A survey of molecular clouds in the outer Galaxy with the highest spatial resolution

Mitsuhiro Matsuo1,2, Tetsuhiro Minamidani2,3, Tomofumi Umemoto2,3, Atsushi Nishimura4, Hiroyuki Nakanishi1, Nario Kuno5, Shinji Fujita2,3, Tomoka Tosaki6, Yuya Tsuda1, Mitsuyoshi Yamagishi8, Mikito Kohno4 and the FUGIN team

1Kagoshima University, email: mitsuhiro.matsuo@nao.ac.jp 2National Astronomical Observatory of Japan 3SOKENDAI 4University of Tsukuba 5Joetsu University of Education 6Meisei University 8Institute of Space and Astronautical Science

Abstract. We report a recent result of the FUGIN project, a Galactic plane CO survey using the Nobeyama 45-m Telescope and the FOREST receiver. In the third galactic quadrant, 42 square degrees are observed and 4752 molecular clouds are detected. Among them, 12 clouds are located at $R > 16$ kpc. Molecular clouds at $R < 16$ kpc trace the Local, Perseus, and Outer arms.

Keywords. ISM: clouds, ISM: molecules, Galaxy: disk, Galaxy: structure, radio lines: ISM

1. FUGIN project and the third galactic quadrant survey

We have carried out a simultaneous survey of the $J = 1$–0 transitions in 12CO, 13CO, and C18O toward the Galactic Plane using the Nobeyama 45-m Telescope and the FOREST (FOur-beam REceiver System on the 45-m Telescope, Minamidani et al. 2016b.) as one of the legacy projects of the Nobeyama Radio Observatory. The FOREST Ultra-wide Galactic plane survey In Nobeyama (FUGIN, Umemoto et al. in prep., Minamidani et al. 2016a, Nishimura et al. 2015) project covers the areas of $l = 10$ – 50 and 198 – 236 degree for $b = -1$ – +1 degree with the highest spatial resolution ($\sim 15''$) to date, for this kind of wide-area Galactic surveys and so far, 90 square degrees have been covered.

The observed area in the third galactic quadrant is 42 square degrees. Figure 1 shows the longitude velocity diagram of the 12CO $J = 1$–0 transition. We identified 4752 molecular clouds above 5 sigma noise level using CLUMPFIND algorithm. We found that 12 clouds were located at $R > 16$ kpc and molecular clouds at $R < 16$ kpc traced the Local, Perseus, and Outer arms. Clouds in $R > 16$ kpc are obviously compact in contrast with clouds within $R < 16$ kpc.

Figure 1. Longitude velocity diagram of the 12CO $J = 1$–0 transition. Grey background areas have not been observed yet.

References

Nishimura, A., Umemoto, T., Minamidani, T., et al. 2015, \textit{IAU General Assembly}, 22, 2247474
Umemoto, T., Minamidani, T., Kuno, N., et al., in preparation