Bull. Austral. Math. Soc. Vol. 62 (2000) [159-164]

DECOMPOSITIONS OF MODULES INTO PROJECTIVE MODULES AND CS-MODULES

SOMYOT PLUBTIENG

Let M be a right R-module. It is shown that M is a locally Noetherian module if every finitely generated module in $\sigma[M]$ is a direct sum of a projective module and a CS-module. Moreover, if every module in $\sigma[M]$ is a direct sum of a projective module and a CS-module, then every module in $\sigma[M]$ is a direct sum of modules which are either indecomposable projective or uniform \sum -quasi-injective. In particular, if every module in $\sigma[M]$ is a direct sum of a projective module and a quasi-continuous module, then every module in $\sigma[M]$ is a direct sum of a projective module and a quasi-injective module.

1. INTRODUCTION

A module M is called a CS-module (or extending module [5]) if every submodule of M is essential in a direct summand of M. CS-modules provide a useful generalisation of (quasi-)injective modules and (quasi-)continuous modules (see [11]). The study of rings over which finitely generated right modules are CS was initiated by Dung and Smith [4]. It was shown further in Huynh, Rizvi and Yousif [9] and Vanaja [12] that such rings must be right Noetherian. Huynh and Rizvi [10] recently investigated rings over which every countably generated right module is a direct sum of a projective module and a CS-module, and they showed that these rings form a special class of right Artinian rings. They gave also several characterisations of rings over which every (countably generated) right R-module is a direct sum of a projective module.

In this paper, we use module-theoretic methods to consider the related properties in more general settings. First, we show that a module M is locally Noetherian if every finitely generated module in $\sigma[M]$ is a direct sum of a projective module and a CS-module. Further, we study the modules M satisfying the stronger property that every module in $\sigma[M]$ is a direct sum of a projective module and a CS-module. We show that such modules M turn out to be pure semisimple in the sense of Wisbauer [13, Section 53], and

Received October, 1999

I would like to thank Professor Nguyen Viet Dung for pointing out Proposition 3 and for his several helpful suggestions. Moreover I wish to express my thanks to Professor Sompong Dhompongsa for drawing my attention to the subject, and for many useful discussions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

S. Plubtieng

every module in $\sigma[M]$ is a direct sum of indecomposable projective modules and uniform Σ -quasi-injective modules. As a consequence, we deduce that if every module in $\sigma[M]$ is a direct sum of a projective module and a quasi-continuous module, then every module in $\sigma[M]$ is a direct sum of a projective module and a quasi-injective module. Specialising to the special case when $M_R = R_R$, our results provide new additional information on certain classes of Artinian rings studied recently by Huynh and Rizvi [10].

2. The results

Throughout this paper we consider associative rings R with identity and unitary right R-modules. For a right R-module M, $\sigma[M]$ will denote the category of all right R-modules which are submodules of M-generated modules. For basic definitions and properties of rings, modules and categories we refer to Anderson and Fuller [1] and Wisbauer [13].

We shall consider the following two conditions on a right R-module M:

- (*) Every finitely generated module in $\sigma[M]$ is a direct sum of a projective module and a CS-module;
- (**) Every module in $\sigma[M]$ is a direct sum of a projective module and a CS-module.

We start our investigation by proving the following result.

THEOREM 1. Let M be a right R-module satisfying (*). Then M is locally Noetherian.

PROOF: Let M be a right R-module satisfying (*) and let N be a finitely generated submodule of M. We first aim to show that N/Soc(N) is Noetherian. Let E be an essential submodule of N, and set K = N/E. Then K is a singular module. Clearly every finitely generated module in $\sigma[K]$ can not contain nonzero projective submodules. Thus, by (*), every finitely generated module in $\sigma[K]$ is CS. Then, by [9, Theorem 5], it follows that K is Noetherian. Therefore, N has ACC on essential submodules, hence N/Soc(N) is Noetherian by [5, Theorem 5.15 (1)].

We show now that Soc (N) is finitely generated, which would imply that N is Noetherian. Assume on the contrary that Soc (N) is infinitely generated. Then we may write Soc $(N) = H_1 \oplus H_2$, where H_1 and H_2 are infinite direct sums of simple modules.

By hypothesis, we have $N/H_1 = \overline{P_1} \oplus \overline{Q_1}$ where $\overline{P_1}$ is a projective module and $\overline{Q_1}$ is a CS-module. Let Q_1 be the inverse image of $\overline{Q_1}$ in N. Then clearly $\overline{P_1} \simeq N/Q_1$, and Q_1/H_1 (being isomorphic to $\overline{Q_1}$) is a CS-module. Since $\overline{P_1}$ is projective, $N = Q_1 \oplus Q_2$ for some submodule Q_2 of N. Then Soc $(N) = \text{Soc } (Q_1) \oplus \text{Soc } (Q_2)$.

Observe that, because $\overline{Q_1} / \operatorname{Soc} \left(\overline{Q_1} \right)$ is Noetherian by the above argument, and $\overline{Q_1}$ is a finitely generated CS-module, it follows from [5, Lemma 9.1] that $\operatorname{Soc} \left(\overline{Q_1} \right)$ is finitely

[3]

generated. Hence $\overline{Q_1}$, and so Q_1/H_1 , has finite uniform dimension. Therefore, this clearly implies that Soc (Q_2) is infinitely generated.

Note that

$$N/\operatorname{Soc}(N) \simeq (Q_1/\operatorname{Soc}(Q_1)) \oplus (Q_2/\operatorname{Soc}(Q_2)),$$

where $Q_1 \neq \text{Soc}(Q_1)$ and $Q_2 \neq \text{Soc}(Q_2)$. Hence, N/Soc(N) has uniform dimension at least 2. Applying the same arguments to the module Q_2 , and continuing the process in a similar manner, an obvious induction shows that N/Soc(N) has infinite uniform dimension, which is a contradiction to the fact that N/Soc(N) is Noetherian. This shows that Soc(N) is finitely generated, and therefore N is Noetherian, completing our proof.

From Theorem 1 we obtain immediately the following consequence.

COROLLARY 2. Let R be a ring such that every finitely generated right R-module is a direct sum of a projective module and a CS-module. Then R is right Noetherian.

We now prove the following fact which will be crucial for the proof of our main result. Recall that a module N in $\sigma[M]$ is called \sum -pure-injective in $\sigma[M]$ if every direct sum of copies of M is pure-injective in $\sigma[M]$. A module M is called pure semisimple if every module in the category $\sigma[M]$ is pure-injective. In this case, $\sigma[M]$ is called a pure semisimple category (see, for example, [13]).

PROPOSITION 3. Let M be a module and suppose that there is a cardinal number c such that every module in $\sigma[M]$ is a direct sum of c-generated modules. Then every module in $\sigma[M]$ is a direct sum of modules with local endomorphism rings.

PROOF: It follows from Garcia and Martinez Hernandez [8] (see Garcia and Dung [7, Theorem 2.4]) that a pure-injective module N in $\sigma[M]$ is \sum -pure-injective if and only if there is an infinite cardinal number \mathbf{m} such that the pure-injective envelope in $\sigma[M]$ of any direct sum of copies of N is a direct sum of \mathbf{m} -generated modules. Hence, our hypothesis combined with this result implies that every pure-injective module in $\sigma[M]$ is \sum -pure-injective, hence is a direct sum of indecomposable modules with local endomorphism rings. This implies that $\sigma[M]$ is a pure semisimple category, so every module in $\sigma[M]$ is a direct sum of modules with local endomorphism rings (see, for example, [8]).

We are now in a position to prove the main result.

THEOREM 4. Let M be a right R-module satisfying (**). Then every module N in $\sigma[M]$ has a decomposition $N = \bigoplus_{i \in I} N_i$, where for each $i \in I$, either N_i is indecomposable projective or N_i is uniform Σ -quasi-injective.

PROOF: First we show that there exists a cardinal number c such that each module $N \in \sigma[M]$ is a direct sum of c-generated modules. It follows from Theorem 1 that M is a locally Noetherian module. Let N be any module in $\sigma[M]$. By the condition (**), we have that $N = P \oplus K$, where P is a projective module and K is a CS-module. By Kaplansky's Theorem (see, for example, [1, Corollary 26.2]), P is a direct sum of countably generated

modules.

Note that K is a locally Noetherian CS-module. Hence by [5, Corollary 8.3], K has a decomposition $K = \bigoplus_{j \in J} K_j$, where each K_j is an uniform module. For each K_j , we consider the *M*-injective envelope $E(K_j)$ of K_j (that is, the injective envelope of K_j in $\sigma[M]$). Since the category $\sigma[M]$ has a generating set consisting of finitely generated modules, clearly the collection of all isomorphism classes of uniform *M*-injective modules forms a set, implying that the collection of all isomorphism classes of uniform modules in $\sigma[M]$ is also a set. Hence there exists an infinite cardinal number c such that every uniform module in $\sigma[M]$ is c-generated. Therefore, the module N in $\sigma[M]$ has a decomposition $N = \bigoplus_{i \in I} N_i$, where each N_i is a c-generated module. By Proposition 3, we get that $\sigma[M]$ is a pure semisimple category, and so every module N in $\sigma[M]$ is a direct sum of modules with local endomorphism rings.

Finally we show that every indecomposable direct summand of N is projective or Σ -quasi-injective. Let U be any indecomposable direct summand of N, and assume that U is not projective. Consider the module $U^{(I)}$, where I is any index set. By the condition (**), we know that $U^{(I)} = Q \oplus Y$ where Q is projective and Y is CS. If $Q \neq 0$, then by Azumaya's Theorem (see [1, Theorem 12.6]) Q must contain a direct summand isomorphic to U. Hence U is projective, which is a contradiction. This implies that Q = 0, and so $U^{(I)} = Y$ is a CS-module. Hence, $U^{(I)}$ is a CS-module for each index set I, that is, U is Σ -CS in the sense of [3] (see Clark and Wisbauer [2]). Now we shall use an argument in [4, Theorem 7, p.279] to show that U is Σ -quasi-injective.

Let $V = \bigoplus_{i=1}^{\infty} U_i$, with $U_i \simeq U$ for all *i*. Because *V* is a CS-module and End(U_i) is local for each *i*, the family $\{U_i \mid i \ge 1\}$ is locally semi-T-nilpotent (see [3, Theorem 2.4]). Let $\theta : U \to U$ be any monomorphism, and suppose that θ is not an isomorphism. By the locally semi-T-nilpotency of $\{U_i \mid i \ge 1\}$, it follows that, for any $x \in U$, there is a positive integer *n* such that $\theta^n(x) = 0$, which implies that x = 0, a contradiction. Thus any monomorphism $\theta : U \to U$ is an isomorphism. Since $U \oplus U$ is CS, by [4, Lemma 3(b)], it follows that U is U-injective, that is, U is quasi-injective. It follows now from [5, Corollary 8.10] that U is Σ -quasi-injective since U is Σ -CS. This completes the proof. \square

The next result can also be derived from [10, Theorem 5] which was proved by different techniques.

PROPOSITION 5. If every right R-module is a direct sum of a projective module and a CS-module then R is a right Artinian ring.

PROOF: Under our hypothesis, it follows from the proof of Theorem 4 (for the case $M_R = R_R$) that there is a cardinal number c such that every right *R*-module is a direct sum of c-generated modules. Hence, by [6, Theorem 20.23], *R* is a right Artinian ring.

Finally, we consider the modules M satisfying the property that every module $N \in \sigma[M]$ is a direct sum of a projective module and a quasi-continuous module.

THEOREM 6. The following conditions are equivalent for a right R-module M:

- (1) Every module $N \in \sigma[M]$ is a direct sum of a projective module and a quasi-continuous module;
- (2) Every module $N \in \sigma[M]$ is a direct sum of a projective module and a quasi-injective module.

PROOF: $(2) \Rightarrow (1)$ is clear.

(1) \Rightarrow (2) Assume that (1) holds. Let N be any module in $\sigma[M]$. Then $N = P \oplus K$, where P is projective and K is quasi-continuous. By Theorem 4, it follows that $K = \bigoplus_{i \in I} K_i$, where each K_i is indecomposable, hence uniform. Without loss of generally we clearly may assume that each K_i is non-projective. Thus, by Theorem 4, each K_i is quasi-injective. Because K is quasi-continuous, it follows by [11, Theorem 2.13] that for each $j \in I$, $(\bigoplus_{i \neq j} K_i)$ is K_j -injective. Hence, by [11, Proposition 1.18], this implies that $K = \bigoplus_{i \in I} K_i$ is quasi-injective. Therefore, N is a direct sum of a projective module and a quasi-injective module.

We conclude the paper with some remarks.

Remarks.

- (a) The results in this paper remain true (with similar arguments) if the conditions (*) and (**) are replaced by the weaker ones that every (finitely generated) module in $\sigma[M]$ is a direct sum of a module which is projective in $\sigma[M]$ and a CS-module.
- (b) Rings satisfying the property that every right *R*-module is a direct sum of a projective module and a quasi-injective module have recently been studied by Huynh and Rizvi [10]. We refer to this work for several characterisations and ideal-theoretic descriptions of these rings.

References

- F.W. Anderson and K.R. Fuller, Rings and categories of modules (Springer-Verlag, Berlin, Heidelberg, New York, 1974).
- J. Clark and R. Wisbauer, '*S*-extending modules', J. Pure Appl. Algebra 104 (1995), 19-32.
- [3] N.V. Dung, 'On indecomposable decompositions of CS-modules II', J. Pure Appl. Algebra 119 (1997), 139-153.
- [4] N.V. Dung and P.F. Smith, 'Rings for which certain modules are CS', J. Pure Appl. Algebra 102 (1995), 273-287.
- [5] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, *Extending modules*, Pitman Research Notes in Mathematics Series 313 (Longman, Harlow, 1994).
- [6] C. Faith, Algebra II: Ring theory (Springer-Verlag, Berlin, Heidelberg, New York, 1976).
- [7] J.L. Garcia and N.V. Dung, 'Some decomposition properties of injective and pure-injective modules', Osaka J. Math. 31 (1994), 95-108.

S. Plubtieng

- [8] J.L. Garcia and J. Martinez Hernandez, 'Purity through Gabriel's functor rings', Bull. Soc. Math. Belgique 31 (1994), 95-108.
- [9] D.V. Huynh, S.T. Rizvi and M.F. Yousif, 'Rings whose finitely generated modules are extending', J. Pure Appl. Algebra 111 (1996), 325-328.
- [10] D.V. Huynh and S.T. Rizvi, 'On some classes of artinian rings', J. Algebra (to appear).
- [11] S.H. Mohamed and B.J. Müller, Continuous and discrete modules, London Math. Soc. Lecture Notes 147 (Cambridge Univ. Press., Cambridge, 1990).
- [12] N. Vanaja, 'All finitely generated M-subgenerated modules are extending', Comm. Algebra 24 (1996), 543-572.
- [13] R. Wisbauer, Foundations of module and ring theory (Gordon and Breach, Philadelphia, P.A., 1991).

Department of Mathematics Naresuan Unviersity Phitsanulok 65000 Thailand e-mail: somyotp@nu.ac.th