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ABSTRACT 
The objective evaluation of empirical studies is an important part when assessing demand and 
validating design methods. However, metrics that can also map cognitive processes during design are 
still lacking. In order to address this problem, an online study with 12 participants was conducted. The 
aim of this investigation was to find a relation between cognitive load and performance in engineering 
design tasks. To assess the cognitive load, the NASA-RTLX questionnaire was used as an established 
measurement tool and was related to the results achieved by the participants. The results show that 
there is a correlation between the two investigated parameters. Based on a statistical analysis a 
correlation between increasing cognitive load and a decrease in performance could be identified. The 
tasks used produce comparable results to other studies investigating cognitive load, but the task 
causing the highest cognitive load shows the widest scatter in performance. The u-curve as suggested 
by the state of the art was not visible in the study’s results, but the cognitive load should be 
nevertheless used for studies of design processes, because it may reveal a need for methodical support. 
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1 INTRODUCTION 

The objective analysis in empirical studies on the design process is necessary both in the assessment of 

demand and in the validation of design methods (Cash, 2018). Which research methods and proofs are 

necessary for successful validation remains a research gap in DRM (Gericke et al., 2017) especially 

concerning objectivity of results. There is a lack of suitable, standardised methods, which allow an 

optimization of variables in experiments in design research (Üreten et al., 2020). Dinar et al. (2015) 

describe that the need for clearly defined metrics to allow objective analysis is a general need in the 

design community. These metrics are necessary for the development of novel research methods that are 

also suitable for the objective evaluation of larger samples to perform more robust hypothesis testing. 

For this purpose, preferably methods with a quantitative approach should be used. (Dinar et al., 2015) 

Especially in the analysis of cognitive activities in design, established research methods such as 

protocol analysis and interviews have limitations, since not all thought processes are verbalized and 

therefore are not detectable (Lloyd et al., 1995). What is missing here are metrics, which can capture 

and measure the processes of design thinking in a wider field of application. A possible metric that 

meets these criteria is the cognitive load. Therefore, the presented study aims to investigate to what 

extent the cognitive load is suitable to assess the demand for design methods by quantifying cognitive 

processes. 

1.1 Research methods to analyse design processes 

For data collection in design research, a large number of different research methods exist. Ahmed 

(2007) gives an overview of different methods of classical empirical social research, which are used 

for design research. The choice of research methods depends on the construct to be investigated (e.g. 

creativity), which is made accessible by operationalising an observation or measurement (e.g. the 

number of ideas generated). The most frequently used methods are interviews, observations and 

protocol analysis (Ahmed, 2007). 

However, with the above-mentioned research methods, the high effort involved in the evaluation limits 

the number of participants examined (Dinar et al., 2015). According to Ahmed (2007) one hour of 

interview requires about nine hours for the transcription alone (Ahmed, 2007). Even if this has 

meanwhile become somewhat less due to specialized transcription software, the effort is still 

considerable. Typical studies in the journal “Design Studies”, which is considered the leading journal in 

the field of empirical studies on the design process, have fewer than 20 participants. Studies of the design 

process such as those conducted by Björklund (2013) (14 participants), Cramer-Petersen et al. (2019) (15 

participants) or Nelius et al. (2020)  (18 participants) are limited by the evaluation effort required 

concerning the number of participants. In studies with more participants (e.g. 33 participants in 

Kokotovich (2008)), it is usually not the design process itself but its result that is evaluated. Compared to 

other disciplines, the detailed analysis of procedures in the design process leads to smaller samples. In 

addition, the research methods used to analyse design processes in detail also influence the participants 

themselves. Concurrent think aloud, for example, can lead to additional cognitive demands during data 

acquisition due to the verbalisation of thoughts (van Someren et al., 1994) and can thus lead to a 

corruption of the collected data. Due to such influences, the established research methods are not suitable 

for objective investigation of cognitive demands in the design process. 

In summary, it can be said that there is already a broad variety of research methods to investigate the 

design process. However, there is still a lack of methods and metrics that can quantitatively measure the 

cognitive processes in design. In particular without increasing the cognitive demands of the participants. 

1.2 Cognitive load 

1.2.1 Approaches to assess cognitive load 

Cognitive load theory originally derives from educational research. It assumes that learning involves a 

cognitive load (CL) that is limited by the capacity of the working memory. The term cognitive load 

includes several aspects like cognitive workload, mental strain and mental effort. All these terms are 

typically applied to describe the use of working memory. (Dias et al., 2018) In this context, both 

problem solving and information processing play an important role. (Paas and van Merriënboer, 1994) 

Cognitive load for measuring cognitive demands is also widely used in other areas outside the field of 

educational research. According to Paas and van Merriënboer (1994), the cognitive load is a multi-

dimensional parameter that represents the cognitive demands required to complete a task. 
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There are different approaches to measure cognitive load. One approach focuses on methods that use 

physiological signals such as heart rate variability (HRV) or pupillary response. A second approach 

builds on questionnaire-based survey methods, which are mainly used. A distinction is made between 

one-dimensional and multidimensional questionnaire-based methods. Hill et al. (1992) compare the 

four most widely used approaches: 

The Modified Cooper-Harper scale (MCH) is a one-dimensional evaluation scale with 10 points that 

leads to a global assessment of the cognitive load. The rating scale uses a decision tree to help the 

participant to determine the most appropriate rating. 

Another method is the Overall Workload Scale (OWS), which provides values on a one-dimensional 

scale from 0 for a low cognitive load to 100 for a high cognitive load. 

The Subjective Workload Assessment Technique (SWAT) is a multidimensional survey technique that 

uses three dimensions to measure workload: time load, mental effort load and psychological stress 

load. Each of the three dimensions is in turn measured in three levels: low (1), medium (2) and high 

(3). From this assessment, a total workload is then calculated. 

The fourth approach is the National Aeronautics and Space Administration Task Load Index (NASA-

TLX) according to Hart and Staveland (1988). This approach uses a total of six dimensions to assess 

cognitive load: mental demand, physical demand, temporal demand, subjective performance, effort 

and frustration. Each of these dimensions is in turn assessed on a twenty-point scale. In the original 

NASA-TLX, these dimensions are then multiplied by weighting factors and added together to give a 

total value that indicates the overall cognitive load. These weighting factors are determined by pair-

wise comparison between all dimensions. However, it is also possible to omit the weighting factors 

and add the individual dimensions directly. This procedure is called NASA Raw TLX (NASA-RTLX). 

Whether this form of survey is more or less sensitive has not yet been conclusively clarified (Hart, 

2006), so both are considered to be equivalent. 

All four described approaches described above have already shown that they are able to assess 

cognitive load. In a comparison of the approaches Hill et al. (1992) came to the conclusion that the 

NASA-TLX and the OWS have the highest level of sensitivity and acceptance. In detail, the OWS is 

more suitable as a screening tool and NASA-TLX is more suitable for recording more detailed data. 

(Hill et al., 1992) Therefore the NASA-TLX seems to be the most suitable for this investigation. 

One challenge in the evaluation of NASA-TLX is the interpretation of the scores (Hart, 2006). For this 

reason, Grier (2015) analysed 237 surveys that used the NASA-TLX to measure cognitive workload. 

From the analysis of this large amount of data, typical ranges of cognitive load values for general and 

specific disciplines could be identified. Overall, the values ranged from 6 to 89. However, the majority 

of the data (80%) only ranged from 26 to 68. However, typical values were not separately identified 

for the field of engineering design in this investigation.  

In summary, there are many established methods for measuring cognitive load from other areas, but 

the NASA-TLX questionnaire according to Hart and Staveland (1988) is the most suitable one. This is 

partly due to the high accuracy of the method, but also to the numerous applications in other domains. 

This allows the definition of typical ranges of cognitive load scores which can also be applied to the 

design process. 

1.2.2 Cognitive load in studies of design processes 

To use the cognitive load in design research, it is necessary to understand its effects on design 

processes. One impact of the cognitive load is on performance. The connection between these two 

variables is a curvilinear (or inverted-U) relationship, which was first described in the theory of 

Yerkes and Dodson (1908) and has already been shown in studies from other areas (Bruggen, 2015). 

The theory according to Yerkes and Dodson (1908) states that performance increases with increasing 

cognitive load up to a certain point. From this point on, overstraining occurs and causes a decrease in 

performance (see Figure 1). A low cognitive load results in a kind of understraining and therefore also 

in a decrease of performance.  
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Figure 1. The inverted-U relation between cognitive load and performance following 
Bruggen (2015) 

In the field of engineering design, there have been few studies that examine the cognitive load of 

designers (Howard et al., 2008). These studies are mainly located in conceptual design to investigate 

the influences between cognitive demands and the creativity of solutions. (Sun and Yao, 2012; Nelson 

and Menold, 2020)  

Sun and Yao (2012), for example, examined the cognitive efficiency of experienced and inexperienced 

designers during concept development. The cognitive efficiency was operationalized by the relation 

between mental effort and creativity. Howard et al. (2008) especially identify the potential to enhance 

creative performance by capturing and focusing cognitive capabilities. This is also intended to 

improve the quality of the solutions developed. 

Cognitive load could be a very promising metric to study cognitive processes and their influence on 

performance. However, there is a lack of research in design that shows a connection between cognitive 

load and parameters of the design process, such as performance. Such a connection could be used to 

measure overstrain in design using the cognitive load and to reduce it in a targeted manner by applying 

the appropriate design methods. 

1.3 Objectives 

The aim of this study is to investigate the relationship between cognitive load and performance in 

engineering design tasks. For this purpose the following research question shall be answered: 

RQ: Is there a relationship between cognitive load and performance in engineering design? 

2 METHODS 

The following chapter describes the study that was conducted to answer the research question. The 

structure of the study design and the evaluation procedure is described in detail. 

A total of 15 participants took part in the study. A requirement for participation was that the 

participants were students in the fields of mechanical engineering or mechatronics and successfully 

completed a mechanical design course. This was to ensure that all participants had sufficient and 

comparable basic technical knowledge. 

2.1 Tasks 

Each participant was asked to work on six different tasks. The tasks spanned different fields of 

engineering design. A more detailed description of each task can be found in Table 1. In addition, 

there were two small introductory tasks at the beginning to familiarise the participants with the type of 

data acquisition. However, these introductory tasks were not included in the evaluation. 

The different tasks are briefly described in Table 1: 
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Table 1. Description of the different tasks 

task 1 analysis of technical 

drawing 

In this task, participants should analyse a technical drawing 

of a gearbox, including identification of various design 

details such as the bearing concept and gear stages. 

task 2 functional analysis 1: 

cartridge press 

In this task a cartridge press represented by a technical 

drawing should be analysed. The aim of the task was to 

evaluate the influence of several parameters on the clamping 

effect of the reset mechanism. 

task 3 functional analysis 2: 

snap-fit assembly 

A snap-fit connection is a snap connection with a 

combination of non-positive and positive locking. Subject of 

the task was to assess the influence of various design 

parameters. In each case, the effect of an increase in the 

respective parameter on the retention force of the snap 

connection was to be evaluated. 

task 4 considering 

manufacturing 

processes in design 

This task deals with the manufacturing of a sheet metal 

bending part. For the unfolding of a given sheet metal part, 

the different bending steps should be considered in order to 

obtain the 3D part that is also given. 

task 5 failure analysis In this task various failure scenarios of bearings were to be 

assessed. For this purpose, the load on the shaft leading to 

the respective damage scenario should be identified for each 

given case. 

task 6 load analysis in 

machine elements 

In this case, a section of a technical drawing of a shaft was 

given. For several marked machine elements, the load that is 

applied to the component by clamping it with a shaft nut 

should be assessed here. 

The purpose of the different tasks was to cover a similar range on the cognitive load scale as described 

in the results of Grier (2015). Both the total range and the range in which the majority of data sets 

(80%) are located were compared. 

2.2 Data collection 

The data collection was carried out through an online setup of the study. The university’s own learning 

platform was used. 

The basic structure of the study was designed in a way that after each task a query of the cognitive load via the 

NASA-RTLX was carried out. The questionnaire was based on the dimensions described by Hart (2006). 

Only the dimension physical demand was excluded, as the study was conducted solely on computer. 

Therefore no differences in physical load were expected between tasks. Previous research has also shown that 

the design process should be considered more as mental and not as physical activity (Nikulin et al., 2019). 

The tasks were shortly introduced in both text and image form to the respective problem, followed by 

several questions to which the participants could enter their solution. 

2.3 Data analysis 

The data analysis was carried out in four consecutive steps: 

1. First, the results from the NASA-RTLX questionnaires were evaluated. For each participant and 

task the values of the five individual dimensions were normalised to obtain the cognitive load on 

a scale from 0 to 100. Subsequently, the values were grouped according to the tasks. 

2. In a second step, the tasks were evaluated in terms of performance. For this purpose, a defined 

number of different items were determined for each task in advance of the execution. In the 

analysis, the participants’ answers for each item were evaluated for every task and classified as 

correct or incorrect with regard to the pre-defined solution. At the end of the performance 

evaluation, the quotient of correct items in relation to the total number of items available was 

calculated for each task. Thus, the performance for each task can be determined specifically in 

[%] and compared with the values from the other tasks. 

3. The results from the first two steps were then combined to investigate possible relationships 

between the two parameters. For this purpose, the performance values of the individual tasks 
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were set in relation to the result of the respective NASA-RTLX questionnaire. This way, one data 

point, consisting of the two parameters cognitive load and associated performance, is created for 

each participant and task. The resulting data set is used to search for a correlation between the 

two parameters. 

4. A statistical evaluation conducted in a fourth step completed the analysis. The SPSS Statistics 26 

software by IBM was used for evaluation. The confidence interval for the determination of 

significant results was set at 95%. 

Two tests were used for the actual statistical evaluation. The Spearman correlation test was used 

to search for correlations between the cognitive load and performance. This is to be used because 

the data was not normally distributed. 

For the investigation of differences between the individual performance values or the cognitive 

load values, the Mann-Whitney U test was used, since normal distribution of data could not be 

assumed. 

3 RESULTS 

Of the 15 participants, only 12 have fully completed the study. Therefore, only these 12 were 

considered for further evaluation. In the following chapters, the results from the NASA-RTLX 

questionnaires and the processing of the tasks are presented individually and in relation to each other. 

3.1 Cognitive load in the different tasks 

In the first step the NASA-RTLX questionnaires were evaluated as described in chapter 2.3 and the 

results for the individual tasks were examined. Figure 2 gives an overview of the results from the 

evaluation of the NASA-RTLX questionnaires separately for each task. 

Across all tasks, the cognitive load scatters in a range between 7 and 95, which means that the values 

are very comparable with the range of 6 to 89 determined by Grier (2015). Furthermore, the range in 

which the majority of the data (80%) is located is also very close to the values reported by Grier 

(2015). In this study, 80% of the data points are between 23 and 71 and the comparative area is 

between 26 and 68. 

 

Figure 2. Cognitive load ratings for the different tasks 

Looking at the tasks individually, it is visible (see Figure 1Figure 2) that they also produce different 

values in the cognitive load. Task 5 (failure analysis) is by far the most difficult task for the 

participants with the lowest scatter (median = 65; SD = 10.2). The remaining tasks are relatively close 

according to the median cognitive load but differ in their scatter. Task 3 (functional analysis; 

median = 43.0; SD = 15.8) and task 6 (load analysis in machine elements; median = 42.0; SD = 16.9) 

have a lower scatter than task 1 (analysis of technical drawing; median = 45.5; SD = 20.3), task 2 

(functional analysis; median = 51.5; SD = 19.4), and task 4 (considering manufacturing processes in 

design; median = 47.0; SD = 21.3). 
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Task 5 (failure analysis) also produces statistically significantly higher values in the cognitive load 

than task 1 (analysis of technical drawing; two-tailed Mann-Whitney U test, U = 36, p = 0.037), task 3 

(functional analysis; two-tailed Mann-Whitney U test, U = 16, p = 0.001), task 4 (considering 

manufacturing processes in design; two-tailed Mann-Whitney U test, U = 34, p = 0.028), and task 6 

(load analysis in machine elements; two-tailed Mann-Whitney U test, U = 13.5, p = 0.001). 

3.2 Performance in the different tasks 

Following the cognitive load, the performance of the participants in the different tasks was evaluated 

as a second step. Figure 3 provides a closer look at the performance of the participants in the different 

tasks: 

 

Figure 3. Results of the performance within the different tasks 

It can be seen that the participants performed considerably better in task 1 (analysis of technical 

drawing; median = 83.3; SD = 26.0), task 3 (functional analysis; median = 87.5; SD = 13.6), task 4 

(considering manufacturing processes in design; median = 100; SD = 14.2) and task 6 (load analysis in 

machine elements; median = 71.4; SD = 19.4) than in task 2 (functional analysis; median = 20.0; 

SD = 15.9) and task 5 (failure analysis; median = 37.5; SD = 32.8). 

The scatter in the individual tasks is rather low with values between 14.2 and 26.0 with the exception 

of task 5 (failure analysis) where the scatter is significantly higher with 32.8. 

3.3 Correlation between cognitive load and performance 

Combining the results from the two datasets cognitive load and Performance results in the scatter plot 

shown in Figure 4. Each data point represents one task processed by one participant. A correlation 

analysis was conducted to determine whether there is a correlation between the two parameters. The 

result is shown as a linear line in the figure. As the data is not normally distributed, a correlation 

analysis according to Spearman is used. The cognitive load indicated by the participants correlates 

significantly with the performance achieved in the corresponding tasks, r = -0.243, p = 0.040, n = 72. 

According to  Cohen (1992) this value is attributed to a weak effect. 

A correlation analysis based on the assumption of a quadratic relationship similar to the curvilinear (or 

inverted-U) relationship did not yield a convincing result. 
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Figure 4. Correlation between cognitive load values and performance across all tasks and 
participants displayed as a negative trending line 

4 DISCUSSION 

The aim of this research was to investigate the relationship between cognitive load and performance in 

design. A general decrease in performance with increasing cognitive load could be detected. This 

performance decrease can be interpreted as cognitive overstraining caused by difficulties in processing 

the given tasks. However, an additional drop in performance at low levels of cognitive load could not 

be shown. Thus, this study has been unable to demonstrate that there is a specific level of cognitive 

load at which the performance reaches an optimum. 

4.1 Suitability of the tasks 

Since there have been very few investigations of the cognitive load in the field of engineering design so 

far and these are limited to conceptual design, the suitability of the applied study design must be 

evaluated. For this purpose, the cognitive load values are compared with common values from other 

disciplines, which were investigated and summarised by Grier (2015). This comparison showed that the 

tasks used in this study achieved very similar values to those obtained in investigations from other areas.  

Altogether, the six different tasks covered a wide range on the cognitive load scale. The distribution of 

the values is generally very close to the values that were identified in the investigation of studies form 

other areas which were using the NASA-RTLX (Grier, 2015). This leads to the conclusion that the 

tasks as a whole are well suited to investigate the cognitive load in engineering design. 

One imitation of the tasks used, however, is that there is very little difference between the different 

tasks. As can be seen from Figure 2, the only task that seemed to be significantly more difficult than 

the others was task 5 (failure analysis), which makes it hard to derive generally statements on the 

context investigated. However, differences can be seen in the distribution of the individual tasks. 

Especially tasks 1, 2 and 4 show a strong scattering of cognitive load values. From this can be derived 

that the individual difficulties of the participants in certain areas are more important than a difficulty 

induced by the individual task. 

When looking at the performance in the individual tasks, a contradictory situation emerges. While the 

tasks that scattered very much in the cognitive load show a very low degree of scatter in the 

performance. Task 5 (failure analysis), which has the highest values with the lowest scatter in the 

cognitive load, scatters the most in performance. This suggests that a high cognitive load does not 

necessarily result in poor performance. 

4.2 Correlation between cognitive load and performance 

When the two data sets from cognitive load and performance are combined in a single diagram (Figure 

4), it is difficult to establish a relationship between the two variables based on the individual data 
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points. Although a correlation analysis has shown a significantly decreasing correlation, it is rather 

weak. This is also illustrated by the weak effect according to Cohen (1992). 

From this, it can be concluded that although the available data provide a weak indication of the right 

part of the inverted-U curve according to Yerkes and Dodson (1908) and Bruggen (2015). This 

effectively represents the area of overstrain. The left part of the inverted-U curve, which stands for 

understrain, could not be mapped. A possible explanation for this situation is that the tasks used can be 

described as rather “simple” based on the NASA-RTLX used, but were not so trivial that an actual 

understraining occurred. 

4.3 Limitations 

The effect of the statistical outcome is limited by the relatively small number of participants in this 

study (n = 12). Furthermore, due to the decision for an online setup for the study, it was not possible to 

fully control the study conditions during the processing. This may have led to deviating influences on 

the individual dimensions of the NASA-RTLX. 

5 CONCLUSION 

The identified correlation between cognitive load and performance has the potential to be useful for 

future investigations in design research. Of particular interest is the area of overstrain, as this is seen as 

having great potential for design methods that could increase performance in design by reducing 

overstrain.  

In the study presented here, only a weak correlation between cognitive stress and performance was 

found, but this is partly due to the relatively small number of subjects (n = 12) and the fact that the 

study was conducted using an online platform. In order to use cognitive load more effectively in 

design research, the correlation between cognitive load and performance needs to be better understood.  

Further research is needed in this area. In particular, the precision of the measurement of cognitive 

stress can be improved by recording physiological signals like heart rate variability (HRV) or pupillary 

response in addition to the questionnaires used. If it turns out that there is a strong correlation, 

cognitive stress could be used as a metric in a research method for requirements assessment and 

validation of methods in design. 
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