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DECOMPOSITIONS OF MODULES INTO
PROJECTIVE MODULES AND CS-MODULES

SoMYoT PLUBTIENG

Let M be a right R-module. It is shown that M is a locally Noetherian module if
every finitely generated module in o[M] is a direct sum of a projective module and a
CS-module. Moreover, if every module in o[M] is a direct sum of a projective module
and a CS-module, then every module in ¢{M] is a direct sum of modules which are
either indecomposable projective or uniform Y -quasi-injective. In particular, if every
module in o[M] is a direct sum of a projective module and a quasi-continuous module,
then every module in o[M] is a direct sum of a projective module and a quasi-injective

module.

1. INTRODUCTION

A module M is called a CS-module (or extending module [5)) if every submodule of
M is essential in a direct summand of M. CS-modules provide a useful generalisation of
(quasi-)injective modules and (quasi-)continuous modules (see [11]). The study of rings
over which finitely generated right modules are CS was initiated by Dung and Smith [4].
It was shown further in Huynh, Rizvi and Yousif [9] and Vanaja [12] that such rings
must be right Noetherian. Huynh and Rizvi [10] recently investigated rings over which
every countably generated right module is a direct sum of a projective module and a
CS-module, and they showed that these rings form a special class of right Artinian rings.
They gave also several characterisations of rings over which every {countably generated)
right R-module is a direct sum of a projective module and a quasi-continuous module.

In this paper, we use module-theoretic methods to consider the related properties
in more general settings. First, we show that a module M is locally Noetherian if every
finitely generated module in o[M] is a direct sum of a projective module and a CS-module.
Further, we study the modules M satisfying the stronger property that every module in
a[M] is a direct sum of a projective module and a CS-module. We show that such
modules M turn out to be pure semisimple in the sense of Wisbauer [13, Section 53], and
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every module in o[M] is a direct sum of indecomposable projective modules and uniform
S--quasi-injective modules. As a consequence, we deduce that if every module in o[M] is
a direct sum of a projective module and a quasi-continuous module, then every module
in g[M] is a direct sum of a projective module and a quasi-injective module. Specialising
to the special case when Mg = Rpg, our results provide new additional information on
certain classes of Artinian rings studied recently by Huynh and Rizvi [10].

2. THE RESULTS

Throughout this paper we consider associative rings R with identity and unitary
right R-modules. For a right R-module M, o[M] will denote the category of all right
R-modules which are submodules of M-generated modules. For basic definitions and
properties of rings, modules and categories we refer to Anderson and Fuller {1] and
Wisbauer {13].

We shall consider the following two conditions on a right R-module M:

(*) Every finitely generated module in ¢[M] is a direct sum of a projective
module and a CS-module;
(#x) Every module in o[M] is a direct sum of a projective module and a CS-
module.
We start our investigation by proving the following result.

THEOREM 1. Let M be a right R-module satisfying (*). Then M is locally Noethe-
rian.

PROOF: Let M be a right R-module satisfying (*) and let N be a finitely generated
submodule of M. We first aim to show that N/Soc(/N) is Noetherian. Let E be an
essential submodule of N, and set K = N/E. Then K is a singular module. Clearly
every finitely generated module in o[K] can not contain nonzero projective submodules.
Thus, by (%), every finitely generated module in o[K] is CS. Then, by [9, Theorem 5],
it follows that K is Noetherian. Therefore, N has ACC on essential submodules, hence
N/ Soc (N) is Noetherian by [5, Theorem 5.15 (1)].

We show now that Soc (V) is finitely generated, which would imply that N is Noethe-
rian. Assume on the contrary that Soc (N) is infinitely generated. Then we may write
Soc(N) = H, @ H,, where H, and H, are infinite direct sums of simple modules.

By hypothesis, we have N/H, = P, ® Q, where P, is a projective module and Q;
is a CS-module. Let @, be the inverse image of @; in N. Then clearly P, ~ N/Q,, and
Q.1 /H, (being isomorphic to Q) is a CS-module. Since P is projective, N = Q; & Q,
for some submodule @2 of N. Then Soc (N) = Soc (@) & Soc (Q-).

Observe that, because @,/ Soc (Q—l) is Noetherian by the above argument, and Q,

is a finitely generated CS-module, it follows from [5, Lemma 9.1} that Soc (_CI) is finitely
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generated. Hence @, and so Q,/H,, has finite uniform dimension. Therefore, this clearly
implies that Soc (Q2) is infinitely generated.
Note that
N/Soc(N) = (Q1/Soc (@) ® (Q2/ Soc (Q2)),

where Q; # Soc (Q;) and Q> # Soc(Q). Hence, N/Soc(N) has uniform dimension at

least 2. Applying the same arguments to the module @2, and continuing the process

in a similar manner, an obvious induction shows that N/Soc(N) has infinite uniform

dimension, which is a contradiction to the fact that N/Soc(N) is Noetherian. This

shows that Soc (V) is finitely generated, and therefore N is Noetherian, completing our

proof. 0
From Theorem 1 we obtain immediately the following consequence.

COROLLARY 2. Let R be a ring such that every finitely generated right R-module
is a direct sum of a projective module and a CS-module. Then R is right Noetherian.

We now prove the following fact which will be crucial for the proof of our main
result. Recall that a module N in o[M] is called ¥ -pure-injective in o[M] if every direct
sum of copies-of M is pure-injective in o[M]. A module M is called pure semisimple if
every module in the category o[M] is pure-injective. In this case, o[M] is called a pure
semisimple category (see, for example, [13]).

PROPOSITION 3. Let M be a module and suppose that there is a cardinal num-
ber ¢ such that every module in o{M] is a direct sum of c-generated modules. Then every
module in o[M] is a direct sum of modules with local endomorphism rings.

Proor: It follows from Garcia and Martinez Hernandez [8] (see Garcia and Dung |7,
Theorem 2.4]) that a pure-injective module N in o[M] is ¥ -pure-injective if and only if
there is an infinite cardinal number m such that the pure-injective envelope in o[M] of any
direct sum of copies of N is a direct sum of m-generated modules. Hence, our hypothesis
combined with this result implies that every pure-injective module in o[M] is ¥ -pure-
injective, hence is a direct sum of indecomposable modules with local endomorphism
rings. This implies that o[M] is a pure semisimple category, so every module in o[M] is
a direct sum of modules with local endomorphism rings (see, for example, [8]). 0

We are now in a position to prove the main result.

THEOREM 4. Let M be a right R-module satisfying (++). Then every module N in
o{M] has a decomposition N = @l N;, where for each i € I, either Nj; is indecomposable
projective or N; is uniform E-ql;gsi-injective.

PRroOOF: First we show that there exists a cardinal number ¢ such that each module
N € o[M] is a direct sum of c-generated modules. It follows from Theorem 1 that M is a
locally Noetherian module. Let N be any module in o[M]. By the condition (**), we have
that N = P@® K, where P is a projective module and K is a CS-module. By Kaplansky’s
Theorem (see, for example, [1, Corollary 26.2]), P is a direct sum of countably generated
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modules.

Note that K is a locally Noetherian CS-module. Hence by [5, Corollary 8.3], K has a
decomposition K = GBJ K, where each Kjis an uniform module. For each K, we consider
the M-injective envﬁope E(K;) of K; (that is, the injective envelope of K; in o[M]).
Since the category o[M] has a generating set consisting of finitely generated modules,
clearly the collection of all isomorphism classes of uniform M-injective modules forms a
set, implying that the collection of all isomorphism classes of uniform modules in o[M]
is also a set. Hence there exists an infinite cardinal number ¢ such that every uniform
module in o{M] is c-generated. Therefore, the module N in o[M] has a decomposition
N = @ N;, where each N; is a c-generated module. By Proposition 3, we get that o[M]

is a pure semisimple category, and so every module N in ¢[M] is a direct sum of modules
with local endomorphism rings.

Finally we show that every indecomposable direct summand of N is projective or
Y-quasi-injective. Let U be any indecomposable direct summand of N, and assume
that U is not projective. Consider the module U), where I is any index set. By the
condition (), we know that U") = Q @Y where Q is projective and Y is CS. If Q # 0,
then by Azumaya’s Theorem (see 1, Theorem 12.6]) Q must contain a direct summand
isomorphic to U. Hence U is projective, which is a contradiction. This implies that
Q =0, and so UY) = Y is a CS-module. Hence, U is a CS-module for each index set
I, that is, U is Z-CS in the sense of [3] (see Clark and Wisbauer [2]). Now we shall use
an argument in [4, Theorem 7, p.279] to show that U is X-quasi-injective.

Let V = é Ui, with U; >~ U for all i. Because V is a CS-module and End(U;) is

local for each z the family {U; | ¢ > 1} is locally semi-T-nilpotent (see [3, Theorem 2.4]).
Let 8 : U — U be any monomorphism, and suppose that § is not an isomorphism. By
the locally semi-T-nilpotency of {U; | ¢ > 1}, it follows that, for any z € U, there is a
positive integer n such that 8*(z) = 0, which implies that z = 0, a contradiction. Thus
any monomorphism 6 : U — U is an isomorphism. Since U ® U is CS, by [4, Lemma
3(b)], it follows that U is U-injective, that is, U is quasi-injective. It follows now from |5,
Corollary 8.10] that U is L -quasi-injective since U is £-CS. This completes the proof. 0

The next result can also be derived from [10, Theorem 5] which was proved by
different techniques.

PROPOSITION 5. Ifevery right R-module is a direct sum of a projective module
and a CS-module then R is a right Artinian ring.

Proor: Under our hypothesis, it follows from the proof of Theorem 4 (for the case
Mg = Rpg) that there is a cardinal number ¢ such that every right R-module is a direct
sum of c-generated modules. Hence, by [6, Theorem 20.23], R is a right Artinian ring. 0

Finally, we consider the modules M satisfying the property that every module N €
o[M] is a direct sum of a projective module and a quasi-continuous module.
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THEOREM 6. The following conditions are equivalent for a right R-module M:
(1) Every module N € o[M] is a direct sum of a projective module and a
quasi-continuous module;
(2) Every module N € o[M] is a direct sum of a projective module and a
quasi-injective module.

PROOF: {2)= (1) is clear.

(1)=(2) Assume that (1) holds. Let N be any module in o[M]. Then N =P & K,
where P is projective and K is quasi-continuous. By Theorem 4, it follows that K =
@ K;, where each K; is indecomposable, hence uniform. Without loss of generally we
::eléarly may assume that each K; is non-projective. Thus, by Theorem 4, each K; is
quasi-injective. Because K is quasi-continuous, it follows by [11, Theorem 2.13] that for
each j € I, (? K,') is Kj-injective. Hence, by [11, Proposition 1.18], this implies that
K = EB! K, is tqulasi—injective. Therefore, N is a direct sum of a projective module and a
quasifnjective module. 0

We conclude the paper with some remarks.

REMARKS.

(2) The results in this paper remain true (with similar arguments) if the con-
ditions (x) and (##) are replaced by the weaker ones that every (finitely
generated) module in ¢[M] is a direct sum of a module which is projective
in o[M] and a CS-module.

(b) Rings satisfying the property that every right R-module is a direct sum of a
projective module and a quasi-injective module have recently been studied
by Huynh and Rizvi [10]. We refer to this work for several characterisations
and ideal-theoretic descriptions of these rings.
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