))? ds (3.27)
0 0
tnt1 = ull? < M?K20?[|uy, — ulf?, (3.28)
and thus
[unt1 = ull < (MED)"*|ug — ul. (3.29)

Since ||ug — u|| is bounded, if M Kb < 1, then the sequence of functions w, converges to the
exact solution v of the problem (3.11)—(3.12). O
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In the following theorem, we will prove the convergence of the sequence of functions u, to
the exact solution u of problem (3.11)—(3.12), in terms of the residual error indicator.

THEOREM 2. Let u and u,,, respectively, be the solutions of (3.11)—(3.12) and (3.13)—(3.14).
Assume that f is a nonlinear analytic function. Then, if M Kb < 1, the residual error defined by
(3.7) converges to zero with respect to n and therefore the sequence of functions u,, converges
to the exact solution u, where M and K are defined by (3.23) and (3.19), respectively.

Proof. Let us recall the residual term

R, =ull — f(ul,ul,, up, ). (3.30)
Using (3.13), we obtain
Ry = flul_j ul_q, up—1,m) — fup ul, tn, ). (3.31)
The mean value theorem gives
R, = fu(en)(unfl - un>7 (332)

where 6, € (u,—1,uy). Using the Green’s function gives

b
Ry = fu(f)n)J G, 8)(f (un o, U9, tn—2,8) = f(up_1, 1, Un-1,5))ds  (3.33)

0
then
b
Rn = fu(en) J G(Z‘, 8)(”;:—1 - f(u;’i—la u/n—la Unp—1, S)) d57 (334)
0
and thus
b
|Rn| < Ifu(9n)|J G (,8)(up_y — f(Up_1,Up_1,Un—1,5))|ds, (3.35)
0
which leads to
b b
J Ry de < | fu(en)\bJ (G, 8) B ds (3.36)
0 0
then
b b
J |R,| dx < MKJ |Ry—1| dx. (3.37)
0 0
Consequently, we obtain
b b
J |R,|dx < (MKb)”J |Ro| dx. (3.38)
0 0

Since fg |Ro| dz is bounded by the choice of the initial guess, if M Kb < 1, then the sequence
of functions u, converges to the exact solution u of the problem (3.11)—(3.12). O

Let us recall the system of m-nonlinear coupled differential equations

Li(up(z),uz(x), ..., um(x)) + N1(ur(x),ue(x),. .., um(x)) + g1(x) =0,
0

'Lz(ul(x),UQ(LL'), . ,um(ac)) + N2(U1($C), u2($)7 cee 7um(m)) + gz(l’) =Y (339)

Lo (ur(z),ua (), ..., um () + Ny (ur (), ue(x), . ..y um(x)) + gm(z) =0,
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u1<0) = Ulcu U]_(b) - ulb?
UQ(O) = U,2a7 UQ(b) - u2b7
(3.40)
Um(o) = Uma, um(b) = Umb-
We can easily transform (3.39) to
uy = fu(uy, uy, uy, uh, g, g, - Uy Uy U, ),
’LLIQI = f2(U/1,7 'U:/17 Uy, UIQI, u,27 Uz, ..., ulrlnv uin’ U, I)’ (341)
uZL = fm(ullla u/la U, U//2/a U/Qa uz, - - . 7u{r;w u{m’ Um, .13),
subject to the boundary conditions
ul (0) = ulcu U]_(b) - ulb?
UQ(O) = U,2a7 UQ(b) - u257
(3.42)

Um (O) = Uma;

The aim of this section is to show that the sequences of functions w1 n,u2 p, .-

are solutions of

U (D) = Ump.

- U, n, Which

1 _ 1 / 1 /! 1 /
ul,n-‘rl - fl (ul,n7 ul,n) Ul,n;s ’u’27n7 U’2,na U2.ns - - - aum,'yw m,ns Um,ns J)),
1 _ 1 / 1 / " !/
u2,n+1 - .fg(ul,na ul,n; u17n7 u27n7 u27na u2,n7 ce aum,na um,na um,n; l‘)? (3 43)
" _ 1 I 1 !/ " /
U’m,n-‘rl - fM(ul,n? ul,n7 Ul,n;, ’U/27n, u27na U2,my -+ um,na um,na Um,ns Z‘),
subject to the boundary conditions
u1,n(0) = u1a,  u1,n(b) = up,
U2.n (0) = U2q, u2,n(b) = U2p, (3 44)

Um,n (O) = Uma,

um,n(b) = Umb,

converge to the solutions of problem (3.41)—(3.42), where f1, fa,...

functions and the initial guess functions w0, us2,0, . -

initial problem

Ly (up (), us(z), ...

subject to the boundary conditions

11,0(0) = U1q,

u2,0(0) = uaq,

Um,0 (0) = Uma,

u1,0(b) = w1,

u2,0(b) = uas,

U, 0(b) = Ump.
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Following the steps for finding the Green’s function associated to problem (3.11)—(3.12), we
can write the Green’s functions associated with problem (3.41)—(3.42) as

ulﬁ(w_l)% 0<z<s<h
Gl (:L'v 8) = Uiy — Uto + S
u1a5+<1b bla )z, 0<s<z<b,
Ugg + (u2b_Z2a+S —l)x, 0<z<s<b,
Galm ) = + 3.47
Ugq — +(u2b ZQG S)x, 0<s<z<b, (3.47)
Uma + (uan _Zma s - 1)-73; 0<x<s<h,
Gm(x,8) = N
uma—s—&—(W)x, 0<s<z<hb
Therefore, for i = 1,2,...,m, we obtain
b
u; = J Giz,s) fi(uy,ul,ur, ul, ub, ug,y .o ull b U, ) ds (3.48)
0
and, fori=1,2,...,m,
b
Uin4+1 = J Gi(w7 S)fi(ull/,m ull,nv Ul,ns ug,m u/2,n7 U2,ny - - 7“%,717 u;n,nﬂ Um,n, x) ds. (3‘49)
0
Let
K; = max |G;(z,s)], i=1,2,...,m (3.50)
x,s
and
K = max K. (3.51)
1<i<m
For the sake of clarity of formulation, we use the notation
;= (u) ufu;), i=0,1,...,m. (3.52)

Then, subtracting (3.48) from (3.49) and applying the general mean value theorem for i =
1,2,...,m leads to

b

U¢7n+1 — U; = J Gz(.’E, s)Vfi(QLn).(ul,n — Uy, U27n — U2y ... ’um,n — um) dS, (353)
0
where 0; ., = (0i1m,0i 2., 0immn) and 0; n € (Wi, u;) for i,k =0,1,...,m.
Let
M; ; = max ﬁ(@n% ,j=1,2,...,m (3.54)
T i<t duy
Mi = Imnax Mi,jv M = max Mz (355)
1<jsm 1<ism

In the next theorem, we will prove that the sequences of functions u; 5, U2 p, ..., Um,n converge

to the exact solutions uy, ug, ..., Uy, of problem (3.41)—(3.42).
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THEOREM 3. Let uy, U2,..., Um and uin, U, ..., Umn, respectively, be the solution
of (3.41)—(3.42) and (3.43)—(3.44). Assume that f; are nonlinear analytic functions for i =
1,2,...,m. Then, if MKbm < 1, the sequences of functions ui n, Uz n, .., Um,n converge to
the exact solutions w1, Uy, ..., Uy, in the L?>-norm, where M and K are defined, respectively,
by (3.55) and (3.51).

Proof. Squaring (3.53) and applying the Cauchy—Schwarz inequality for i = 1,2,...,m gives

(i1 — 13)? J (x5 dSJ (Z dfﬁ Y (ttj.m uj))st. (3.56)

Then, for : =0,1,...,m,

(Uims1 — u)? < beL <Z( dfl >2 i Ujp — ) ds. (3.57)

Jj=1

Using (3.54) and (3.55) for i = 1,2,...,m leads to
(ui,n—i-l - uz) (M;K;b) mZJ Ujn — 2 ds (3.58)

and

Jb(ui,nﬂ—ul) ds < (MK ,b)? <Z||ujn uj|2) (3.59)

0
Using the notation in (3.3) for ¢ = 1,2,...,m gives

E2s s pi1 < (MK;b) ngﬁzjn (3.60)

j=1

Using (3.4) for i = 1,2,...,m leads to

E22 i my1 < (MK b)*méfs (3.61)

then
E2 i1 S MVEZ2 Y (MK;). (3.62)
i=1

Therefore, using (3.55) and (3.51), we obtain

EFa iy < (MEKbm)*EZs . (3.63)
which leads to

EFo pyr < (MEKbm)" €2, (3.64)
and, since we choose the initial guesses such that ||u; o — ;| are bounded for ¢ =1,2,...,m,
if MKbm < 1, then the sequences of functions uy ,, U2n,..., Um,, converge to the exact
solutions uy, ug, ..., U, of problem (3.41)—(3.42). O

In the following theorem, we will prove the convergence of the sequences of functions uy ,
U2ms - -, Um,n tO the exact solutions usi, ug,. .., Uy, of problem (3.41)—(3.42) in terms of the
residual error indicator.
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THEOREM 4. Let ui, u2,..., Uy and Ui n, U2p,..., Um,n, respectively, be the solutions
of (3.41)—(3.42) and (3.43)—(3.44). Assume that f; are nonlinear analytic functions for i =
1,2,...,m. Then, if MKbm < 1, the residual error defined by (3.6) converges to zero with
respect to n and the sequences of functions uj p, U2, - . . , Um,n converge to the exact solutions
U1, U, ..., Um, where M and K are defined, respectively, by (3.55) and (3.51).

Proof. Let us recall the residual term for i = 1,2,...,m given by
" " / 1 / " /
Rifﬂ = ui,n - fl (ul,m ul,n’ Ut,n, u2,n7 u27n7 U2,my -« vy um,’rw um,n’ Um,ns .13) (365)

Using (3.43) and the notation in (3.52) for ¢ = 1,2,...,m we obtain

Ri,n = fi(ﬂll,n717 ﬂ2,n717 v 7ﬁm,n71a (E) - fi(ﬂl,n7 ’[LZ,'ru e 7ﬂ/m,n7 {IJ) (366)
Using the mean value theorem for i = 1,2,...,m gives
Ri,n = vfi(ei,n)~(u1,n—1 —Uln,U2n—1 — U2,y Umn—1 — Um,n)v (3-67)

where 91‘," = (91'717”, 07;727”, ey gi,m,n) and ei,k,n € (ui,n—la uim) for 1, k= 0,1,...,m. Using the
Green’s function (3.47) for ¢ = 1,2,...,m leads to

b
Ujn—1 — Uin = J Gl(ﬂf, 5)(fi(711,n—27 7:22,71—2’ R am,n—Za 5)
0
— filtyn—1,U2n—1,. ., Um,n—1,5)) ds (3.68)
and
b
Ujn—1 — Uin = J Gl(a:, S)(u;in_l — fi(alm_l, ’1127n_1, ‘e ,am,n_l, S)) ds (369)
0
and then
b
uim_l - ui,n = J GZ(I, S)Ri,n—l dS. (370)
0

Plugging (3.70) into (3.67) for i = 1,2,...,m gives

b b b
Rim = vfz(917n> (J' Gl (1‘7 S)Rl)n,1 dS,J GQ(.’E, S)Rg,n,1 dS, e ,J Gm<.’1?, S)Rm’n,1 ds) .

0 0 0
(3.71)
Therefore, for i = 1,2,...,m,
o~ dfi [°
Rin = Z du; ) Gj(z,8)Rj,—1ds. (3.72)
Jj=1
Then, for i =1,2,...,m,
m b
Rl € 3 M5 | Ryl ds (3.73)
j=1 0
Using the notation in (3.7) gives
b m
Rim < MiKbJ > IRj 1| ds. (3.74)
j=1
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Using (3.8) and some further analysis, for i = 1,2,...,m, we obtain

Ry < (MKbm)"Ry. (3.75)
Since Rg is bounded by the choice of the initial guesses, then, if M Kbm < 1, the sequences
of functions uy , U2 p,..., Um,n converge to the exact solutions uq, ug,..., uy, of problem
(3.41)—(3.42). O

In the following section, we apply the method that we introduced earlier to three nonlinear
coupled systems of differential equations. In the first few iterations, the solutions can easily be
analytically derived and presented. However, subsequently, the process gets longer and more
complicated. Therefore, at every iteration, we opt to numerically solve the systems of equations
using the finite difference method. For the sake of uniformity and without loss of generality, we
consider a uniform mesh of size M = 10* over the unit interval [0, 1], denoted by {z;}i=o...as,
with step size h = 1074,

The convergence criteria of the proposed method is based on the £>°-norm of the error
between two consecutive computed solutions. In fact, a desired accuracy § can be predefined
by the user. Actually, our computational scheme converges when the £>-norm of the error
between two consecutive computed solutions reaches the desired accuracy §. Moreover, the £2-
norm of the error between the exact solutions and the numerical solutions and the £2-norm
of the residual will be used as an indicators of the accuracy of the computed solutions. In the
presented examples, the desired accuracy is chosen to be § = 1078,

4. Computational examples

In order to investigate the performance of the method outlined in §2, we apply it to three
examples of nonlinear coupled systems of differential equations.

4.1. Coupled system of two nonlinear differential equations

In this problem, we consider the following coupled system of nonlinear second-order differential
equations

(4.1a)

u(z) + u(z)v' (z) —v?(x) —v'(x) +1=0, 0<z <1,
v (z) + u2(z) — v (x) + o/ (z) = 0, 0<z<l,

{u(O) = ;), u(1) = sin(1), (4.1b)

This problem has exact solutions u(x) = sin(z) and v(z) = cos(x). We note that the reason
for choosing this example which has exact solutions, is to allow us to perform an error analysis
to judge the performance of the method. Let us apply the method by first defining the linear
and nonlinear parts of the equations. We distribute the system into linear and nonlinear parts

given by
Ly (u,v) = u'(x), Lo(u,v) = v"(x),
Ni(u,v) = u(x)v'(z) —v*(z) —v'(x), and No(u,v) = u?(z) —v'*(z) +4/(z), (4.2)
g (z) =1, g2(z) =0
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Thus, we establish the initial problem

(g

subject to the boundary conditions

ug(0) =0, wo(l) =sin(1), (4.30)
vo(0) =1, (1) = cos(1),
with solutions given as
x? 1
uo(x) 5 + (sm( )+ 2>ac, (4.4)
vo(z) = (cos(1l) — 1)a + 1.
The second iteration can be carried through the system
i (z) = —uo(w)of () + () + vh(x) ~ 1, L5
v () = —ud(@) + vg’ (z) — up(2), '
subject to the boundary conditions
’U,l(O) = 07 ul(l) = Sin(l)? (45b)
v1(0) =1, wv1(1) = cos(1).

Solving problem (4.5) provides the first-order pair of solutions (uj(z),vi(x))

up(r) = —1.5439 x 10732* — 5.0454 x 107223 — 2.2985 x 10~ 12%1.1233z,
v1(x) = —8.3333 x 10732° + 6.7074 x 107225 — 1.4996 x 10~ tz* (4.6)
+1.6667 x 107123 — 5.6507 x 107122 4 2.9932 x 102z + 1.

Similarly, further solutions can be obtained for the problems generated by

{%Hu>ummmm+ﬁwwvmmL

U (@) = —up () + o (2) — up (@), (4.7a)

5]

subject to the boundary conditions

un+1(0) = Oa unJrl(]-) = Sin(l)a
{Un+1 o1, (4.7b)

We have shown the first two solutions but we have not shown subsequent ones as they become
longer and more complicated. In fact, as stated earlier, we use a finite difference scheme to
solve the linearized system at each iteration. Based on the chosen accuracy of § = 1078, our
iterative scheme converges considerably fast in thirteen iterations, which is a good indication of
the efficiency and accuracy of the method. We now carry out the error analysis of the method
for this example. Figure 1 shows the exact and the first three computed solutions, respectively.
These graphs exhibit the convergence of the iterative solutions to the exact ones. In Figure 2,
we plot the error functions & ,,(x), which approach the axis y = 0 as the number of iterations
increases. These graphs show that the exact errors are getting smaller as the order of the
solution increases. These computational results reflect the efficiency of the method outlined
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FIGURE 2. The error functions &g n(x) versus x for problem (4.1).

in §2. In Tables 1-3, we present the three convergence indicators of the method. These tables
clearly show the convergence of the method with respect to the order of iterations.

In Figure 3, we present the residual error and the £2-norm of the errors between the
computed and exact solutions. These error indicators show and confirm the convergence of
the method with respect to the order of the solutions.

TABLE 1. The L% -norm of the error between the exact and computed solutions for the coupled

problem (4.1).

7 Eroo 1 Erooa Eroo i

0 6.7517x 1072 1.0765 x 10~' 1.0765 x 10!
1 1.9961 x 1072 1.0789 x 1072  1.9961 x 102
2 33316 x 1072 1.8201 x 10™2 3.3316 x 1072
3 3.6159 x 107* 8.4440 x 10~*  8.4440 x 10~*
4 1.4936 x 107*  2.0185 x 107*  2.0185 x 10~*
5 5.2607 x 107°  2.8689 x 1075  5.2607 x 107°
6 7.4988 x107% 9.9179x 107 9.9179 x 10~¢
7 1.3544 x107% 2.8979 x 1076 2.8979 x 1076
8  6.9627 x 1077  4.8741 x 1077 6.9627 x 10”7
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FIGURE 3. The error indicators with respect to the order of the solution for problem (4.1).
Based on these computational results, we can derive the following numerical estimates of
the error parameters,

R, = 6116—1.44641'7
o —1.4783
Ep2 i = Che ’
—1.4927
Epoo j = Cae 149270

where C1, Cy and C3 are constants.

TABLE 2. The £2-norm of the error between the exact and computed solutions for the coupled

problem (4.1).

i Er21, Er20; Er2

0 4.8808 x 1072 7.8268 x 1072  9.2240 x 10?2
1 1.3907 x 1072  7.5296 x 1073 1.5815 x 1072
2 23567 x 1072 1.2258 x 1073 2.6564 x 107
3 22723 x107* 5.6636 x 107*  6.1024 x 10~*
4 9.8047 x 107° 1.3880 x 10~*  1.7046 x 10~*
5 3.6880 x 107° 1.6270 x 10™°  4.0309 x 1075
6 5.0279 x 1075  6.4335 x 107% 8.1651 x 10~°
7 8.2632x 1077 2.0225 x 107°% 2.1848 x 107
8 4.8558 x 1077 2.8906 x 1077  5.6511 x 10~7

TABLE 3. The residual errors for the coupled problem (4.1).

1 Ru,i Ro,i Ri

1 24268 x 107!  1.8606 x 10!  3.0580 x 107!
2 25848 x 1072  8.0363 x 1072  8.4417 x 1072
3 7.5646 x 1072 1.3561 x 1072 1.5528 x 1072
4 22626 x 1072 21613 x 1072 3.1290 x 1073
5 4.4374x107%  9.4492 x 107*  1.0439 x 1073
6 8.2192x107° 21803 x107* 2.3301 x 10~*
729284 x 107°  2.8427 x 107°  4.0813 x 107°
8 6.7743x 107 1.1188 x107° 1.3079 x 107°
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4.2. Coupled system of three nonlinear integro-differential equations

In this problem, we consider the coupled system of integro-differential equations given by

W () — v (z) - J:[w(t) —u(t)u(t)] dt = 0, 0<a<l,
" (z) + ' (z) — w(z) — J: [u?(t) —v?(t)]dt =0, O0<x<l1, (4.9a)
w'(2) + du(@)o(z) + 7 — r[uz(t) ROt =0, 0<z<1,

0
subject to the boundary conditions

u(0) =0, wu(l) =sin(l),
v(0) =1, w(1) = cos(1), (4.9b)
w(0) =0, w(l)=sin(1)cos(1).

e

1

This problem has exact solutions u(z) = sin(x), v(x) = cos(z) and w(z) = sin(x) cos(z). An
error analysis will be conducted to test the efficacy of the iterative method outlined in §2. We
start by defining the linear and nonlinear parts of the equations as

Ly (u,v,w) =" (x),

Na (0, w) = —v/ () — L w(t) — u(t)o(t)] dt, (4.10)
gi(z) =0,
Lo(u,v,w) =v"(z), i
No(u, v, w) = ' (z) — w(z) — L R2(t) — vu] dt, (4.11)
g2(z) =0,

and
Ls(u,v,w) =v"(z), i
Ny(u, v, w) = du(z)o(z) — L 2 (1) + 02 (1)) dt, (4.12)
g3(z) = —.

Thus, we establish the initial problem as

(4.13a)
s
vo(0) =1, (1) = cos(1), (4.13b)

Da+1, (4.14)
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The second iteration can be carried through the system

wn ()" = () + j [ (£) — o (£)uo ()] dt,

v1(z)" = —up(x) + wo(w) + L [ug(t) — vg (t)] dt, (4.15a)

wn ()" = —duo(z)vo(z) — z + j Ri3(t) + oB ()] dt,

subject to the boundary conditions

v1(1) = cos(1), (4.15b)

to provide the first-order approximate solutions

up(r) = —1.3889 x 10732 + 6.4470 x 10732 — 9.1732 x 10324
—2.2985 x 10~ 122 + 1.0754«,
v1(z) = —5.4143 x 10732° + 3.8308 x 10~ 2z* — 6.3114 x 10~ 223

4.16
—4.2074 x 107122 — 1.4102 x 10722 + 1, (4.16)
w1 (z) = 1.5323 x 107225 + 9.0633 x 10~2z* — 5.6098 x 10~ 23
+9.0967 x 10~z
Consecutively, the iterative algorithm
s (@) = 01(0) + | [nl®) = wn(O)en(®) dt,
0

Up1(2) = —up (2) + wa(r) + L [us, (t) — w3 (1)) dt, (4.17a)
Wi () = ~dun (@)on(a) — 2+ | [0 (6) + o3 0) e

0

can provide an improved set of solutions at each iteration subject to the boundary conditions

un+1(0 = O, ’un+1(1) = sin(l),
Un11(0) =1,  vp41(1) = cos(1), (4.17b)
Wp4+1(0) =0, wpy1(1) = sin(1) cos(1).

We stop showing the computed solutions at this level because the remaining ones are too long
to display here. However, in the computational results provided later, we continue deriving
solutions for problem (4.9) until we achieve convergence to the earlier predefined accuracy. In
fact, our iterative scheme converges in only ten iterations, which is a good indication of the
efficiency and reliability of the method. Now, we carry out the error analysis of the method
for this example. Figure 4 shows the exact and the three first iterative solutions, respectively.
These graphs exhibit the convergence of the computed solutions to the exact ones.

In Figure 5, we plot the error functions & ,, (), which attenuate as the number of iterations
increases. These graphs show that the exact errors are getting smaller as the order of the
solution is increasing.
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In Tables 4-6, we provide the error measures to show the convergence and efficiency of the
method.
Figure 6 exhibits the residual errors and the Lo-norm of the errors between the exact and
the computed solutions. These error indicators confirm the rapid convergence of the iterative
method.
These numerical results endorse the convergence of the method with respect to the order
of the solution. In addition, we can establish the numerical estimates of the error indicators

TABLE 4. The L% -norm of the error between the exact and computed solutions for the coupled
problem (4.9).

i Eroo 1, Eroo 2, Eroo 3, Eroo s

0 5.9994 x 1072 1.0765 x 107! 1.3172x 107! 1.3172 x 107!
1 7.2304x 1072 6.6692 x 1073  2.9880 x 1072  2.9880 x 10~?
2 1.0395x 1072  1.0458 x 1073  1.4766 x 1073  1.4766 x 1073
3 6.6283 x 107° 1.2292 x 107% 3.1353 x 10™* 3.1353 x 10~*
4 1.8103x107° 1.1999 x 107° 7.7916 x 10~% 1.8103 x 1075
5 21736 x 107 2.6022 x 1075  5.3907 x 107%  5.3907 x 10~¢
6 25623 x 1077  5.1204 x 1077 2.0937 x 1077 5.1204 x 1077
7 5.1335x107% 1.2075x 1077 8.0342 x 107%  1.2075 x 1077
8 1.1874 x 1078 1.2436 x 10~ 5.8714 x 1072 1.2436 x 1078

https://doi.org/10.1112/51461157015000285 Published online by Cambridge University Press


https://doi.org/10.1112/S1461157015000285

748

0.06
0.05
0.04
0.03
0.02

0.01

-0.01

H. TEMIMI AND A. R. ANSARI

0.4 0.6 0.8 1 0 0.2 0.4
x z
0.14
Eso(x)
== &3i()
0.12 Es9(x)
E3,3(2)
0.1
0.08
0.06
0.04
0.02
0

0

0.2 0.4 0.6

T

0.8 1

FIGURE 5. The error functions Ex,n(x) versus x for problem (4.9).

TABLE 5. The £2-norm of the error between the exact and computed solutions for the coupled
problem (4.9).

i Er2 1, Er2 0, Er2 3, Erz2;

0 4.3020 x 1072  7.8268 x 1072 9.4060 x 1072  1.2971 x 107}
1 4.8146 x 1073 4.0850 x 1072 2.0937 x 1072  2.1868 x 1072
2 5.7845 x 107  8.6425 x 107*  9.7312x 107*  1.4242 x 1073
3 4.6405 x 107°  7.4503 x 107°  2.1758 x 107*  2.3462 x 10~
4 1.0754 x 1075 7.7847 x107% 4.4157 x 107 1.3991 x 1075
5 1.3489 x 107 1.5552 x 107% 3.6108 x 107%  4.1565 x 107°
6 1.6263 x 1077 3.3661 x 1077 1.4372 x 1077  4.0051 x 10~7
7 3.2046 x 107%  7.8062 x 1078 4.9373 x 107® 9.7766 x 10~
8 7.0352x 107 7.6549 x 107 3.3133x107° 1.0912 x 108

TABLE 6. The residual errors for the coupled problem (4.9).

i Rui Ra,i Rs,i Ri

1 25744 x 107t  1.1523 x 107}  2.1949 x 10~  3.5740 x 107!
2 23979 x 1072  3.2394 x 1072 1.4945 x 1072 4.2985 x 1072
3 34288 x 1072 2.7070 x 1073  2.5206 x 10~%  5.0436 x 1073
4 27688 x 107™*  2.3011 x 10™* 1.0329 x 10™* 3.7454 x 10~*
5 3.5794 x 107°  4.2921 x 1075  4.4196 x 10~°  7.1251 x 107°
6 6.3440 x 107%  6.6369 x 107%  2.0504 x 107  9.4073 x 10~¢
7 1.1636 x 107¢ 1.0516 x 1076 8.2801 x 10~7 1.7736 x 10~
8 2.2604 x 1077  1.3407 x 1077 7.5631 x 107%  2.7347 x 1077
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FIGURE 6. The error indicators with respect to the order of the solution for problem (4.9).

given by

Ri — 01671‘95651,

Epa; = Coe= 194720 (4.18)
—1.9250i

gﬁoc’i = 036 9 501,

where C7, Cy and C3 are constants.

In the next example, we apply our method to a system of differential equations in which the
nonlinearity appears mainly in the higher-order derivative terms. In fact, a direct application of
the method as defined earlier would fail. Therefore, a reformulation of the problem is required
in order to guarantee the convergence to the exact solutions.

4.3. Coupled system of differential equations with nonlinearity on highest order derivative
terms

In this problem, we consider the coupled system of nonlinear second order differential equations

given by
u'(z)u(z) +v'(x) + v(z) =0, O<z<l, (4.19a)
v (x)u (x) — 2u(z)v(z) + v/ (x) +u(x) =0, 0<ax <1, '
subject to the boundary conditions
w(0) =1, u(1) = exp(~1), o
v(0) =1, wv(1) =exp(—2).

This problem has exact solutions u(x) = exp(—z) and v(z) = exp(—2z).

We notice that this example is quite challenging since the highest order derivative terms do
not appear in the linear parts of equations (4.19a). Thus, in order to apply our method and
guarantee its convergence, we have to reformulate the problem (4.19) to linearize the highest
order derivative terms (4.19a).

Therefore, problem (4.19) becomes

v'(z) +v(x)
u(z)
2u(x)v (x) + v/ (z) + u(x)
/()

u"(m) +

=0, O0<x<l,
(4.20a)

UN(.T) _

=0, O<x<l,
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subject to the boundary conditions

{um) =1, u(l) = exp(-1),
1,

o(0) (4.20Db)

First, let us define the linear and nonlinear parts of the reformulated equations (4.20a) as

Ll(u3v) = u”(x ]
,UI

)
(z) + v(z)

Ny (u,v) = (@) ,

gl(x) =0,
La(u,v) = v"(x),

—2u(z)v' () + u'(z) + u(zx)
/() ’

(4.21)

No(u,v) =
g2(x) = 0.

We generate the sequence of solutions u,(z) by solving the following recurrence relations

J— / J—
Uy () = —vn(x) vn(a:), 0<x<l,
2, ()0} () — () — () 2ze)
un ()05, () — up, () — up(x
UZ+1($) = u (7) , O<x<,
subject to the boundary conditions
Un+1(0) = 17 un+1(1) = exp(fl), (422b)
Un+1(0) =1, vp41(1) = exp(—2).
Thus, we establish the initial problem as
gx)y=0, 0 1
ug(x) , O<az <1, (4.232)
vi(x) =0, 0<z<l,
subject to the boundary conditions
=1 1) = -1
up(0) =1, (1) = exp(—1), (4.23b)
vo(0) =1, wo(1) = exp(—2).
We obtain the initial approximate solutions as
o) = (exp(=1) = 1)z + 1, o
vo(x) = (exp(—2) — )z + 1.

In fact, since a direct double integration is not possible to solve problem (4.20), we have used,
from the first iteration, a finite difference method with step size h = 107°.

Figure 7 shows the exact and the first three iterative solutions. These graphs exhibit the
convergence of the approximate solutions to the exact ones with respect to the order of
recurrence.

In Figure 8, we plot the error functions & ,,(x), which approach the z-axis as the number of
iterations increases. These graphs show that the exact errors are getting smaller as the order
of the solution is increasing.
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FIGURE 7. The exact and the first three iterative solutions for problem (4.19).
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FIGURE 8. The error functions &, (z) versus x for problem (4.19).

In Tables 7-9, we provide the error measures to show the convergence and efficiency of the
method.

Figure 9 exhibits the residual errors and the Lo-norm of the errors between the exact and the
computed solutions. These error indicators confirm the convergence of the iterative method.

TABLE 7. The L% -norm of the error between the exact and computed solutions for the coupled
problem (4.19).

.

Eroo 1 Erooa Eroo i

7.7941 x 1072 2.0513 x 107! 2.0513 x 107!
2.8419 x 1072 4.4584 x 1072  4.4584 x 1072
6.4839 x 1073 1.7555 x 1072 1.7555 x 1072
73113 x 1072 6.9774 x 107%  7.3113 x 1072
1.5210 x 1072 5.0248 x 1072  5.0248 x 1073
8.7565 x 10™*  2.4809 x 10™2  2.4809 x 1073
4.9766 x 107%  8.1834 x 107* 8.1834 x 107*
1.7956 x 10~*  2.8008 x 10~*  2.8008 x 10~*
1.2764 x 10™*  1.6527 x 10™*  1.6527 x 104

OO Ut WO
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FIGURE 9. The error indicators with respect to the order of the solution for problem (4.19).

Based on the these results, we can establish the numerical estimates of the error indicators
to be

R, = 01670.79311’
Epz i = Coe 08198 (4.25)
Epoe; = Ce=082151

where C'1, Cy and C3 are constants.

Once again, these computational experiments prove the convergence of the sequences of
approximating solutions to the exact solutions, as stated in Theorems 3 and 4. Therefore, the
computational results are in full agreement with the theory.

TABLE 8. The £?-norm of the error between the exact and computed solutions for the coupled
problem (4.19).

.

gﬁ‘z,l,z‘ ££2,2,i 55%‘

5.6809 x 1072 1.4869 x 10!  1.5918 x 107!
1.7093 x 1072 3.0868 x 1072  3.5285 x 1072
3.9983 x 1072  1.1143 x 1072 1.1839 x 1072
4.5323 x 1073 3.9774 x 1072  6.0300 x 1073
8.6313 x 107* 3.0612 x 1072  3.1806 x 1073
5.0816 x 107%  1.5494 x 10™®  1.6306 x 1073
2.9024 x 107*  5.0009 x 10~% 5.7821 x 10~*
1.0695 x 107*  1.8790 x 10~*  2.1620 x 10~*
7.7795 x 1075 9.5637 x 107°  1.2328 x 107*

0O Ut W~ O

TABLE 9. The residual errors for the coupled problem (4.19).

.

Ru,i Ro,i Ri

)

9.0892 x 107!  8.6715 x 107!  1.2562

26224 x 1071 6.5774 x 107! 7.0809 x 107!
1.2952 x 107*  1.8586 x 107!  2.2654 x 107!
4.5990 x 1072 7.5953 x 1072  8.8792 x 1072
2.2942 x 1072 4.2775x 1072 4.8539 x 1072
1.2531 x 1072 1.8194 x 1072 2.2091 x 1072
5.1178 x 1073 9.8038 x 10™2  1.1059 x 1072
2.3755 x 1073 3.5509 x 1072 4.2722 x 1073

0 ~J O Ui Wi+
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5. Conclusion

In this paper, we have introduced an iterative quasi-linear method for solving systems of
nonlinear ordinary differential equations. We have demonstrated the accuracy and rapid
convergence of the method. We have also analyzed the method from a theoretical perspective
and our resulting theorems show the convergence and accuracy of the method. By means of
several computational examples, we have demonstrated that the method is accurate and gives
results which are convergent to the exact solutions of the problem. Thus, our computational
results are in full agreement with our theoretical analysis. In addition, adopting a finite
difference scheme to our iterative method significantly improves the convergence and accuracy
of the method.
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