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Introduction

A semigroup S is called regular if a e aSa for every element a in S. The
elementary properties of regular semigroups may be found in A. H. Clifford
and G. B. Preston [1 ]. A semigroup S is called orthodox if S is regular and if the
idempotents of S form a subsemigroup of S.

In this paper we investigate congruences on orthodox semigroups. Specifically,
we obtain a generalization of kernel normal systems of inverse semigroups, intro-
duced by G. B. Preston [6], to orthodox semigroups. A good account of Preston's
kernel normal systems may be found in [2], § 7.4.

We then investigate idempotent-separating congruences on orthodox semi-
groups, and detemine a necessary and sufficient condition for Green's equivalence
2tf to be a congruence on an orthodox semigroup. We also determine the maximal
idempotent-separating congruence on an orthodox semigroup.

Finally, we investigate inverse semigroup congruences on orthodox semi-
groups, and determine the minimal such congruence.

1. Some preliminary results

We denote the set of idempotents of S by Es, and the set of inverses of an ele-
ment a in S by V{a). Thus an orthodox semigroup is a regular semigroup S for
which ESES s Es. The following three results may be found in the paper by N. R.
Reilly and H. E. Scheiblich [8]. They will be used in the sequel without comment.

LEMMA 1.1. Let a and b be arbitary elements of the orthodox semigroup S and
let a' and b' be arbitrary inverses of a and b respectively. Then b'a' e V(ab).

LEMMA 1.2. Let a be any element of the orthodox semigroup S and let a' be an
arbitrary inverse of a. Then a'Esa £ Es.

LEMMA 1.3. Let e be any element of the set Es of idempotents of the orthodox
semigroup S. Then V(e) E Es.

We now give a brief account of some of the results of Preston, all of which
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may be found in [2], § 7.4. Preston first shows that a congruence p on a regular 
semigroup S is uniquely determined by its kernel; that is p is uniquely determined 
by the set of p-classes which contain idempotents. He then proceeds to determine 
a set of conditions on a set s/ = {At: i e /} of subsemigroups of an inverse semi
group S under which s/ can in fact serve as the kernel of some congruence on 
S, and indeed he derives a construction for the associated congruence p^. 

We proceed along similar lines for orthodox semigroups. Let «s/ = {At: i e /} 
be the kernel of a congruence p on an orthodox semigroup S. Unlike the situation 
for inverse semigroups, it is not necessarily true that an element A, of s# is a regular 
subsemigroup of S, as the following counter-example, due to T. E . Hall, readily 
shows. 

EXAMPLE 1.4. Let A = {a^ : i,je { 1 , 2}}, and let B = {bu : i,je {1 , 2}}. 

Let S = A u B, and define a multiplication on S by 

y # k 

(1) fcijAi = 
bijdkl = a y f t w = &fI. 

It is straightforward to verify that with this definition of multiplication, S is an 
orthodox semigroup. We note that B is a subsemigroup of S : indeed B is a rectan
gular band. The elements alt and a22 of S are idempotents whose only inverses 
are themselves, and the elements a12 and a 2 i of 5 are mutually inverse elements 
with unique inverses. Now consider the relation p on S which identifies a y with 
bl}, for all i,je { 1 , 2}. It is easy to see that p is a congruence on S, and that the set 
of all p-classes, 

= {{an, blt}, {a12, b12}, {a2i, b21}, {a22, b22}}, 

is the kernel of p. The set {a2l, ^ 2 1 } is an element of the kernel of p, but is not a 
regular subsemigroup of S. Thus we have seen that the kernel of a congruence p 
on an othodox semigroup S does not necessarily consist of regular subsemigroups 
of S. In § 2 we show that a congruence p on an orthodox semigroup S is uniquely 
determined by the set of maximal regular subsemigroups of the elements of the 
kernel of p. 

2. The regular kernel 

We make use of the following result due to G. Lallement [5]. 

LEMMA 2.1. Let <f> be a homomorphism of a regular semigroup S onto a (/ 
sarily regular) semigroup S'. If e' e Es,, it follows that e'4>~1 r\ Es # • . 

We now prove the following two lemmas. 
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LEMMA 2.2. A homomorphic image of an orthodox semigroup is orthodox.

PROOF. Let <f> be a homomorphism from the orthodox semigroup S onto the
semigroup 5". Then since S is regular it follows immediately that S' is regular.
(See for example [2], § 7.4). Let e' a n d / ' be arbitrary idempotents of 5". By lemma
2.1, e'^1 and/ '( />- 1 both contain idempotents of S, say eee'(j>~1 n Es and
fef'cf)'1 n Es. Then efe Es since S is orthodox, and so (e/)</> = e'f e Es-, and
it follows that 5 ' is orthodox.

LEMMA 2.3. Let S be an orthodox semigroup, p a congruence on S, and
sf = {At : iel} the kernel of p. Then V(A) £ A, where A = \JieIAt, and
V(A) = \JaeAV(a).

PROOF. Let a be an arbitrary element of A and let a' be an arbitrary inverse of
a. Then a'4> is an inverse of a(j>, an idempotent of S/p, where 0 is the natural homo-
morphism corresponding to the congruence p, and so a'<f> is an idempotent of
S/p, by lemma 1.3 and lemma 2.2. Hence a' e A, which completes the proof of the
lemma.

Let p be a congruence on an orthodox semigroup S, and let sf = {At : i e 1}
be the kernel of p. Then the set 88 = {5; : / e /} of maximal regular subsemigroups
of the elements of the kernel of p is called the regular kernel of p. We note that
88 is well-defined in the sense that for each element At of the kernel <s/ of p there
is a unique maximal regular subsemigroup B{ of Ax. In fact it is easily verified that

(2) Bt = {x e Ai: V(x) n A,,* • }

is the unique maximal regular subsemigroup of At: for if x and y are elements of
Bt, there exist elements x' e V(x) n At, and y' e K(j) n v4;, and so y'x' e V(xy)
n y4j, that is x j e 5 j . Hence Bt is a subsemigroup of At. That 5 ; is the unique maxi-
mal regular subsemigroup of At is now obvious. We shall make use of the charac-
terization (2) of the Bt in the sequel.

THEOREM 2.4. Let p and a be congruences on an orthodox semigroup S having
the same regular kernel 88 = {Bt: iel}. Then p = a.

PROOF. Let stf = {At:ie 1} be the kernel of p and let s/' = {A) :jeJ} be

the kernel of a. Then by definition of the regular kernel J1, | / | = | / | , and (with a
suitable indexing of the At and the A'f) Bt is the maximal regular subsemigroup of
At and of A\, for all / e /. In view of the result of Preston it suffices to show that
A t = A[ for all i e I, and to show this, we show that for all / e /,

At(= A[) = {ae A : a' e V{a) implies aa'a'a e 2?;},

where A = {x e S : xx' e Bt, x' e V(x), implies x2x' e Bt}.
Let

C; = {a e A : a' e V(a) implies aa'a'a e Bt}.

Let a be an arbitrary element of C;, and let a' be an arbitrary inverse of a. Then
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ae A and so aa', a2 a' e B},, some j e /. Hence (aar, a2a') e p, and it follows that
(aa'a,a2a'a) = (a,a2)ep. Thus ae\JieI At, and so a' z\JieI At, by lemma
2.3. It follows that (a', (a')2) e p and hence that (a, aa'a'a) e p, and since aa'a'a e Bt

we deduce that a e At. Hence C; £ At for each i e I.
Conversely, let a be an arbitrary element of A; and let a' be an arbitrary in-

verse of a. Then (a2, a) e p, and so (a2a',aa')e p. Furthermore, a' e{JieI At,
by lemma 2.3, and so ((a')2, a') e p. From this it follows that (a(a')2, aa') e p,
and hence that a(a')2, a2a', and aa' are all contained in the same p-class, which
must be an element of the kernel of p since aa' is an idempotent of S. Hence
a(a')2, a2a', aa' e Ak, for some kel. But a(a')2 and a2a' are mutually inverse
elements of S and so a(a')2, a2a' e Bk. Clearly, aa'e Bk since aa' e Es n Ak.
Hence aa'e Bk implies a2a'e Bk, and it follows that a e A. Furthermore,
((a')2,a')e p so (a, aa'a'a) e p, and so aa'a'a eBt. It follows that aeCt and
hence that At = C( for all iel. Since we also have that A[ — Cv for all iel,
the theorem is proved.

As an immediate corollary to the proof of this theorem we deduce the follow-
ing result.

COROLLARY 2.5. Let p be a congruence on an orthodox semigroup S with kernel
stf = {Ai-.ie 1} and regular kernel & = {Bt:ie I}. Define A = {x e S : xx' e Bt,
x' 6 V(x), implies x2x' e B^. Then A = (J j e / At, and for each i e /, A; = {a E A :
a' e V(a) implies aa'a'a 6 B(}.

This result, of course, shows us how to obtain the kernel of a congruence on an
orthodox semigroup when we are given the regular kernel. The following obvious
corollary provides us with a necessary and sufficient condition (on the regular
kernel of a congruence on an orthodox semigroup) for the kernel and the regular
kernel to coincide.

COROLLARY 2.6. A necessary and sufficient condition for the kernel stf =
{A i : iel} and the regular kernel &8 = {Bt : iel} of a congruence p on an orthodox
semigroup S to coincide is that {Jiel Bt = {xe S : xx' e B{, x' e V(x), implies
x2x' e Bi).

3. Regular kernel normal systems

In § 2 we have shown that a congruence on an orthodox semigroup S is
uniquely determined by its regular kernel &. We proceed to obtain a characteri-
zation of such sets 88 and derive a construction for the associated congruences.

The set ^ = [Bt: ie 1} is defined to be a regular kernel normal system of
the orthodox semigroup S if

(Kl) each Bt is a regular subsemigroup of S;
(K2) B; n Bj = • i f / # . / ;
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(K3) each idempotent of S is contained in some Bt;
(K4) for each a e S, a' e V(a), and / e /, there is some j = j(a, a', i) e I such that

a'B^ c By,
(K5) for each i,j e /, there is some k e / such that BiBjBi S Bk;
(K6) if a, aft, bb', b'b e Bt for some V e V(b), then b e 5,;
(K7) for each ie I and for each je/, there is some k e I such that EtEj <= £'t,

where Ei is the set of idempotents of Bv.

LEMMA 3.1. The regular kernel 38 = {Bt : ie 1} of a congruence p on an ortho-
dox semigroup S is a regular kernel normal system ofS.

PROOF. Conditions Kl, K2, K3, and K7 are trivial to verify. To prove that
K4 is satisfied we first verify that for each ae S, a' e V(a), and i e I, there is some
j el such that a'Ata c A}, where si = {A{ :iel} is the kernel of p. Choose
e e Aj n Es and note that a'ea eEs,by lemma 1.2. Hence a'ea e Aj for some jel.
But (a'ea,a'xa)ep for all xeAt, and so a'Ata ^ Aj. From this we deduce
immediately that a'B.a c a'Ata s A}. Now let a'ba be an arbitrary element
ofa'Bta, where bsB^ Since Bt is regular, there is an inverse b' of b such that
b'eBi. But then a'b'ae V(a'ba) n a'Bja ^ V(a'ba) n Aj, and so a'baeBj.
Thus, finally, fl'5;a s 5 , .

To verify that K5 is satisfied, we prove first that for each iel and for each7 6 /,
there is some k e I such that AiAjAi c Ak. Indeed this follows easily since in fact
the Ai satisfy the stronger condition A{Aj s At for some lei. Now let btb2b3

be an arbitrary element of BiBjBj ^ AiAjAi c Ak, and choose b\ e VQ?^ n Bt,
b'2 e V{b2) n Bj, and 63 e F(Z>3) n 5,-. Then 6 3 ^ ^ e V{bxb2bi) n 5,^-5; s
V(b1b2b3) n y4t, and it follows that b1b2bi e Bk.

To prove that K6 is satisfied, we first note that if a, ab, bb' e At lor some
b' e K(ft), then be A{. This is easy to prove, since if (a, bb') e p, then (ab, b) e p,
and so b e At. Now suppose that a, ab, bb', b'b e B^ Then in particular,
a,ab,bb' eAt, so beAt. But then b,bb' ,b'beAu and so &'e,4;. Hence b e Bt.
This completes the proof of the lemma.

We now introduce the following notation: if 88 = {B{: iel} is a regular kernel
normal system of the orthodox semigroup S, then we define a~ b if and only if there
is some i e I such that ae Bt and be Bt. Note that ~ is a partial equivalence on S.
Let 08 = {Bt: i e 1} be a regular kernel normal system of the orthodox semigroup
S and consider the relation

Pss = {(a, b)eSxS: there exists a' e V{a) and b' e V{b) such that
aa', bb', ab' e Bt, a'a, b'b, a'b e Bj for some i,j e I}.

In terms of the notation just introduced we have

Pm = {(a, b)eSxS: aa' ~ bb' ~ ab', a'a ~ b'b ~ a'b,
for some a' e V(a), V e V(b)}.
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We now prove the following lemma.

LEMMA 3.2. Let 38 = {Bt: ie /} be a regular kernel normal system of the
orthodox semigroup S and let pm be defined by equation (3) {or equivalently by
equation (3')). Then the transitive closure p'm of the relation pm is a congruence on S.

PROOF. It suffices to prove that pm is a reflexive, symmetric and compatible
relation on S. The fact that pm is reflexive follows immediately from K3.

Suppose now that (a, b)e pm. Then there are inverses a' and V of a and b
respectively such that

aa! ~ bb' ~ ab' and a!a ~ b'b ~ a'b.

To prove that (b, a)e pm, it clearly suffices to prove that

(4) bb' ~ aa' ~ ba' and b'b ~ a'a ~ b'a.

Now
(ab')(ba') = a{b'b)a' ~ a{a'a)a' = aa', by K4,

and
(ba')(ab') = b{a'a)b' ~ b(b'b)b' = bb', by K4.

Hence (ab') ~ (ab')(ba') ~ (ba')(ab'). From this it follows immediately from K6
that ba' ~ ab' ~ aa' ~ bb', since ba' e V{ab'). The condition b'b ~ a'a ~ b'a
follows from the above proof by interchanging a with a' and b with b' through-
out. Hence (b, a)e p®, and thus pa is symmetric. We remark that in fact we have
proved that ifaa', bb', ab' e Bt, and a'a, b'b, a'b e Bj, where a' e V(a) andb' e V(b),
then it follows that ba' e Bt and b'a e Bj. We make use of this remark in the sequel
without comment.

We now prove that pm is left compatible. Suppose (a, b)e pm, and let c be an
arbitrary element of S. We aim to prove that (ca, cb) e pm. Since (a, b) e pm,
there are inverses a' of a and b' of b respectively such that aa' ~ bb' ~ ab' and
a'a ~ b'b ~ a'b. Let c' be an arbitrary inverse of c. Since a'c' e V(ca), and
b'c' e V(cb), it clearly suffices to prove that

(5) (ca)(a'c') ~ (cb)(b'c') ~ (ca)(b'c'),

and that

(6) (a'c')(ca) ~ (b'c')(cb) ~ (a'c')(cb).

Now (ca)(a'c') = c(aa')c' ~ c(bb')c', by K4, so (ca)(a'c') ~ (cb)(b'c). Also,
(ca)(b'c') = c(ab')c' ~ c(aa')c', by K4, so (ca)(b'c') ~ (ca)(a'c'), and (5) is veri-
fied. To prove (6) we proceed as follows. Note that (a'c')(ca) = a'(aa')(c'c)(aa')a.
But ad ~ ab' and aa' ~ ba', so {aa')(c'c)(aa') ~ (ab')(c'c)(ba'), by K5, since
c'c e Bk for some k e /. Hence a'(aa)(c'c)(aa')a ~ a'(ab')(c'c)(ba')a, by K4, i.e.

(a'c')(ca) ~ (a'a)[(b'c')(cb)](a'a)
~ (f>'b)[(b'c')(cb)](b'b) (by K5 or K7)
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Thus {a'c'){ca) ~ (b'c')(cb).
Now let x = (b'c')(cb), y = (a'c')(cb), and / = (b'c')(ca). Then y' e V(y),

and
xy = (6'c'c)(Z>fl')(c'c6)

~ {b'c'c){bb'){c'cb) (by K4)

= (b'c'cb)(b'c'cb) = (b'c')(cb), since (6'c')(cZ>) e £ s .
Further,

>>/ = (a'c'c)(bb'){c'ca)
~ (a'c'c)(aa')(c'ca) (by K4)

= (a'c'ca)(a'c'ca) = {a'c'){ca) ~ (A'c')(c&) = x,

by what was proved earlier, and

y'y = (b'c'c){aa')(c'cb)
~ (b'c'c)(bb')(c'cb)
= (b'c'cb)(b'c'cb) = (b'c')(cb).

Hence x ~ xy ~ 77' ~ y_y, and so x ~ y, by K6. Thus (a'c')(ca) ~ (b'c')(cb) ~
(a'c')(c6). Hence (6) is verified, and the left compatibility of pm is established.
The right compatibility of pm follows similarly by the dual argument to the above.
This completes the proof that p'm is a congruence.

We now prove that, with the above notation, 88 is the regular kernel of the
congruence p'm. The following 'inductive lemma' is used in the proof.

LEMMA 3.3. Let st, s2, • • •, sn^1 be elements of the orthodox semigroup S,
and let s{, si' be inverses ofstfor i = 1, • • • n— 1 such that relative to some regular
kernel normal system 38 we have

srs'r' ~ sr+ls'r+1, s'r'sr ~ s'r+1sr+l,for r = 1, • • • n - 2 .

Then the following formulae hold:

(7) Sisi ~ (sn-iS«-i)(sn-2^-2)---(si5'1);

(7') siSl~(slSl)-"(s:-2S.-2)W-lS»-l);

(8) CiS.-i~(Ci

(8') s.-iSi;'-1~(sisi'

PROOF. TO prove (7) we first prove by induction that for r = 1, • • • n— 1,

(9) S l s i~(S , S ; ) (Sr- is ; - i )"- (s is i ) .

Evidently, (9) holds true for r = 1, so suppose that (9) holds for r = k. Then

Sisi ~ (sks'k)(sk_1s'k-1)---(sis'i)

s i - i ) ' - - ( s i s i )

s k - 1 s ;_ 1 ) - - "(sisO, by K7,
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and so the result (9) is proved by induction, and (7) follows from (9) by applying
(9) with r = n—\. The result (7') follows by the dual of the argument used to
prove (7).

To prove (8) we first prove by induction that for r = 1, • • • n — 1,

(10) C l V ! ~ (ClS»- l ) - • - ( C + l S . . - , + l)(CrSB-,).

Clearly (10) holds for r = 1, so suppose that (10) holds for r = k. Then

VlSn-l ~ W-lSn-l)' ' •(^-fc+lSn-k+l)(^'-tSn_fc)

= = (Sn-1 Sn-l) ' ' ' (Sn-k+l Sn-k+l){Sn-kSn-k)(Sn-kSn-k)

~ ( C l V l ) • • •«'-*+ lSn-k+ l)(s'n'-kSn-k)

(Ct-iS»-it-i). byK7.

Thus the result (10) follows by induction, and (8) follows immediately from (10).
As before, the result (8') is proved by the dual of the argument used to prove (8).

We now proceed to the proof of the statement that 38 is the regular kernel of the
congruence p'm. The proof of this is contained in the following two lemmas.

LEMMA 3.4. Let 38 = {Bt : ie 1} be a regular kernel normal system of the ortho-
dox semigroup S and let pa be defined by equation (3). Let {A} :jeJ} be the kernel
of the congruence pl

m. Then \l\ = \J\, and it is possible to index the At so that for all
i e I, Bi is a regular subsemigroup ofAt.

PROOF. First note that if a ~ b, then (a, b)e p'm: for if a, b e Bh then there
are inverses a' of a and b' of b such that a', V e Bt. But then aa', bb', ab', a'a, b'b,
a'b e Bt, and hence (a, b) e pm s p\. Thus B{ is a subsemigroup of some p^-
class ap'm. But since i?; contains an idempotent (being regular), we see that ap's
contains an idempotent, and so ap'm = Aj for somey'e / . Thus each element Bt of
38 is a subsemigroup of some element Aj of the kernel of p'm.

It remains to verify that distinct sets Bt and Bj are contained in distinct ele-
ments of the kernel of p@ and that every element ol the kernel of p'm contains
some set Bt e 38. The latter assertion follows because every element of the kernel
of p'm contains at least one idempotent of S and every idempotent of S is contained
in some element Bt of 38 by K3. To verify the former assertion it clearly suffices to
prove that if two idempotents of S lie in the same element Aj of the kernel of pl

m,
then they lie in the same set Bj e 38.

Let e,feEs and suppose that (e,f) e pl
m. Now p'm = \J%LiP%, where pn

m is
the «-fold composition of pm with itself, and so (e,f) e pn

m for some n ̂  1. We
consider the cases n = 1 and n > 1 separately. Suppose first that (e, / ) e pm.
Then there are inverses e' of e a n d / ' o f / such that ee' ~ ff ~ ef'(~ fe') and
e'e ~f'f~ e'f(-f'e). Then e = ee'e = e(e'e')e = (ee')(e'e) ~ (//')(/'/) by K7,
so e ~ ff'f = f as required.

Now suppose that (e,f)e p% for some n > 1. Then there exist slt s2, • • •
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V i ^ such t h a t ( e , j , ) e p a > (st, s2)epx, ••• ( s , - i , / ) e p « . a n d t h u s t h e r e

exist e' e V{e),f e V(f), and s[, s[' e V(s(), for i = 1, • • • n - 1 , such that

I ee' ~ Si si ~ esi, e'e ~ si st ~ e'st

SiSi'~ si+1Sj'+1 ~ s f s ; + 1 , s|'Sj ~ s'i+1si+l ~ s'i'sl + i for i = l , - - - n - 2 ,

s , - i C i ~ / / ' ~ sB-i/ '» d s B _ i ~ / ' / ~ C i / -
Now e = (ee')(e'e) ~ ( J ^ D ^ J J , ) , by K7. Thus by (7) and (7') of the inductive
lemma, and by K7, we have,

e ~ (sn-1 sn_ J • • • (s2 s'2){s1 s[)(s[ sJisz s2) • • • (sB_ t sn_ t)

= (sB_ j sn'_ !)(«„_! sB_ i) • • • (s2 «2)(si «i)(si Si)(s2 s2) - ' • (««- I s«- i)(sn- 1 V 1 )

~ (//')(«-i«:-i) • • • (S2si)(sisi)(sisi)(sis2) • • • (s;_1s,,-1X/'/) =fsf,
where

s =/'(sB_1sB_1)- • •(s2s2)(s1si)(sis1)- • - (C iV i ) / ' -

Now/' = (/'/)(//') ~ ( C ^ - i X ^ - i C i ) . by K7, so

S2X
S1 5 0 ( S i SlXS2 S2)

= ( s ^ . s ^ O C ^ - i ^ - i ) " • • (si sDCsi «i) • • • (s^-iS,-0(^-1 sB'-0-

Thus by (7), (7'), (8) and (8') of the inductive lemma, and by K7, we have

s ~ ( C i sB_t) • • • (s2's2)(si's,)(s1 si)(si SiXst s7Xs2s2)' • ' K - i d )

= (CiS»-i) • • • (s2's2>'i'[>i St si si Sl sJs'iXsis2) • • • (sn_i sB'_!)

= «'_,sn_.) • • • (s2's2)(si'Sl)(Slsafes',') • • • ( V i C ) ,

since •?( sj e V(slsl). Hence by (7) and (7') of the inductive lemma and by K7, we
finally obtain

s ~ (S;'_x sn_0(sn-! C , ) ~ (/ ' /)( / / ' ) = / ' , and so by K7

e ~ fsf ~ ff'f = / , as requied. This completes the proof of the lemma.

LEMMA 3.5. Let S3 = {Bt : ie 1} be a regular kernel normal system of the
orthodox semigroup S and let pm be defined by equation (3). Let {At : iel} be
the kernel of the congruence p'm, indexed in accordance with lemma 3.4. Then for
all i e /, B, is the maximal regular subsemigroup of At.

PROOF. Let a be any element of At for which V(a) n A^ D, and let a* e V(a)
n At. We show that in fact ae Bt, from which the result follows by virtue of the
characterization (2) of the maximal regular subsemigroups of the At.

Let e be any idempotent of Bt. (Such an idempotent exists since Bt is a regular
subsemigroup of S.) Now A t is the p^-class containing Bt, so (a, e) e p'&, and hence
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(a, e) e p"m for some natural number n ^ 1. We consider the cases n = 1 and n > 1
separately. Note first that e, aa*, a* a e Bt.

Suppose first that (a, e) e pm. The there are inverses a' of a and e' of e respec-
tively such that

aa' ~ ee' ~ ae' (~ ea') and a'a ~ e'e ~ a'e (~ e'a).

Let w = ee'aa*. Then w ~ aa'aa* = aa* e Bh by K7. Furthermore, wa -
e(e'a)(a*a)eBj for some j el, by K5. But we Bt and ae/!,-, so w e B , . Hence
w, wa, aa*, a*as Bh and it follows by K6 that ae Bt.

Suppose now that (a, e) e pn
m for some n > 1. Then there are elements

c1,c2, '••cB_1eS such that (e, cx) e pm, (c1, c2)e p3, • • • (cn_i,a)ep®, and

hence there exist e' e V(e), a' e V(a), and c\, c" e V(ct), for / = 1,. . .«— 1 such
that

( ee' ~ ct c'j ~ ec\, e'e ~ c\ c1 ~ e'e1

crc'r' ~cr+1c'r + 1~crc'r+1, c'r'cr~c'r+1cr+l~c'r'cr+1, for r = l , - - - « - 2 ,

cn_ t ^'_ t ~ aa' ~ cn_ i a', ĉ L j cn_ x ~ a'a ~ <'_ j a.
Put wn = e(c;'_,<•„_!) • • • (c'/cOe'^ci') • • • ( c , - , C i ) K ) - Then

(cn_ted

~ e(e'e)e'(ee')e = e.

Hence wn e Bt. Also,

wna = e(c;'_1cB_1) • • • (c ' /c^e'^c' /) • • • (cB_id){aa)*a

= eW^c,^) • • • (c'1'c1)(e'c1)(c'1'c2) • • • (cB'_xa)(o**).

Hence wBa e 5fc for some & e / by repeated application of K5. But wn e Bt and
0 6^4,-, so wnaeAi. Hence Bk = Bt, and so wnaeBi. Then, since wn, wna, aa*,
a*aeBt, we deduce that ae Bv, by K6.

We may summarize the results obtained so far in the following theorem.

THEOREM 3.6. If p is a congruence on an orthodox semigroup S then the regular
kernel 88 of p is a regular kernel normal system of S, and p = p'm, the transitive
closure of the relation pm defined by (3). Conversely, if 38 is a regular kernel normal
system of S, then there is precisely one congruence p on S such that 88 is the regular
kernel of p and p = p'^.
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REMARK. In the previous theorem we have been concerned with the transitive
closure of the relation pm. In fact this complication is forced on us because the
relation pm is not necessarily transitive for an arbitrarily prescribed regular kernel
normal system 38 of an arbitrary orthodox semigroup, as the following example
readily shows.

EXAMPLE 3.7. Let S be the semigroup of example 1.4 and consider the rela-
tion p on S which partitions S into the two classes 5 t = {ali, a2l •> ^ u > ^21} ar*d
^2 = {fli2> fl22> bl2,b22). Clearly p is a congruence on S, and

@ = {{aii ,f tn,*2i}, {^22,612,622}}

is the regular kernel of p. By virtue of theorem 3.6, p is the transitive closure of the
relation pm. But it is easy to see that pm # p, since a u and al2 are elements of S
which are equivalent under p but not under pm. (This follows since the only inverse
of #!! is a1 j and the only inverse of at 2 is a21 > a n d fli 1 = °i 1 a i1 lie s m a different
element of ^ than a22 = ct21ai2). Hence for this choice of 3$ and this choice of
S, Pm # Pa > an<i s o Pa ' s n o t transitive.

4. Idempotent-separating congruences

A congruence p on a semigroup S is called an idempotent-separating congru-
ence if each congruence class contains at most one idempotent of S. Lallement [5]
has proved that any idempotent-separating congruence on a regular semigroup is
contained in Green's equivalence «3f. We make use of this result to investigate idem-
potent-separating congruences on orthodox semigroups.

In theorem 4.2 we obtain a simplification of theorem 3.6 in the case where the
congruence considered is an idempotent-separating congruence, and in theorem
4.3 we obtain a necessary and sufficient condition for Green's equivalence J f
to be a congruence on an orthodox semigroup. These results may also be deduced
from theoreme 3.11 (and the ensuing remarks) in [5].

Note first that it p is an idempotent-separating congruence on a regular semi-
group S, then the kernel of p is a set^T = {Ne : e e Es} of normal subgroups of
the set {He : e e Es] of maximal subgroups of S. This is obvious since the restric-
tion to He of the natural homomorphism determined by p is a group homo-
morphism of He with kernel Ne. In particular, the kernel of p is composed of
regular subsemigroups of S, and so the kernel of p and the regular kernel of p
coincide.

Now let JV = {Ne: e e Es} be the kernel of an idempotent-separating con-
gruence p on the orthodox semigroup S, and consider the relation

Pjf = {(a, b)e Sx S: there are inverses a' of a and b' of b such that

aa' = bb' = e, ab' e Ne, a'a — b'b = f, a'b e Nf, for some e,fe Es}.
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(Evidently, px is just a special example of the relation pm defined by (3) correspon-
ding to the idempotent-separating (regular) kernel normal system,V). We show
that pjr is in fact a transitive relation, and hence that pj- = p'jr = p. To prove
this, suppose that (a, b) e p^ and (b, c)e p^. Than there are inverses a' of a, b'
and b* of Z>, and c* of c, and idempotents e,f, g, h of S such that

ad = bb' = e, ab' e Ne; a'a = 6'ft = /, a'6 e Nf,
and

W>* = cc* = g, be* e Ng; b*b = c*c = h, b*c e Nh.

Now (a, b) e pjr ^ p'^ = p, and (b, c) e p, so (a, b)eJ^ and (b, c) e Jf, since
/> £ Jf. Hence a, b, and c are Jf-equivalent elements of S, and so there are in-
verses a* of a and c' of c such that aa* = bb* = cc* = g, a*a = b*b = c*c = h,
aa! = bb' = cc' = e, and a'a = b'b = e'e = / . (See for example [1 ], § 2.3) Now,

(ac')(ca') = a(c'c)a' = a(a'a)a' = aa' = e,

and similarly (ca')(ac') = e. Also

(ac')e = (ac'){cc') = ac' = (aa')(ac') = e(ac').

Hence ac' e He, and by the dual argument a'c e Hf. But

ac' = (aa'a)cr = a(b'b)c' = (ab')(bb*bc')
= (ab')(bc*cc') = (ab')(bc*)(cc%

and
ab', be*, cc'eN= [j{Ne:ee Es}.

Hence ac' e N, since iVis clearly a subsemigroup of S, being the inverse image under
the natural homomorphism corresponding to the congruence p = p\ of the set of
idempotents of S/p. Thus ac'eNn He = Ne. Also, a'c — a'cc*c = (a'b)(b*c)eN,
so a'c eNn Hf = Nf. Thus aa' — cc' = e, ac' e Ne and a'a = e'e = f a'c e Nf.
Hence (a, c)epr and this completes the proof of the statement that p^- is transitive,
and hence that pjr = p'jr = p.

We now show that in the idempotent-separating case there is a simple charac-
terization of regular kernel normal systems. Following Preston [7], we define a set
Jf = {Ne : e e Es} of normal subgroups of the maximal subgroups {He: e e Es}
of the orthodox semigroup S to be a group kernel normal system of 5 if the Ne

satisfy the conditions:

(i) a'Nea £ Na.ea for all aeS,a'e V(a), and e e Es;
(ii) NeNf s Nef for all e,fe Es.

LEMMA 4.1. A set JV = {Ne : e e Es) of normal subgroups of the set {He :eeEs}
of maximal subgroups of the orthodox semigroup S is a (regular) kernel normal
system of S if and only ifjV is a group kernel normal system ofS.
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PROOF. If Jf = {Ne: e e Es} is a regular kernel normal system of S, then con-
dition (i) is clearly satisfied. Further, pjr is a congruence on S andJf is the kernel
of pjr, so condition (ii) is satisfied. Conversely, suppose that JV satisfies condition
(i) and (ii). Then conditions (K4), (K5), and (K7) for regular kernel normal sys-
tems are trivially satisfied, and conditons (Kl), (K2), and (K3) are automatically
satisfied by the definition of Jf. It remains to verify that (K6) is satisfied. Let a,
ab, bb', b'b e Ne for some b' e V(b). Then there exists an element a* e V(a) n Ne,
and we have e = a*a = bb'. Hence b = (bb')b = (a*a)b = a*{ab), the product
of two elements of Ne, and so b e Ne. Thus K6 is verified and the lemma is proved.

We may summarize the results of this section in the following theorem.

THEOREM 4.2. If p is an idempotent-separating congruence on an orthodox semi-
group S then the kernel ^V of p is a group kernel normal system of S, and p = p^,
the relation defined by (13). Conversely, if JV is a group kernel normal system
of S, then there is precisely one congruence p on S such that Jf is the kernel of p.
This congruence p is an idempotent-separating congruence on S and p = p^.

We now determine a necessary and sufficient condition for Green's equiva-
lence J f to be a congruence on an orthodox semigroup. Note first that on a
regular semigroup S, 3? is given by

Jf = {(a, b) e Sx S : aa' = bb', a'a = b'b
' ^ for some a' e V(a), b' e V(b)}.

(This is proved in [1 ], § 2.3). Note also that if aa' = bb' = e and a'a = b'b = f
then ab' e He and a'b e Hf. For (ab')e = (ab')(bb') = ab', and e(ab') = (aa')(ab')
= ab', while (ab')(ba') = a(b'b)a' = a(a'a)a' = aa' = e, and (ba')(ab') =
b(a'a)b' = b(b'b)b' = bb' = e. Hence ab'e He, and by a similar argument
a'b e Hf. Thus if JV= {He : e e Es}, we see that in fact J f = p^, where p^ is
defined by (13). By virtue of this remark, we see that ffl is a congruence on 5" if
and only if {He : e e Es} is a group kernel normal system of S. We are now
in a position to prove the following theorem.

THEOREM 4.3. A necessary and sufficient condition for J f to be a congruence
on an orthodox semigroup S is that the set {He : e e Es} of maximal subgroups of S
satisfies the condition HeHf ^ Hef,for all e,feEs.

PROOF. Clearly this condition is satisfied if J f is a congruence on S, for then
{He : e e Es} is a group kernel normal system of S. Conversely, suppose that
{He : e e Hs) satisfies the condition HeHf £ Hef, for all e,fe Es. To prove that
J^f is a congruence on S it clearly suffices to prove that He satisfy the condition
a'Hea c Ha.ea, for all aeS,a'e V(a), and eeEs.

Let a'ha be an arbitrary element ofa'Hea, and let h' be the inverse of h which
is in H~. Then
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(a'ha)(a'ea) = (a'hea)(a'ea)

= a'h{eaa')(eaa')a = a'h(eaa')a
= a'hea = a'ha,

and
(a'ea)(a'ha) = (a'ea)(a'eha)

= a'(aa'e)(aa'e)ha = a'{aa'e)ha = a'e/za = a'ha.

Also, (a'hd){a'h'a) = a'(haa'h')a. But /*, A', and e are all in the same class He, so
by the hypothesis of the theorem, h{aa')h' is in the same «3f-class as e(aa')e.
Since both h(aa')h' and e(aa')e are idempotents, we have that h(aa')h' = e(aa')e.
Hence

(a'ha)(a'h'a) = a'(eaa'e)a = (a'ea)(a'ea) — a'ea.

A similar argument to the above shows that h'aa'h — eaa'e, and hence (a'h'a)
(a'ha) = a'{h'aa'h)a = a'(eaa'e)a = a'ea. Thus we have proved that (a'ha)(a'ea)
= (a'ea)(a'ha) = a'/w, and that (a'ha)(a'h'a) = (a'h'a)(a'ha) = a'ea, from which
it follows that a'has Ha.ea, for all he He. Hence a'Hea c /7a,e(I, and the proof of
the theorem is complete.

Finally, we determine the maximal idempotent-separating congruence on an
orthodox semigroup, thus generalizing the result of J. M. Howie [4] from inverse
semigroups to orthodox semigroups.

THEOREM 4.4. The maximal idempotent-separating congruence on an orthodox
semigroup S is

\i = {(a,b)eSxS: there are inverses a! of a and V of b such that
a'ea = b'eb and aea' = beb' for all e e Es}.

PROOF. That \i is reflexive and symmetric is obvious. To prove that n is transi-
tive note first that if (a, b) e fi, then a'(aa'bb')a = b'(aa'bb')b, since aa'bb' e Es,
where a' and b' are the inverses of a and b respectively which appear in the def-
inition of fi. Hence a\bb')a = b'(aa')b. But bb' eEs, so a'(bb')a = b'{bb')b =
b'b, and similarly b'(aa')b = a'a. Hence a'a = b'b. In a similar fashion, it is not
difficult to see that aa' = bb'. From these two results we deduce that, in particular
H £ J f . We now proceed to the proof of the transitivity of \i.

Suppose that (a, b)e n and (b, c) e fi. Then there are inverses a' of a, b' and
b* of b, and c* of c such that

a'ea = b'eb, aea' = beb', b*eb = c*ec, beb* = cec*, for all e e Es.

In particular, we have seen that this implies that aa' = bb', a'a = b'b, cc* = bb*,
and c*c = b*b, and hence that a, b, and c are Jf-equivalent elements of S.
Hence there are inverses a* of a and c' of c such that
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aa' = bb' = cc', a'a = b'b = c'c,
and

aa* — bb* = cc*, a*a = b*b = c*c.

Now a*aa' e V(a), and c*cc' e V(c), and for all e e Es,

(a*aa')ea = (a*a)(a'ea) = (a*a)(b'eb)
= (b*b){b'eb) = b*(bb'e)b = c*(bb'e)c
= c*(cc'e)c = (c*cc')ec,

while

ae(a*aa') = a(ea*a)a' = b(ea*a)b' = b(eb*b)b'
= (beb*)(bb') = (cec*)(bb') = {cec*)(cc')
= ce(c*cc').

Hence {a, c) e p., and ^ is transitive.
Now suppose that (a, b) e n, and let c e S. Then there are inverses a' of a and

V of b such that a'ea = b'eb and aea' = Z>e6', for all e e Es. Let c' be an arbitrary
inverse of c. Then

(c'a')e(ac) = c\a'ea)c = c'(b'eb)c = (c'b')e(bc), for all e s £ s ,
and

(ac)e(c'a) = a(cec')a' = b(cec')b' = (bc)e(c'b'), for all eeEs.

Hence (ac, be) e ,11, since cV 6 V(ac) and c'ft' s V(bc). Thus /i is right compatible.
Now

{ca)e{a'c') = c{aea')c' = c(beb')c' = (cb)e(b'c), for all ee Es,
and

(a'c')e(ca) = a ' ( c e c ) a = b'(c'ec)b = (b'c')e(cb) for all eeEs,

so yu is left compatible. Hence fi is a congruence.
That /i separates idempotents is obvious since we have already proved that

Finally, let p be any idempotent-separating congruence of S. Then if {a, b) e p,
we have that (a, b) e Jf, and hence there are inverses a' of a and 6' of Z> such
that aa' = 6Z>' and a'a = Z>'6. Then, since (a, b) e p, we have (aa', ba') e p, i.e.
(bb',ba')e p, and hence (b'bb',b'ba')e p, i.e. (b',a')ep. Hence, for all eeEs

we have (aea', beb')e p, and so aea' = beb' since both aea' and beb' are idem-
potents, and p separates idempotents. Also (b'eb, a'ea) e p, and so a'ea = &'e£.
Thus, finally, (a, b) e ^, and consequently p ^ /*. This completes the proof that ^
is the maximal idempotent-separating congruence on S.

We remark that if (x, y) e p., and if x* is an arbitrary inverse of x, then there
exists an inverse y* of y such that xex* = yey* and x*ex = y*ey for all e e Es.
For let (x, y) e p., and let x* be an arbitrary inverse of x. Then there are inverses
x' of x and y' oiy such that xex' = yey' and x'ex = y'ey for all e e Es. Also, since
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(x, y) e J^, there is an inverse y* of y sich that xx* = yy* and x*x = y*y. Then
for all e e Es,

xex* = xe(x*xx'xx*) = x(ex*x)x'(xx*)
= y(ex*x)y'(xx*) = y(ey*y)y'(yy*) = yey*,

and
x*ex = (x*xx'xx*)ex = (x*x)x'(xx*e)x

= (x*x)y'(xx*e)y = (y*y)y'(yy*e)y = y*ey.

5. Inverse semigroup congruences

A congruence p on a semigroup S is called an inverse semigroup congruence
if S/p is an inverse semigroup. In this section we examine inverse semigroup con-
gruences on orthodox semigroups from the point of view of the regular kernel nor-
mal systems of the congruences. We also provide an alternative proof of the result
of T. E. Hall [3] that Yamada's equivalence

(15) <& = {(a, b)eSxS: V(a) = V(b)}

(M. Yamada [9]) is a congruence on an orthodox semigroup S, and is the finest
inverse semigroup congruence on S.

Let p be an inverse semigroup congruence on the orthodox semigroup S and
let {Ai : i e /} be the kernel of p. Choose ae At and e e A( r\ Es. Then a(j)p =
e4>p 6 Es/p, where 4>p is the natural homomorphism corresponding to the congruence
p. Let a' be an arbitrary inverse of a. Then a'4>p e V(e(f>p), so a'<j)p = e<j)p, and so
a! e A{. Thus if a 6 At, we have V(a) c At. In particular, each element At of the
kernel of p is regular, and so the kernel and the regular kernel of an inverse semi-
group congruence on an orthodox semigroup coincide.

Now let s be an arbitrary element of S and let s', s" e V{s). Then s'<f>p,
$"4>pe V(s<t>p), and so s'(pp = s"<j>p. Thus p identifies all inverses of any given
element of S.

Let s/ = {At: i e /} be the kernel of the inverse semigroup congruence p on
the orthodox semigroup S. Then we know that p = p1^, the transitive closure of
the relation p^ denned by (3). We now show that in fact p^ is transitive, i.e. that
Pd = P'st = P- Let (a, b) e p^ and let (b, c) e p^. Then there are inverses a' of
a, b' and b* of b, and c* of c such that aa!, bb', ab' e At, a'a, b'b, a'b e A}, bb*,
cc*, be* e Ak, and b*b, c*c, b*c e At for some i,j, k,lel. Now (b1, b*) e px^ = p,
so (bb', bb*) e p. But bb' e A{ and bb* e Ak. Hence At = Ak, and since (b'b, b*b)
s p, we also have that Aj = At. Hence aa', cc* e At and a'a, c*c e Aj. Further,
ab',bc*eAi, and so (ab')(bc*) = a(b'b)c*eAi. But (b'b, a'a) ep, so (a(b'b)c*,
a(a'a)c*) e p, i.e. ac* e A;. Also, a'b, b*c* e Aj, so a'(bb*)c e Aj. But (bb*, cc*) e p,
so (a'(bb*)c, a'(cc*)c) e p, i.e. a'c e Aj. Hence aa', cc*, ac* e At and a'a, c*c, a'c e
Aj, and consequently (a, c)e p^. Hence p^ is transitive, and p^ — p'^ = p.

https://doi.org/10.1017/S1446788700009794 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009794


[17] Congruences on orthodox semigroups 339

We remark further that since p^ = p, and since p identifies all inverses of an
arbitrary element of S, we clearly have that

p^ = {(a, b)e SxS : there exist i and j in / such that
^ ' aa', bb', ab' e A,, a'a, b'b, a'b e A} for all a' e V(a), and all V e V(b)}.

We shall make use of the characterization (16) of inverse semigroup congruences on
orthodox semigroups in the sequel.

Before proceeding to the determination of the finest inverse semigroup con-
gruence on an orthodox semigroup, we investigate some of the properties of the set
V(e) of inverses of an idempotent e of the orthodox semigroup S. We already know
that V(e) ?= Es. Suppose now that et e V(e). We prove that under these circum-
stances, V{e) = V(et). To prove this, let e2 be an arbitrary element of V(e).
Then exe2 and e2e1 are both in V(e), and

(e1e2)e1 = (e1e2ee1e2)e1 = e^e^ee^e^e^^ee^).

But eY e V{ex) and e2el e V{e), so e1e2e1 e V^e^. Hence

exe2ey = eve2eev = ele{ele2)eel = eleel = et.

The result e2ele2 = e2 follows by interchanging ex and e2 throughout. Hence
e2 e V(ex) and so V(e) £ V{e\)- The converse result, F ^ ) <=, V(e), follows by
symmetry.

From this result we deduce that if et and e2 are idempotents of S for which
K(et) n V(e2) # D, then Vie^ = V(e2). We also deduce that V(e) is a subsemi-
group of mutually inverse idempotents of S. (Indeed, one can prove that V(e) is a
rectangular band). We make use of these results in the proof of the following
theorem, due to T. E. Hall [3].

THEOREM 5.1. The finest inverse semigroup congruence on an orthodox semi-
group S is Yamadd's equivalence &, defined by (15).

PROOF. We first prove that 'f = {V(e) : e e Es} is a regular kernel normal
system of S. That K(e) is a regular subsemigroup of Sis obvious, since if a, b e V(e)
then ab e V{ee) = V(e). We have already proved that V(e) n V(f) = Q if
V(e) J= V(f), and it is obvious that Es £ u {V(e) :eeEs}. Hence V satisfies
conditions Kl, K2, and K3 of regular kernel normal systems. That a'V(e)a £
V{a'ea) for all a e S, a' e V(a), and e e Es is also obvious. To verify K5 and K7,
note that if ex e V(e) and/j e V(f), then e±ft e V(fe) = V(ef). Hence V(e)V(f)
c V(ef). Finally to verify that K6 is satisfied, suppose that a, ab, bb', b'b e V(e).
Then a e V(bb'), bb' = bb'abb', b = bb'b = bb'abb'b = (bb'){ab) e V(e), and
K6 is verified. Thus we have established that "f forms the regular kernel of some
congruence p = p^ on S. We note that each idempotent of S\p has a unique in-
verse in S/p, and hence the idempotents of Sip commute. Thus S/p is an inverse
semigroup.
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It follows that p is an inverse semigroup congruence on S and that

p = pv = {(a, b)e Sx S : there are elements e,fe Es such that
aa', bb', ab', ba' e V{e), a'a, b'b, a'b, b'a e V(f), for all a' e V(a), V e V(b)},

and that"/" is the kernel of pr. Clearly, any inverse semigroup congruence on S
must identify all inverses of an arbitrary idempotent, and hence it follows that pr

is the finest inverse semigroup congruence on S.
It remains to be proved that py = <&. Let (a, b) e <W, and let a' be an arbi-

trary inverse of a (and hence of b). Then aa'ba'aa' = a{a'ba') = aa', since
b e F(fl'), and ba'aa'ba' = b(a'ba') = ba'. Hence aa' e V(ba), and so V(aa') =
V{ba'). Also, a'aa'ba'a = (a'ba')a = a'a, and a'ba'aa'b = a'{ba'b) = a'b, so F(a'a)
= V(a'b). Hence there is an inverse a' of a (and of b) such that aa', ba' e V(aa')
and a'a, a'b e V(a'd) and it follows immediately that (a, b)e pr, and hence
that ^ £ pr.

Suppose now that (a, b)e pr. Then there are idempotents e and / of S such
that aa', bb', ab', ba' e V(e) and a'a, b'b, a'b, b'a e V{f) for all a' e V{a), V e V(b).
Let b' be any inverse of b. Then aft'a = {ab'ba'ab')a, since afe' e V(ba'). Hence

afc'a = ab'ba'(aa'ab'aa')a = ab'ba'(aa')a

= ab'ba'a = a(a'ab'ba'a) = aa'a = a,
while

b'ab' = (b'aa'bb'a)b', since a'6 e K(6'a),
and so

b'ab' = b'aa'b{b'bb'ab'b)b' = b'aa'b(b'b)b'
= b'aa'bb' = b'{bb'aa'bb') = &W = 6', so ft' e V(a).

Hence K(6) £ V{a), and by symmetry, F(a) £ F(6). It follows that (a, b) e <&,
and hence that pr <= <ty. Hence pr = <&, as stated.
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