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Abstract

We consider variance-optimal hedging in general continuous-time affine stochastic
volatility models. The optimal hedge and the associated hedging error are determined
semiexplicitly in the case that the stock price follows a martingale. The integral
representation of the solution opens the door to efficient numerical computation. The
setup includes models with jumps in the stock price and in the activity process. It also
allows for correlation between volatility and stock price movements. Concrete parametric
models will be illustrated in a forthcoming paper.
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1. Introduction

Often observed so-called stylized features of stock returns include semiheavy tails, volatility
clustering, and the leverage effect (i.e. negative correlation between changes in volatility and
stock prices). Stochastic volatility (SV) models account for these observations. Examples in
the literature include the Heston model [14] and the Lévy-driven stochastic volatility models
put forward in [2]. Other SV models are based on time-changed Lévy processes as in [7].
All these examples are affine in the sense of [10]. Further instances of such affine stochastic
volatility models are discussed in [18] and [33].

Stochastic volatility typically leads to an incomplete market, i.e. perfect hedging strategies
do not exist for many contingent claims. As a way out, we may try to minimize the expected
squared hedging error

E[(v + ϑ • ST −H)2]
over all initial endowments v ∈ R and all admissible hedging strategies ϑ . Here,H denotes the
discounted payoff at time T of a European-style contingent claim and S denotes the discounted
price process of the underlying stock. The stochastic integral ϑ • S stands for the gains from
dynamic trading in the stock according to strategy ϑ .

This problem and in particular its general structure have been extensively studied in the
literature; cf., e.g. [1], [8], [29], [35], and the references therein. If S is a martingale, the
solution is determined in [11] based on the Galtchouk–Kunita–Watanabe decomposition. To
be more specific, let Vt := E[H | Ft ] denote the martingale generated byH . Then v∗ := V0 is
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the optimal initial endowment in the above hedging problem and the optimal hedging strategy
can be written as

ϑ∗
t = d〈V, S〉t

d〈S, S〉t , (1.1)

where 〈·, ·〉 denotes the predictable covariation process. The corresponding hedging error equals

E[(v∗ + ϑ∗ • ST −H)2] = E[〈V, V 〉T − 〈ϑ∗ • S, ϑ∗ • S〉T ]. (1.2)

Alternative representations of the solution are provided in [5] using the carré du champ
operator and in [4] based on Malliavin derivatives. All these general characterisations do not
immediately lead to numerical results in concrete models. For example, it may not be obvious
how to evaluate (1.1) and (1.2) because analytical expressions for V are typically not available.

Numerical approaches are discussed in, e.g. [9], [13], and [16]. Heath et al. [13] used
partial differential equation methods for specific continuous stochastic volatility models. Cont
et al. [9] and similarly Hubalek and Sgarra [15] considered an SV model involving jumps.
A partial integro-differential equation is solved by finite-difference schemes in order to obtain
the processV above. The hedging error is computed by Monte Carlo simulation. This approach
is applied to exotic contingent claims and it allows for options as hedging instruments.

In this paper we study variance-optimal hedging in a general affine stochastic volatility
model. The objective is to determine semiexplicit expressions for the optimal hedging strategy
and the hedging error which can be evaluated without implementing involved numerical schemes
or computer-intensive Monte Carlo simulations. They are obtained with the help of integral
transform techniques which are used widely in option pricing (cf., e.g. [6] and [31]) and in [16]
for the mean-variance hedging problem without stochastic volatility.

We focus on the case that S is a martingale. Firstly, this allows us to cover a broader
class of volatility structures than without this restriction, e.g. those involving a leverage term.
Secondly, we believe that the excess drift of asset prices is of secondary importance for
the hedging problem. Finally, quadratic hedging appears as an auxiliary problem in a first-
order approximation to utility-based derivative pricing and hedging; cf. [3], [19], [21], [24],
[25], and [26]. Here the variance-optimal hedge must be determined under some equivalent
martingale measure, i.e. S is by default a martingale under the relevant measure. For a treatment
of the more involved non-martingale case, we refer the reader to [23], which generalizes some
of the present results. In such context a measure change to the—generally signed—variance-
optimal martingale measure plays a major role implicitly or explicitly. However, the setup
in [23] allows for leverage only in very special cases. Moreover, it is written on a less rigorous
mathematical level.

The structure of the paper is as follows. In Section 2 we introduce the general affine stochastic
volatility model. Subsequently, we discuss an integral representation of the contingent claim
that is to be hedged. Section 4 contains the solution to the hedging problem in this setup. For
numerical results in concrete parametric models, we refer to the forthcoming paper [20]. Proofs
of the main results are to be found in the final section.

Unexplained notation is used as in [17]. Superscripts generally refer to components of a
vector or vector-valued process rather than powers. The few exceptions should be obvious
from the context. As a key tool, we need the notion of semimartingale characteristics (B,C, ν).
For a summary of important results, we refer the reader to Appendix A. Here h = (h1, h2)

generally denotes a componentwise truncation function on R
2, i.e. h(x1, x2) = (h̃(x1), h̃(x2)),

where h̃ : R → R is a one-dimensional truncation function, which can, e.g. be chosen of the
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form

h̃(xk) =
⎧⎨
⎩

0 if xk = 0,

(1 ∧ |xk|) xk|xk| otherwise.
(1.3)

All characteristics and Lévy–Khintchine triplets on R and R
2, respectively, are expressed

relative to truncation functions h̃ and h, respectively. For ease of exposition, we occasionally
use the particular function (1.3) in the proofs, but the results hold for arbitrary h̃.

2. The general affine stochastic volatility model

We denote the discounted price process of a univariate stock by S = S0 exp(Z), i.e. Z
stands for logarithmic returns. Moreover, we consider a positive activity process y leading
to randomly changing volatility in our general setup. We assume that the bivariate process
(y, Z) is an affine semimartingale in the sense of [10]. More specifically, we suppose that the
characteristics (By,Z, Cy,Z, νy,Z) of the R

+ ×R-valued semimartingale (y, Z) are of the form

B
y,Z
t =

∫ t

0
(β(0) + β(1)ys−) ds, (2.1)

C
y,Z
t =

∫ t

0
(γ(0) + γ(1)ys−) ds,

νy,Z([0, t] ×G) =
∫ t

0
(ϕ(0)(G)+ ϕ(1)(G)ys−) ds, (2.2)

for all G ∈ B2 and t ∈ [0, T ], where (β(j), γ(j), ϕ(j)), j = 0, 1, are Lévy–Khintchine triplets
on R

2 which are admissible in the sense of [10, Definition 2.6] or [18, Definition 3.1], i.e.

• β(j) ∈ R
2, γ(j) is a symmetric, nonnegative matrix in R

2×2, and ϕ(j) is a σ -finite measure
on R

2 \ {0} satisfying
∫
(1 ∧ |x|2)ϕ(j)(dx) < ∞,

• γ
1,1
(0) = γ

1,2
(0) = γ

2,1
(0) = 0,

• ϕ(0)((R+ × R)C) = ϕ(1)((R+ × R)C) = 0, i.e. ϕ(0) and ϕ(1) are actually Lévy measures
on R+ × R,

• ∫
h1(x)ϕ(0)(dx) < ∞ and β1

(0) − ∫
h1(x)ϕ(0)(dx) ≥ 0,

• ∫
x1ϕ(1)(dx) < ∞. This additional condition prevents explosion in finite time; cf. [10,

Lemma 9.2].

We refer to this setup as a general affine stochastic volatility model. We provide a few examples
of popular affine SV models in the literature.

Example 2.1. The Heston [14] model can be written as

dZt = (µ+ δyt ) dt + √
yt dW 1

t , dyt = (κ − λyt ) dt + σ
√
yt dW 2

t ,

where κ ≥ 0, µ, δ, λ, and σ denote constants, and W 1 and W 2 are Wiener processes with
constant correlation 
. The bivariate process (y, Z) is affine in the sense of (2.1)–(2.2) with

(β(0), γ(0), ϕ(0)) =
((
κ

µ

)
, 0, 0

)
,

(β(1), γ(1), ϕ(1)) =
((−λ

δ

)
,

(
σ 2 
σ


σ 1

)
, 0

)
.
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Example 2.2. The so-called BNS model of [2] is of the form

dZt = (µ+ δyt−) dt + √
yt− dWt + 
 dzt , dyt = −λyt− dt + dzt ,

where µ, δ, λ, and 
 are constants and W is a Wiener process. Here z denotes a subordinator,
i.e. an increasing Lévy process whose Lévy–Khintchine triplet we write as (bz, 0, F z). The
process (y, Z) is affine in the sense of (2.1)–(2.2) with

β(0) =
⎛
⎝ bz

µ+ 
bz +
∫ ∞

0
(h̃(
x)− 
h̃(x))F z(dx)

⎞
⎠ , γ(0) = 0,

ϕ(0)(G) =
∫ ∞

0
1G(x, 
x)F z(dx) for all G ∈ B2,

and

(β(1), γ(1), ϕ(1)) =
((−λ

δ

)
,

(
0 0
0 1

)
, 0

)
;

cf. [18, Section 4.3]. In order to obtain more realistic autocorrelation patterns in volatility,
Barndorff-Nielsen and Shephard replaced the Lévy-driven Ornstein–Uhlenbeck process yt by
a linear combination of such processes. This extension has a multivariate affine structure
according to [18, Section 4.3]. It can be treated along similar lines as the simpler BNS model
above. We stick to the bivariate case in this paper in order not to confuse the reader with heavy
notation.

Example 2.3. Carr et al. [7] considered stochastic volatility models which are based on time-
changed Lévy processes, namely

Zt = µt +XYt + 
zt , dYt = yt− dt, dyt = −λyt− dt + dzt ,

where µ, 
, and λ are constants, and z and X denote independent Lévy processes with triplets
(bz, 0, F z) and (bX, cX, FX), respectively. Here z is supposed to be increasing. The model is
of the form (2.1)–(2.2) with

β(0) =
⎛
⎝ bz

µ+ 
bz +
∫ ∞

0
(h̃(
x)− 
h̃(x))F z(dx)

⎞
⎠ , γ(0) = 0,

ϕ(0)(G) =
∫ ∞

0
1G(x, 
x)F z(dx) for all G ∈ B2,

β(1) =
(−λ
bX

)
, γ(1) =

(
0 0
0 cX

)
, ϕ(1)(G) =

∫
R

1G(0, x)FX(dx)

for all G ∈ B2; cf. [18, Section 4.4]. If we choose X to be a Brownian motion with drift, we
obtain the dynamics of the BNS model above.

Another possible choice of the time change rate y is a square-root process:

Zt = µt +XYt + 
(yt − y0), dYt = yt dt, dyt = (κ − λyt ) dt + σ
√
yt dWt,

where κ ≥ 0,µ, 
, λ, and σ are constants,W denotes a Wiener process, andX is an independent
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Lévy process with triplet (bX, cX, FX). This model is of the form (2.1)–(2.2) with

(β(0), γ(0), ϕ(0)) =
((

κ

µ+ 
κ

)
, 0, 0

)
,

β(1) =
( −λ
bX − 
λ

)
, γ(1) =

(
σ 2 
σ 2


σ 2 
2σ 2 + cX

)
, ϕ(1)(G) =

∫
R

1G(0, x)FX(dx)

for all G ∈ B2; cf. [18, Section 4.4]. If we choose X to be a Brownian motion with drift, we
recover the dynamics of the Heston model—up to a rescaling of the volatility process y.

The Lévy–Khintchine triplets (β(j), γ(j), ϕ(j)), j = 0, 1, can be associated to corresponding
Lévy exponents

ψj (u) := u
β(j) + 1

2
u
γ(j)u+

∫
(eu


x − 1 − u
h(x))ϕ(j)(dx). (2.3)

The functions ψj , j = 0, 1, are defined on

Uj :=
{
u ∈ C

2 :
∫

{|x|≥1}
exp(Re(u)
x)ϕ(j)(dx) < ∞

}
.

Assumption 2.1. In order for S to be a locally square-integrable martingale, we assume that
(0, 2) ∈ U0 ∩ U1 and

ψ0(0, 1) = ψ1(0, 1) = 0. (2.4)

Moreover, we suppose that

ψ0(0, 2) �= 0 or ψ1(0, 2) �= 0,

in order to avoid the degenerate case, Z = 0.

Proposition 2.1. Assumption 2.1 implies that S ∈ H�
loc.

Proof. The differential characteristics (bZ, cZ, FZ) of Z can be easily calculated from
(2.1)–(2.2); cf. Proposition A.1 or A.2. They are of the form

bZt = β2
(0) + β2

(1)yt−, cZt = γ
2,2
(0) + γ

2,2
(1) yt−,

FZt (G) =
∫

1G(x2)ϕ(0)(dx)+
∫

1G(x2)ϕ(1)(dx)yt−

for all G ∈ B. Using Propositions A.1 and A.2, we obtain, for the stochastic logarithm
X := L(S) = 1/S− • S,

bXt = bZt + 1

2
cZt +

∫
(h̃(ex − 1)− h̃(x))FZt (dx),

FXt (G) =
∫

1G(ex − 1)FZt (dx) for all G ∈ B

for the differential characteristics (bX, cX, FX) of X. In particular, we have∫
x2FXt (dx) =

∫
(ex2 − 1)2ϕ(0)(dx)+

(∫
(ex2 − 1)2ϕ(1)(dx)

)
yt−.
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In view of Assumption 2.1 and [17, Proposition II.2.29], X is a locally square-integrable
semimartingale. Moreover, (2.4) implies that

bXt +
∫
(x − h̃(x))FXt (dx) = ψ(0)(0, 1)+ ψ(1)(0, 1)yt− = 0,

which implies that X is actually a local martingale. Since E(X)− is locally bounded, S =
S0E(X) = S0(1 + E(X)− • X) is a locally square-integrable martingale as well.

Owing to the results of [10], the characteristic function of the bivariate affine process (y, Z)
is known explicitly.

Proposition 2.2. The conditional characteristic function of (y, Z) is of the form

E[exp(u1yt+s + u2Zt+s) | Ft ] = exp(�0(s, u1, u2)+�1(s, u1, u2)yt + u2Zt),

u ∈ C− × iR, where �1 : R+ × C− × iR → C− solves the initial value problem

∂

∂t
�1(t, u1, u2) = ψ1(�1(t, u1, u2), u2), �1(0, u1, u2) = u1, (2.5)

and �0 : R+ × C− × iR → C is given by

�0(t, u1, u2) =
∫ t

0
ψ0(�1(s, u1, u2), u2) ds. (2.6)

Here C− is defined as C− := {z ∈ C : Re(z) ≤ 0}.
Proof. This is a special case of [18, Theorem 3.2].

3. European options

The hedging problem cannot be solved in closed form even for geometric Lévy processes
without stochastic volatility. In order to obtain at least semiexplicit solutions, we consider
European-style claims whose discounted payoff at time T is of the form H = f (ST ). More
specifically, we assume that the function f : (0,∞) → R can be written in integral form as

f (s) =
∫
sz�(dz)

with some finite complex measure � on a strip Sf := {z ∈ C : R′ ≤ Re(z) ≤ R}, where
R′, R ∈ R. The measure � is supposed to be symmetric in the sense that �(A) = �(A) for
A ∈ B(C) and A := {z ∈ C : z ∈ A}. In most cases we can choose R′ = R and the measure
� has a density; cf. [16]. For example, we have

(s −K)+ = 1

2π i

∫ R+i∞

R−i∞
sz

K1−z

z(1 − z)
dz

with R > 1 for a European call with strike K , which means that

�(dz) = 1

2π i

K1−z

z(1 − z)
dz
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on Sf := R+ iR. The put f (s) = (K − s)+ corresponds to the same formula but with R < 0.
The integral representation of many other payoffs can be found in [16].

For the derivation of formulae in the next section, some moment conditions are needed. We
phrase them here in terms of analytical properties of the characteristic exponents in Proposi-
tion 2.2.

Assumption 3.1. We assume that the following conditions hold.

(i) For some ε > 0, the mappings (u1, u2) �→ �0(t, u1, u2),�1(t, u1, u2) have an analytic
extension on

S := {u ∈ C
2 : (Re(u1),Re(u2)) ∈ Vε(0)}

for all t ∈ [0, T ], where

M0 := sup{2�1(t, 0, r) : r ∈ [R′ ∧ 0, R ∨ 0], t ∈ [0, T ]},

and

Vε(a) := (−∞, (M0 ∨ 0)+ ε)× ((2R′ ∧ 0)− ε, (2R ∨ a)+ ε)

for a ∈ R+. These extensions are again denoted by �0 and �1, respectively.

(ii) The mappings t �→ �0(t, u1, u2) and t �→ �1(t, u1, u2) are continuous on [0, T ] for
any (u1, u2) ∈ S.

(iii) Vε(2) ⊂ U0∩U1. This is satisfied if the mappings iR → C, u �→ ψj (u) for j = 0, 1 have
analytic extensions to Vε(2), in which case representation (2.3) holds for this extension.
Note that this implies the integrability condition (0, 2) ∈ U0 ∩ U1 in Assumption 2.1.

Remark 3.1. (i) From [36, Theorem III.13.XI], it follows that the analytic extensions �0, �1
solve (2.5) and (2.6) as well. Moreover,�0, �1,D2�0, andD2�1 are continuous on [0, T ]×S.
For later use, we also note that the mapping t �→ �1(t, 0, z) is twice continuously differentiable
on [0, T ] for all z ∈ Sf .

(ii) From [10, Theorem 2.16(ii)], it follows with Assumption 3.1(i) that

E[exp(u1yt+s + u2Zt+s) | Ft ] = exp(�0(s, u1, u2)+�1(s, u1, u2)yt + u2Zt) (3.1)

for all u ∈ S. It is easy to see that �j(t, u1, u2) is real-valued for u ∈ R
2 ∩ S, j = 0, 1.

(iii) By the first remark we have�0(t, 0, z) = ∫ t
0 ψ0(�1(s, 0, z), z) ds for z ∈ S. Equation (3.1)

and Jensen’s inequality yield Re(�1(t, 0, z)) ≤ �1(t, 0,Re(z)) and, hence, (�1(t, 0, z), z) ∈ S
for all t ∈ [0, T ] and all z ∈ Sf .

Lemma 3.1. Under Assumption 3.1(i), SzT is a square-integrable random variable for any
z ∈ Sf . The same is true for H .

Proof. In view of Remark 3.1(ii) we have

E[|SzT |2] ≤ exp(2(|R′| ∨ |R|)| log S0|)E[e2R′ZT + e2RZT ] < ∞.
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Applying Hölder’s inequality we have

E[|H |2] ≤ E

[(∫
|SzT ||�|(dz)

)2]

≤ |�|(Sf )E

[∫
|SzT |2|�|(dz)

]
≤ |�|(Sf )2 exp(2(|R′| ∨ |R|)| log S0|)E[e2R′ZT + e2RZT ]
< ∞.

Here |�| indicates the total variation measure of � in the sense of [32, Section 6.1].

A key role in the hedging problem is played by the square-integrable martingale V generated
by H , i.e.

Vt := E[H | Ft ], t ∈ [0, T ].
We call it an option price process because it could be used as such without introducing arbitrage
to the market. But note that we do not assume H to be traded, let alone with price process V .

Proposition 3.1. Under Assumption 3.1(i), we have

Vt =
∫
V (z)t�(dz), t ∈ [0, T ], (3.2)

where the square-integrable martingale V (z) for z ∈ Sf is defined as V (z)t := E[SzT | Ft ] for
t ∈ [0, T ].

Proof. For all t ∈ [0, T ] and z ∈ Sf , we have the estimate∫
E[|V (z)t |]|�|(dz) ≤

∫
E[|V (z)T |]|�|(dz)

≤
∫

E[eRe(z) log ST ]|�|(dz)
≤ E[eR′ log ST + eR log ST ]|�|(Sf )
< ∞

from Remark 3.1(ii) and the finiteness of �. An application of Fubini’s theorem yields

E

[∫
V (z)t�(dz) 1C

]
= E

[∫
E[SzT | Ft ] 1C �(dz)

]

= E

[∫
SzT �(dz) 1C

]
= E[Vt 1C]

for all C ∈ Ft . This implies the assertion.

The process V (z) will be determined in Theorem 4.1, below, as a by-product. Via (3.2) this
leads to an integral representation of the option price process which is of interest in itself. It
extends similar formulae in [7] and [33] to the more general class of processes considered in
this paper.
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4. Variance-optimal hedging

We turn now to the hedging problem itself. We generally assume that Assumptions 2.1
and 3.1 hold. We define the set of admissible trading strategies as

� := {ϑ predictable process : E[|ϑ |2 • 〈S, S〉T ] < ∞}.
We call an initial capital v∗ ∈ R and an admissible strategy ϑ∗ variance-optimal (hedge) if
they minimize

E[(v + ϑ • ST −H)2]
over all such pairs (v, ϑ) ∈ R ×�. The residue

J0 := E[(v∗ + ϑ∗ • ST −H)2]
is referred to as the minimal hedging error. The following characterization of the variance-
optimal hedge constitutes the first main result of this paper.

Theorem 4.1. The variance-optimal initial capital v∗ and the variance-optimal hedging strat-
egy ϑ∗ are given by

v∗ =
∫
V (z)0�(dz),

ϑ∗
t =

∫
V (z)t−
St−

κ0(t, z)+ κ1(t, z)yt−
δ0 + δ1yt−

�(dz), (4.1)

where the process V (z) satisfies

V (z)t = Szt exp(�0(T − t, 0, z)+�1(T − t, 0, z)yt ), z ∈ Sf , (4.2)

δ0, δ1 ∈ R, and the functions κ0, κ1 : [0, T ] × Sf → C are defined as

κj (t, z) := ψj (�1(T − t, 0, z), z+ 1)− ψj (�1(T − t, 0, z), z), (4.3)

δj := ψj (0, 2), j = 0, 1. (4.4)

As is well known, the variance-optimal hedging strategy ϑ∗ given by (4.1) also yields the
solution to

min
ϑ∈�E[(̃v + ϑ • ST −H)2], (4.5)

where ṽ ∈ R denotes a given initial capital instead of the optimizer from the previous theorem.
Our second main result concerns the hedging error. This quantity gives an idea of the remaining
risk. The seller of the option may take it into account in order to decide what risk premium to
charge for the claim.

Theorem 4.2. The minimal hedging error is given by

J0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∫∫ T

0
J1(t, z1, z2) dt�(dz1)�(dz2) if δ0 �= 0, δ1 �= 0,

∫∫∫ T

0
J2(t, z1, z2) dt�(dz1)�(dz2) if δ0 = 0,

∫∫∫ T

0
J3(t, z1, z2) dt�(dz1)�(dz2) if δ1 = 0.
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The integrals over Sf have to be understood in the sense of the Cauchy principal value (cf. the
following remark). The integrands Jk : [0, T ] × Sf

2 → C, k = 1, 2, 3, in these expressions
are defined as

J1(t, z1, z2)

= S
z1+z2
0 eξ0

(
exp(�0(t, ξ1, z1 + z2)+�1(t, ξ1, z1 + z2)y0)

×
(
η2

δ1
(D2�0(t, ξ1, z1 + z2)+D2�1(t, ξ1, z1 + z2)y0)+ η1δ1 − η2δ0

δ2
1

)

+ η0δ
2
1 − η1δ0δ1 + η2δ

2
0

δ3
1

e−δ0ξ1/δ1

×
∫ 1

0

(
δ1

δ0
+ ξ1s

)
exp

(
δ0

δ1
ξ1s +�0

(
t,
δ1

δ0
log(s)+ ξ1s, z1 + z2

)

+�1

(
t,
δ1

δ0
log(s)+ ξ1s, z1 + z2

)
y0

)
ds

)
,

J2(t, z1, z2) = S
z1+z2
0 eξ0

δ1
exp(�0(t, ξ1, z1 + z2)+�1(t, ξ1, z1 + z2)y0)

× (η1 + (D2�0(t, ξ1, z1 + z2)+D2�1(t, ξ1, z1 + z2)y0)η2),

J3(t, z1, z2) = S
z1+z2
0 η0

δ0
exp((ψ0(0, z1)+ ψ0(0, z2))(T − t)+ ψ0(0, z1 + z2)t).

The constants δ0 and δ1 are defined as in (4.4). The remaining variables are specified as follows:

αj =αj (t, z1, z2)

:=ψj (ξ1(t, z1, z2), z1 + z2)− ψj (�1(T − t, 0, z1), z1)− ψj (�1(T − t, 0, z2), z2),

η0 = η0(t, z1, z2) := δ0α0(t, z1, z2)− κ0(t, z1)κ0(t, z2),

η1 = η1(t, z1, z2)

:= δ0α1(t, z1, z2)+ δ1α0(t, z1, z2)− κ1(t, z1)κ0(t, z2)− κ1(t, z2)κ0(t, z1),

η2 = η2(t, z1, z2) := δ1α1(t, z1, z2)− κ1(t, z1)κ1(t, z2),

ξj = ξj (t, z1, z2) := �j(T − t, 0, z1)+�j(T − t, 0, z2), j = 0, 1,

with κ0 and κ1 from (4.3). For ease of notation, we dropped the arguments of some functions in
the formulae above. The mappings η0, η1, η2, α0, α1, ξ0, and ξ1 are defined on [0, T ] × Sf

2.

Remark 4.1. (i) The integrals in the previous theorem are to be understood in the sense that

J0 = lim
c↑∞

∫
Scf

∫
Scf

∫ T

0
Jk(t, z1, z2) dt�(dz1)�(dz2),

where
Scf := {z ∈ C : R′ ≤ Re(z) ≤ R, |Im(z)| ≤ c}.

It is not obvious whether integrability holds on all of Sf .

(ii) Condition δ1 = 0 actually implies that Z is a Lévy process. The integral of J3 relative to t
can easily be evaluated in closed form, which is done in [16, Theorem 3.2].
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(iii) The minimal hedging error in (4.5) for fixed initial endowment ṽ instead of the optimal
v equals

J0 + (̃v − v)2.

For concrete models and numerical results, we refer the reader to the companion paper [20].

5. Proofs of the main results

This section is devoted to the proofs of Theorems 4.1 and 4.2. We start by analyzing the
martingales V (z) in Proposition 3.1.

Lemma 5.1. V (z) in Proposition 3.1 is of the form (4.2).

Proof. The proof follows immediately from (3.1).

The Galtchouk–Kunita–Watanabe (GKW) decomposition of V (z) is determined in the
following lemma.

Lemma 5.2. Fix z ∈ Sf . If we set

ϑ(z)t := V (z)t−
St−

κ0(t, z)+ κ1(t, z)yt−
δ0 + δ1yt−

, (5.1)

L(z) := V (z)− V (z)0 − ϑ(z) • S,

then ϑ(z) ∈ � (here liberally extended to complex-valued processes), L(z) is a square-
integrable martingale, and LS is a local martingale. Here κj (t, z) and δj , j = 0, 1, are
defined as in (4.3) and (4.4), respectively.

Proof. The denominator in (5.1) is positive because the constants δ0, δ1 ∈ R+ do not both
vanish (cf. Assumption 2.1). The differential characteristics (bS, cS, F S) of S can be obtained
from (2.1)–(2.2) and Proposition A.2. We have

cSt = S2
t−(γ

2,2
(0) + γ

2,2
(1) yt−)

and FSt (G) =
∫

1G(St−(ex2 − 1))ϕ(0)(dx)+
∫

1G(St−(ex2 − 1))ϕ(1)(dx)yt−

for all G ∈ B. By [17, Proposition II.2.29b], this implies that

〈S, S〉t =
∫ t

0

(
cSs +

∫
R

x2FSs (dx)

)
ds =

∫ t

0
S2
s−(δ0 + δ1ys−) ds, (5.2)

where the second equality follows from

γ
2,2
(j) +

∫
(ex2 − 1)2ϕ(j)(dx) = ψj (0, 2)− 2ψj (0, 1) = ψj (0, 2) = δj .

Another application of Proposition A.2 allows us to compute the differential characteris-
tics (bV (z),S, cV (z),S, FV (z),S) of (V (z), S) = g(I, y, Z), where It = t denotes the identity
process and

g(t, x1, x2) :=
(
Sz0 exp(�0(T − t, 0, z)+�1(T − t, 0, z)x1 + zx2)

S0 exp(x2)

)
.
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Again, using [17, Proposition II.2.29b], this leads to

〈V (z), S〉t =
∫ t

0

(
(cV (z),S)2,1s +

∫
R2
x1x2F

V (z),S
s (d(x1, x2))

)
ds

=
∫ t

0
V (z)s−Ss−(κ0(s, z)+ κ1(s, z)ys−) ds. (5.3)

We conclude that
ϑ(z) • 〈S, S〉 = 〈V (z), S〉. (5.4)

Hence, 〈L, S〉 = 0, which implies that LS is a local martingale. Equation (5.4) also yields

〈L(z), L(z)〉 + |ϑ(z)|2 • 〈S, S〉 = 〈L(z), L(z)〉 + (ϑ(z)ϑ(z)) • 〈S, S〉 = 〈V (z), V (z)〉.
Since V (z) is a square-integrable martingale, we have E[〈V (z), V (z)〉T ] < ∞, which implies
that ϑ(z) ∈ � and L(z) ∈ H2.

For later use, we need a technical result.

Lemma 5.3. Let τn := inf{t > 0 : yt /∈ [1/n, n] or St /∈ [1/n, n]} ∧ T . For any n ∈ N, there
exists a constant c(n) < ∞ such that∫ T

0
E[1[[0,τn]] |V (z)t |2(α0(t, z, z)+ α1(t, z, z)yt )] dt ≤ c(n) (5.5)

holds for all z ∈ Sf . The functions α0 and α1 are defined as in Theorem 4.2.

Proof. Fix n ∈ N. In this proof c denotes a generic constant that does not depend on
t ∈ [0, T ] or z ∈ Sf . It may vary from line to line. Setting 
 := max{|R′|, |R|} implies
that 1[[0,τn[[ eRe(z) log(St ) ≤ n
 ≤ c. Since ψj (z1, z2) = ψj (z1, z2), we have �1(t, z1, z2) =
�1(t, z1, z2) for z1, z2 ∈ iR and, hence, for z1, z2 ∈ Sf by uniqueness of analytic continuations.
We obtain

αj (t, z, z) = ψj (2Re(�1(T − t, 0, z)), 2Re(z))− 2Re(ψj (�1(T − t, 0, z), z))

≥ (Re(�1(T − t, 0, z)),Re(z))γ(j)(Re(�1(T − t, 0, z)),Re(z))


+ (Im(�1(T − t, 0, z)), Im(z))γ(j)(Im(�1(T − t, 0, z)), Im(z))


+
∫
(exp(Re(�1(T − t, 0, z))x1 + Re(z)x2)− 1)2ϕ(j)(dx)

≥ 0

for j = 0, 1 because γ(j) is positive semi-definite. Hence,

K1(z) :=
∫ T

0
E[1[[0,τn]] 1{Re(�1(T−t,0,z))≤0}

× exp(2Re(�0(T − t, 0, z))+ 2Re(�1(T − t, 0, z))yt )S
2Re(z)
t

× (α0(t, z, z)+ α1(t, z, z)yt )] dt

≤
∫ T

0
exp

(
2Re(�0(T − t, 0, z))+ 2

n
Re(�1(T − t, 0, z))

)
c

× (ψ0(2Re(�1(T − t, 0, z)), 2Re(z))− 2Re(ψ0(�1(T − t, 0, z), z))

+ n(ψ1(2Re(�1(T − t, 0, z)), 2Re(z))

− 2Re(ψ1(�1(T − t, 0, z), z)))) dt.
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Using (2.5) and (2.6), we obtain

K1(z) ≤ c

∫ T

0

∣∣∣∣exp

(
2Re(�0(T − t, 0, z))+ 2

n
Re(�1(T − t, 0, z))

)

× ψ0(2Re(�1(T − t, 0, z)), 2Re(z))

∣∣∣∣ dt

+ c

∫ T

0

∣∣∣∣exp

(
2Re(�0(T − t, 0, z))+ 2

n
Re(�1(T − t, 0, z))

)

× ψ1(2Re(�1(T − t, 0, z)), 2Re(z))

∣∣∣∣ dt

+ c

∣∣∣∣
∫ T

0

∂

∂t

(
2Re(�0(T − t, 0, z))+ 2

n
Re(�1(T − t, 0, z))

)

× exp

(
2Re(�0(T − t, 0, z))+ 2

n
Re(�1(T − t, 0, z))

)
dt

∣∣∣∣
=: c(K2(z)+K3(z)+ |K4(z)|).

Equation (3.1) and Jensen’s inequality yield

2Re(�j (t, 0, z)) ≤ �j(t, 0, 2Re(z)) for all (t, z) ∈ [0, T ] × Sf .

By continuity of the mappings �0 and �1 (cf. Assumption 3.1(ii)) we have

|K4(z)| =
∣∣∣∣exp

(
2

n
Re(z)

)
− exp

(
2Re(�0(T , 0, z))+ 2

n
Re(�1(T , 0, z))

)∣∣∣∣
≤ exp

(
2

n
Re(z)

)
+ exp

(
�0(T , 0, 2Re(z))+ 1

n
�1(T , 0, 2Re(z))

)
≤ c.

Similarly, we obtain estimates

g(t, z) := 2Re(�1(T − t, 0, z)) ≤ �1(T − t, 0, 2Re(z)) ≤ c,

2Re(�0(T − t, 0, z)) ≤ �0(T − t, 0, 2Re(z)) ≤ c.

For j = 0, 1, we have∣∣∣∣1

n
eg(t,z)/nψj (g(t, z), 2Re(z))

∣∣∣∣
≤

[
2

n
(|β2

(j)| + 
|γ 2,2
(j) |)
 + (|β1

(j)| + 2
|γ 1,2
(j) |)|gn(t, z)| + n

2
|γ 1,1
(j) ||gn(t, z)|2

]
egn(t,z)

+ 1

n
egn(t,z)

∫
|eg(t,z)x1+2Re(z)x2 − 1 − g(t, z)h̃(x1)− 2Re(z)h̃(x2)|ϕ(j)(dx),

where gn(t, z) := g(t, z)/n. Boundedness of g implies that we have

egn(t,z)|gn(t, z)|k ≤ c
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for k = 0, 1, 2 and some constant c. Furthermore, we have

1

n
egn(t,z)

∫
|eg(t,z)x1+2Re(z)x2 − 1 − g(t, z)h̃(x1)− 2Re(z)h̃(x2)|ϕ(j)(dx)

≤ 1

n
egn(t,z)

(∫
{|x|>1}

eM0x1+2Rx2ϕ(j)(dx)+
∫

{|x|>1}
eM0x1+2R′x2ϕ(j)(dx)

+ (1 + 2
 + |g(t, z)|)ϕ(j)({|x| > 1})
)

+ 1

n
egn(t,z)

∫
{|x|≤1}

|eg(t,z)x1+2Re(z)x2 − 1 − g(t, z)x1 − 2Re(z)x2|ϕ(j)(dx).

Since ϕ(j) is a Lévy measure, ϕ(j)({|x| > 1}) is finite. The first two integrals on the right-hand
side are bounded in view of Assumption 3.1(iii). Note that

|eg(t,z)x1+2Re(z)x2 − 1 − g(t, z)x1 − 2Re(z)x2| ≤ c(x2
1 + x2

2 )

for all |x| ≤ 1. Since
∫
{|x|≤1}(x

2
1 + x2

2 )ϕ(j)(dx) < ∞, we obtain

1

n
egn(t,z)

∫
|eg(t,z)x1+2Re(z)x2 − 1 − g(t, z)h̃(x1)− 2Re(z)h̃(x2)|ϕ(j)(dx) ≤ c.

Altogether, we conclude that∣∣∣∣1

n
eg(t,z)/nψj (g(t, z), 2Re(z))

∣∣∣∣ ≤ c < ∞

uniformly in (t, z) ∈ [0, T ] × Sf , j = 0, 1. This in turn yields K2(z) ≤ c, K3(z) ≤ c,
and, hence,

0 ≤ K1(z) ≤ c < ∞ (5.6)

for all z ∈ Sf . Analogously, we show that

K5(z) :=
∫ T

0
E[1[[0,τn]] 1{Re(�1(T−t,0,z))>0}

× exp(2Re(�0(T − t, 0, z))+ 2Re(�1(T − t, 0, z))yt−)S2Re(z)
t

× (α0(t, z, z)+ α1(t, z, z)yt )] dt

≤ c. (5.7)

Assertion (5.5) follows now from (5.6) and (5.7) because

|V (z)t |2 = S
2Re(z)
t exp(2Re(�0(T − t, 0, z))+ 2Re(�1(T − t, 0, z))yt )

due to Lemma 5.1.

Corollary 5.1. Using the notation of Lemma 5.3, we have

E

[(∫
|ϑ(z)|2|�|(dz)

)
• 〈S, S〉τn

]
< ∞, (5.8)∫

E[〈L(z), L(z)〉τn ]|�|(dz) < ∞. (5.9)
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Proof. By (5.1) and (5.2) we have

K := E

[(∫
|ϑ(z)|2|�|(dz)

)
• 〈S, S〉τn

]

= E

[∫ τn

0

∫
|V (z)t |2 |κ0(t, z)+ κ1(t, z)yt |2

δ0 + δ1yt
|�|(dz) dt

]
.

Similar to the derivation of (5.3) we derive

〈V (z1), V (z2)〉t =
∫ t

0
V (z1)sV (z2)s(α0(s, z1, z2)+ α1(s, z1, z2)ys) ds

for z1, z2 ∈ Sf . Equations (5.2) and (5.3) imply that

ϑ(z2) • 〈V (z1), S〉t = ϑ(z1) • 〈S, V (z2)〉t
= (ϑ(z1)ϑ(z2)) • 〈S, S〉t
=

∫ t

0
V (z1)sV (z2)s

(κ0(s, z1)+ κ1(s, z1)ys)(κ0(s, z2)+ κ1(s, z2)ys)

δ0 + δ1ys
ds.

This leads to

〈L(z1), L(z2)〉t =
∫ t

0
V (z1)sV (z2)s

×
(
α0(s, z1, z2)+ α1(s, z1, z2)ys

− (κ0(s, z1)+ κ1(s, z1)ys)(κ0(s, z2)+ κ1(s, z2)ys)

δ0 + δ1ys

)
ds (5.10)

for z1, z2 ∈ Sf . The angle bracket 〈L(z), L(z)〉 = 〈L(z), L(z)〉 is a nonnegative increasing
process. Hence,

0 ≤ |κ0(t, z)+ κ1(t, z)yt |2
δ0 + δ1yt

≤ α0(t, z, z)+ α1(t, z, z)yt (5.11)

for all t ∈ [0, T ] because κj (t, z) = κj (t, z) for j = 0, 1. With the help of Fubini’s theorem
we deduce that

K ≤
∫∫ T

0
E[1[[0,τn]] |V (z)t |2(α0(t, z, z)+ α1(t, z, z)yt )] dt |�|(dz).

Since � is a finite measure on Sf , estimate (5.8) follows from Lemma 5.3. In view of (5.10)
and (5.11) we have

〈L(z), L(z)〉τn ≤
∫ τn

0
|V (z)t |2(α0(t, z, z)+ α1(t, z, z)yt ) dt. (5.12)

Hence, (5.9) follows from Lemma 5.3 as well.

We can now determine the GKW decomposition of V .
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Lemma 5.4. A real-valued admissible trading strategy is defined by

ϑ∗ :=
∫
ϑ(z)�(dz).

Moreover,

L :=
∫
L(z)�(dz)

is a real-valued square-integrable martingale orthogonal to S (i.e. such that LS is a local
martingale). Finally, we have

V = V0 + ϑ∗ • S + L.

Proof. Using Hölder’s inequality and (5.8), we obtain

E

[∫ τn

0
|ϑ∗
t |2 d〈S, S〉t

]
≤ E

[∫ τn

0

(∫
|ϑ(z)t ||�|(dz)

)2

d〈S, S〉t
]

≤ |�|(Sf )E

[(∫
|ϑ(z)|2|�|(dz)

)
• 〈S, S〉τn

]
< ∞

for the stopping times τn from Lemma 5.3. Hence, ϑ∗ ∈ L2
loc(S). Lemma 5.2 implies that

SL(z) ∈ Mloc for all z ∈ Sf . Let (σn)n≥1 denote a localizing sequence for Sσn ∈ H�
loc. Since

L(z) ∈ H2, it follows that (SL(z))σn ∈ M; cf. [17, Theorem I.4.2]. Now we set τ̃n := τn∧σn.
Since 〈L(z), L(z)〉 is an increasing process, Jensen’s inequality yields

(E[|L(z)τ |])2 ≤ E[|L(z)τ |2] ≤ E[〈L(z), L(z)〉τ ] (5.13)

for any stopping time τ . In Lemma 5.3 we have shown that∫ T

0
E[1[[0,τ̃n]] |V (z)t |2(α0(t, z, z)+ α1(t, z, z)yt )] dt

is uniformly bounded in z ∈ Sf . Owing to Sτ̃n ∈ H2, we have

K := sup{E[(Sτ̃nt )2] : t ∈ [0, T ]} < ∞.

In view of the Cauchy–Schwarz inequality, (5.12), and (5.13), we obtain∫
E[|Sτ̃nt L(z)τ̃nt |]|�|(dz)

≤ √
K

∫ (∫ T

0
E[1[[0,τ̃n]] |V (z)t |2(α0(t, z, z)+ α1(t, z, z)yt )] dt

)1/2

|�|(dz)
< ∞

and, similarly,

E

[∫
|L(z)τn∧t ||�|(dz)

]
=

∫
E[|L(z)τnt |]|�|(dz) < ∞

for t ∈ [0, T ]. In particular, the integral in the definition of L is finite. An application of
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Fubini’s theorem yields

E[(Sτ̃nt Lτ̃nt − Sτ̃ns L
τ̃n
s ) 1A] =

∫
E[(Sτ̃nt L(z)τ̃nt − Sτ̃ns L(z)

τ̃n
s ) 1A]�(dz) = 0

for A ∈ Fs and s ≤ t . Hence, SL ∈ Mloc and, therefore, 〈S,L〉 = 0. A similar Fubini-type
argument shows that Lτn ∈ M because L(z) ∈ H2 for all z ∈ Sf and H2 is stable under
stopping. Furthermore, (5.9) leads to

sup
t∈[0,T ]

E[|Lτnt |2] = E[|Lτn |2]

≤
∫∫

E[|L(z1)τnL(z2)τn |]|�|(dz1)|�|(dz2)

≤ |�|(Sf )
∫

E[|L(z)τn |2]|�|(dz)

≤ |�|(Sf )
∫

E[〈L(z), L(z)〉τn ]|�|(dz)
< ∞

and, hence, L ∈ H�
loc. Obviously, L starts in zero. From Proposition 3.1 and Lemma 5.2, we

know that

V = V0 +
∫
(ϑ(z) • S)�(dz)+ L.

In view of (5.8), Fubini’s theorem for stochastic integrals [30, Theorem IV.65] yields∫
(ϑ(z) • S)�(dz) =

(∫
ϑ(z)�(dz)

)
• S = ϑ∗ • S.

From
(ϑ∗ − ϑ∗) • 〈S, S〉 = 〈V, S〉 − 〈V , S〉 = 0,

it follows that ϑ∗ and hence also L is real valued. The admissibility of ϑ∗ and the square
integrability of L follow as in Lemma 5.2 from V ∈ H2.

The GKW decomposition of V leads to the variance-optimal hedge.

Proof of Theorem 4.1. The assertion follows from Lemma 5.4 combined with [34, Theo-
rem 3 and Corollary 10].

Finally, we turn to the proof of the formula for the hedging error. Observe that the superscript
c in the following does not refer to the continuous martingale part of processes.

5.1. Proof of Theorem 4.2

Let us consider the truncated payoff function

f c(s) :=
∫
sz�c(dz),

where c ∈ R+, �c(A) := �(Scf ∩ A) for all A ∈ B(Sf ), and

Scf := {z ∈ C : R′ ≤ Re(z) ≤ R, |Im(z)| ≤ c}.
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Observe that f c is real valued because � is symmetric. We define Hc := f c(ST ) by the
corresponding contingent claim. Its price process V c is defined by V ct := E[Hc | Ft ] as in
Section 3. By Proposition 3.1 we have

V ct =
∫
V (z)t�

c(dz) =
∫

Scf

V (z)t�(dz).

Hölder’s inequality yields

|V cT − VT |2 ≤
(∫

Scf

|V (z)T ||�|(dz)
)2

≤ |�|(Sf )
∫

|V (z)T |2|�|(dz)
≤ (|�|(Sf ))2(e2R log ST + e2R′ log ST ).

Since the expression on the right-hand side is square integrable, we have

Hc = V cT
L2−→ VT = H as c → ∞

by dominated convergence. If we set

(ϑc)∗ :=
∫
ϑ(z)�c(dz) and Lc :=

∫
L(z)�c(dz),

then
V c = V c(0)+ ϑ∗ • S + L

is the GKW decomposition of V c in the sense of Lemma 5.4. Theorem 3.8 of [27] shows that
LcT converges to LT in L2. Hence, we have

J0 = E[L2
T ] = lim

c→∞ E[(LcT )2] = lim
c→∞ E[〈Lc,Lc〉T ]. (5.14)

In order to finish the proof, we need the following Fubini-type theorem for the predictable
covariation.

Lemma 5.5. We have

〈Lc,Lc〉 =
∫∫

〈L(z1), L(z2)〉�c(dz1)�
c(dz2),

where 〈L(z1), L(z2)〉 is given by (5.10).

Proof. This is shown similarly as in the proof of [16, Theorem 3.2]; cf. [28, Lemma 3.26]
for details.

We can now complete the proof of Theorem 4.2. From (5.14), it follows with Lemma 5.5
that

E[L2
T ] = lim

c→∞ E

[∫
Scf

∫
Scf

〈L(z1), L(z2)〉T �(dz1)�(dz2)

]
. (5.15)
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We focus on the case in which δ0, δ1 �= 0. The others follow along the same lines. Note that
〈X,X〉 is an increasing and integrable process for all C-valued square-integrable martingalesX.
From (5.10), it follows that

E[〈L(z1), L(z2)〉T ] =
∫ T

0

(
η2

δ1
E[V (z1)tV (z2)tyt ] + η1δ1 − η2δ0

δ2
1

E[V (z1)tV (z2)t ]

+ η0δ
2
1 − η1δ0δ1 + η2δ

2
0

δ2
1

E

[
V (z1)tV (z2)t

δ0 + δ1yt

])
dt, (5.16)

where η0, η1, and η2 defined as in the assertion depend on t , z1, and z2. In view of Assump-
tion 3.1(i) and Remark 3.1(ii), we obtain

E[V (z1)tV (z2)t ] = eξ0S
z1+z2
0 exp(�0(t, ξ1, z1 + z2)+�1(t, ξ1, z1 + z2)y0), (5.17)

where ξ0 and ξ1 defined as in the assertion depend on t , z1, and z2. For (x1, x2) ∈ S, we set
g0(x1, x2) := exp(x1yt + x2Zt) and g1(x1, x2) := E[g0(x1, x2)]. Moreover, let B(ξ1, ε̃) :=
{z ∈ C : |z − ξ1| < ε̃} denote the ball around ξ1 with radius ε̃. Choose ε̃ := ε/2 for ε as in
Assumption 3.1(i). We have

ε̃ sup{|D1g0(ξ, z1 + z2)| : ξ ∈ B(ξ1, ε̃)} ≤ e(M0+2ε̃)yt (e2RZt + e2R′Zt ).

The right-hand side of this inequality has finite expectation by Assumption 3.1(i) and
Remark 3.1(ii). Since∣∣∣∣g0(ξ1 + η, z1 + z2)− g0(ξ1, z1 + z2)

η

∣∣∣∣ ≤ ε̃ + sup{|D1g0(ξ, z1 + z2)| : ξ ∈ B(ξ1, ε̃)}

for sufficiently small |η|, dominated convergence yields

E[V (z1)tV (z2)tyt ]
= eξ0S

z1+z2
0 E[D1g0(ξ1, z1 + z2)]

= eξ0S
z1+z2
0 D1g1(ξ1, z1 + z2)

= E[V (z1)tV (z2)t ](D2�0(t, ξ1, z1 + z2)+D2�1(t, ξ1, z1 + z2)y0). (5.18)

Moreover,

eξ1(yt+δ0/δ1)

yt + δ0/δ1
=

∫
�

ez(yt+δ0/δ1) dz =
∫ 1

0

(
δ1

δ0
+ ξ1s

)
exp

((
δ1

δ0
log(s)+ ξ1s

)
yt + δ0

δ1
ξ1s

)
ds

with � : [0, 1] → C, s �→ (δ1/δ0) log(s)+ ξ1s. It follows that

E

[
V (z1)tV (z2)t

δ0 + δ1yt

]

= eξ0S
z1+z2
0

e−δ0ξ1/δ1

δ1

×
(
δ1

δ0
E

[∫ 1

0
exp

((
δ1

δ0
log(s)+ ξ1s

)
yt + δ0

δ1
ξ1s + (z1 + z2)Zt

)
ds

]

+ ξ1 E

[∫ 1

0
s exp

((
δ1

δ0
log(s)+ ξ1s

)
yt + δ0

δ1
ξ1s + (z1 + z2)Zt

)
ds

])
.
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By δ0, δ1 > 0 we have∣∣∣∣exp

((
δ1

δ0
log(s)+ ξ1s

)
yt + δ0

δ1
ξ1s + (z1 + z2)Zt

)∣∣∣∣
≤ eδ0(M0∨0)/δ1(e(M0∨0)yt+2RZt + e(M0∨0)yt+2R′Zt ) (5.19)

for all s ∈ (0, 1]. Since the right-hand side of this inequality has finite expectation (cf.
Assumption 3.1(i) and Remark 3.1(ii)), Fubini’s theorem and, once more, Remark 3.1(ii) yield

E

[
V (z1)tV (z2)t

δ0 + δ1yt

]
= eξ0S

z1+z2
0

e−δ0ξ1/δ1

δ1

×
∫ 1

0

(
δ1

δ0
+ ξ1s

)
eδ0ξ1s/δ1

× exp

(
�0

(
t,
δ1

δ0
log(s)+ ξ1s, z1 + z2

)

+�1

(
t,
δ1

δ0
log(s)+ ξ1s, z1 + z2

)
y0

)
ds. (5.20)

From (5.17)–(5.19) and from the continuity of�0,�1,D2�0, andD2�1 on [0, T ]×S, we obtain

E[|V (z)t |2] = E[V (z)tV (z)t ] ≤ k1(c),

E[|V (z)t |2yt ] = E[V (z)tV (z)tyt ] ≤ k2(c),

E

[ |V (z)t |2
δ0 + δ1yt

]
= E

[
V (z)tV (z)t

δ0 + δ1yt

]
≤ k3(c),

for all (t, z) ∈ [0, T ] × Scf and some finite numbers k1(c), k2(c), and k3(c) that may depend
on c, but not on t or z. Consequently, (5.16) yields

E[〈L(z), L(z)〉T ] = E[〈L(z), L(z)〉T ]

≤
∫ T

0

(
|η2(t, z, z)|k2(c)

δ1
+

(
δ1|η1(t, z, z)| + δ0|η2(t, z, z)|

)
k1(c)

δ2
1

+ (δ2
1 |η0(t, z, z)| + δ0δ1|η1(t, z, z)| + δ2

0 |η2(t, z, z)|)k3(c)

δ2
1

)
dt

≤ k4(c)

for all z ∈ Scf and a positive constant k4(c) depending only on c because the mappings

(t, z) �→ η0(t, z, z), η1(t, z, z), η2(t, z, z)

are continuous on [0, T ] × Scf by Assumption 3.1(ii). Hence, Fubini’s theorem yields

E[L2
T ] = lim

c→∞

∫
Scf

∫
Scf

E[〈L(z1), L(z2)〉T ]�(dz1)�(dz2)

in view of (5.15). The assertion follows now from (5.16)–(5.18) and (5.20).
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Appendix A

The dynamic behaviour of a semimartingale can be described in terms of predictable charac-
teristics (B,C, ν) (cf. [17] for a definition and further background). For most continuous-time
processes in applications, the characteristics factorize as follows.

Definition A.1. Let X be an R
d -valued semimartingale with characteristics (B,C, ν) relative

to some truncation function h : R
d → R

d . If there are some R
d -valued predictable process b,

some predictable R
d×d -valued process c whose values are nonnegative, symmetric matrices,

and some transition kernel F from (�× R+,P ) into (Rd ,Bd) such that

Bt =
∫ t

0
bs ds, Ct =

∫ t

0
cs ds,

ν([0, t] ×G) =
∫ t

0
Fs(G) ds for t ∈ [0, T ], G ∈ Bd ,

we call (b, c, F ) differential characteristics of X.

We can interpret bt or rather bt+
∫
(x−h(x))Ft (dx) as a drift rate, ct as a diffusion coefficient,

and Ft as a local jump measure. For a Lévy process, the triplet (b, c, F ) is deterministic and
does not depend on t . In this case it coincides with the Lévy–Khintchine triplet appearing in the
Lévy–Khintchine formula. In a sense the differential characteristics generalize this triplet for
more general semimartingales. They are typically derived from other ‘local’ representations of
the process, e.g. in terms of a stochastic differential equation.

Proposition A.1. Let X be an R
d -valued semimartingale with differential characteristics

(b, c, F ), and let ξ be an R
n×d -valued predictable process whose components ξj ·, j =

1, . . . , n, are integrable with respect to X. Then the R
n-valued integral process ξ • X :=

(ξ j · • X)j=1,...,n has differential characteristics (b̃, c̃, F̃ ) of the form

b̃t = ξtbt +
∫
(h̃(ξtx)− ξth(x))Ft (dx),

c̃t = ξt ct ξ


t ,

F̃t (G) =
∫

1G(ξtx)Ft (dx) for all G ∈ Bn with 0 /∈ G.

Here, h and h̃ denote truncation functions on R
d and R

n, respectively.

Proof. Cf. [17, IX.5.3] and [22, Lemma 3].

Itô’s formula can be expressed in terms of characteristics as follows.

Proposition A.2. Let X denote an R
d -valued semimartingale with differential characteristics

(b, c, F ). Suppose that g : U → R
n is twice continuously differentiable on some open subset

U ⊂ R
d such that X and X− are U -valued. Then the R

n-valued semimartingale g(X) has
differential characteristics (b̃, c̃, F̃ ) of the form

b̃it =
d∑
k=1

Dkg
i(Xt−)bkt + 1

2

d∑
k,l=1

D2
k,lg

i(Xt−)ck,lt

+
∫ (

h̃i (g(Xt− + x)− g(Xt−))−
d∑
k=1

Dkg
i(Xt−)hk(x)

)
Ft(dx),
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c̃
i,j
t =

d∑
k,l=1

Dkg
i(Xt−)ck,lt Dlgj (Xt−),

F̃t (G) =
∫

1G(g(Xt− + x)− g(Xt−))Ft (dx) for all G ∈ Bn with 0 /∈ G,

i, j = 1, . . . , n. Here, Dk etc. denote partial derivatives and h and h̃ truncation functions on
R
d and R

n, respectively.

Proof. Cf. [12, Corollary A.6].
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