A survey of molecular clouds in the outer Galaxy with the highest spatial resolution

Mitsuhiro Matsuo¹,², Tetsuhiro Minamidani²,³, Tomofumi Umemoto²,³, Atsushi Nishimura³, Hiroyuki Nakanishi¹, Nario Kuno⁵, Shinji Fujita²,⁵, Tomoka Tosaki⁶, Yuya Tsuda¹, Mitsuyoshi Yamagishi⁸, Mikito Kohno⁴ and the FUGIN team

¹Kagoshima University, email: mitsuhiro.matsuo@nao.ac.jp ²National Astronomical Observatory of Japan ³SOKENDAI ⁴Nagoya University ⁵University of Tsukuba ⁶Joetsu University of Education ⁷Meisei University ⁸Institute of Space and Astronautical Science

Abstract. We report a recent result of the FUGIN project, a Galactic plane CO survey using the Nobeyama 45-m Telescope and the FOREST receiver. In the third galactic quadrant, 42 square degrees are observed and 4752 molecular clouds are detected. Among them, 12 clouds are located at $R > 16$ kpc. Molecular clouds at $R < 16$ kpc trace the Local, Perseus, and Outer arms.

Keywords. ISM: clouds, ISM: molecules, Galaxy: disk, Galaxy: structure, radio lines: ISM

1. FUGIN project and the third galactic quadrant survey

We have carried out a simultaneous survey of the $J = 1–0$ transitions in 12CO, 13CO, and C18O toward the Galactic Plane using the Nobeyama 45-m Telescope and the FOREST (FOur-beam REceiver System on the 45-m Telescope, Minamidani et al. 2016b.) as one of the legacy projects of the Nobeyama Radio Observatory. The FOREST Ultra-wide Galactic plane survey In Nobeyama (FUGIN, Umemoto et al. in prep., Minamidani et al. 2016a, Nishimura et al. 2015) project covers the areas of $l = 10–50$ and $198–236$ degree for $b = -1 +1$ degree with the highest spatial resolution ($\sim 15''$) to date, for this kind of wide-area Galactic surveys and so far, 90 square degrees have been covered.

The observed area in the third galactic quadrant is 42 square degrees. Figure 1 shows the longitude velocity diagram of the 12CO $J = 1–0$ transition. We identified 4752 molecular clouds above 5 sigma noise level using CLUMPFIND algorithm. We found that 12 clouds were located at $R > 16$ kpc and molecular clouds at $R < 16$ kpc traced the Local, Perseus, and Outer arms. Clouds in $R > 16$ kpc are obviously compact in contrast with clouds within $R < 16$ kpc.

Figure 1. Longitude velocity diagram of the 12CO $J = 1–0$ transition. Grey background areas have not been observed yet.

References

Minamidani, T., Umemoto, T., Nishimura, A., et al. 2016a, EAS Publications Series, 75, 193
Nishimura, A., Umemoto, T., Minamidani, T., et al. 2015, IAU General Assembly, 22, 2247474
Umemoto, T., Minamidani, T., Kuno, N., et al., in preparation