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Abstract. In this paper we study some conjugacy invariants {(moduli) for discrete
two dimensional dynamical systems, with a homoclinic tangency. We show that the
modulus obtained by Palis in the heteroclinic case also turns up in the case considered
here. We also present two new conjugacy invariants.

1. Introduction
We start our introduction by recalling some notions from the theory of differentiable
dynamical systems and bifurcation theory. See [7, 9].

Let Diff'(M) be the set of C'-diffeomorphisms (2=r=0o0) on a compact two
dimensional manifold M endowed with the C"-topology. Two diffeomorphisms f, g
are called conjugate when there exists a homeomorphism h (a conjugacy) such that
fh = hg. This equivalence relation defines the conjugacy classes. If there is a neigh-
bourhood of a diffeomorphism f contained in its equivalence class, then we say
that f is structurally stable.

Let p be a fixed point of f. Then p is called hyperbolic if the elgenvalues of Df(p)
have absolute values different from one. If one eigenvalue has an absolute value

. less than one and the other larger than one, then we say that p is a saddle point
(recall that we only consider dynamical systems on two-manifolds).
The stable and unstable manifolds of a hyperbolic fixed point p are defined by:
W*(p)={xe M|f"(x)~>p, n>x},
W(p)={xe M|f"(x)>p, n>~co}.

Invariant manifold theory [2] gives us that W*(p) and W*(p) are immersed
submanifolds of M, as differentiable as f and transversal to each other in p, i.e.
T,M = T,(W*(p))® T,(W*(p)).

When p is a hyperbolic fixed point of f, a point g€ M is called homoclinic to p
ifp#tge W (p)n W“(p),ie. p#qand lim,. .. f'(q)=p, q is called a transversal
homoclinic point if W*(p) and W*( p) intersect transversally at q. If this intersection
is non-transversal, then q is a point of a homoclinic tangency. If p and q are two
distinct hyperbolic fixed points of a diffeormorphism f then a point re M is called
heteroclinic to p, q if re W*(p)n W¥(q), i.e. lim;,o f'(r)=p and lim,, _o f'(r) =gq.
As above we define the notions of a transversal heteroclinic point and a heteroclinic
tangency.
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There are corresponding definitions for periodic points instead of fixed points.

Remark. Generically all homoclinic points are transverse (see [ 7]). When we consider
a one parameter family of diffeomorphisms however, we can expect tangencies at
isolated values of the parameter.

Now we come to the basic question considered in this article. Given two
diffeomorphisms f, f' with a hyperbolic fixed point p (resp. p’) of saddle-type and
a point r (resp. r’) of a homoclinic tangency, when are f and f’ conjugated?

In [6] Palis studied the analogous question for heteroclinic points: given two
diffeomorphisms f and f’ (at least C?) with hyperbolic fixed points p, ¢ and p’, ¢’
resp. Suppose that W*(p) and W*"(q) (resp. W*(p’) and W*(q")) have a point of
tangency r (resp. r’). Then under some conditions on this tangency he has shown:
if f and f' are conjugated then

log|A] log|A'|

log{u| log|w|
where A (resp. A') denotes the contracting eigenvalue of Df(q) (resp. Df'(q')) and .
w (resp. u') denotes the expanding eigenvalue of Df(p) (resp. Df'(p')). Thus the
ratio log|A|/log|u| is an invariant under topological conjugacy. We call such an
invariant a modulus.

As mentioned before we study the corresponding question for homoclinic tangen-
cies. In particular we will show, that the same modulus as above turns up, when
we have a homoclinic tangency (A (resp. A') now denotes the contracting eigenvalue
of Df(p) (resp. Df'(p")). But we shall show the existence of more moduli.

This gives us other reasons for the fact that one-parameter families of diffeomorph-
isms, with a homoclinic tangency are not structurally stable, (with the usual definition
of structural stability for one-parameter families of diffeomorphisms), because a
little perturbation of our original diffeomorphism leads to different values of the
moduli.

2. Preliminaries

In order to prove the existence of moduli in the next section we have to compare
different metrics on our manifold M. These metrics are induced by C'-coordinate
systems. In this section we state some properties of C -metrics and introduce some
notation, to be used further on. For the proof of these properties we refer to [4],
from which we have taken these properties verbatim.

Definition. A C'-metric d: M XM >R on M(0=r=00) is a metric induced by a
C’-Riemannian structure g on M such that:

d(x,y)
=inf {l,(y)|7v:[0, 1]> M is a piecewise C' curve with y(0)=x and y(1)=y}

where [, (y) = I vg(y' (1), y'(1) dr.

The distance from a point x to a set S will be denoted d(x, S) where d(x, S)=
inf {d(x, y)| y € S}. Furthermore it will be convenient to introduce the following
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notation for (real) sequences {a;}, {B;}:
a;~B; iffja;/B:] isbounded and bounded away from zero.

a;=f; ifta;/B; convergesto one.

LEmMMA 2.1. Let d :R" xR" >R be a C° metric induced by the Riemannian structure
g. Let d, denote the metric induced by the constant Riemannian structure g, which
coincides with g at O. If ScR" contains O and x;€R" — S converges to O then one
has d(x;, S)=dy(x;, S).

LEMMA 2.2. Let SCR" be a codimension one C'-manifold, containing O and d;
(j=1,2) be C°metrics on R". Then there exists a positive real number A such that
d\(x;, S)=Ad,(x;, S), for any sequence x; € R" — S, converging to O.

Remark. 1f § is another codimension one submanifold, tangent to S at O and
x; € R" =S converges to O then d,(x;, §)= Ad,(x;, S) where A is the same constant
as for S.

By the use of C%-metrics we can introduce the notion of contact of manifolds:
y

Definition. Let x be a point of tangency of two C'-manifolds S;, S, M. We say
that S, has contact of order n with S, at x if the following limit exists and is positive.

1. d(w5 SZ)
wox [d(w, x]""

weS,

If this limit is infinite then we say that the order of contact is at most n. If this limit
is zero for every n, then we say that the order of contact is infinite. Otherwise the
order of contact is not defined.
Remark. From the lemmas above it follows that the definition of the order of contact
is independent of the chosen metric. Notice also that the order of contact may not
exist; however if there is a C'-coordinate system ¢ on a neighbourhood of x such
" that ¢(S,) and ¢(S,) are both C®-submanifolds of R? then the order of contact is
defined or it is infinite.
Definition. Let p be a hyperbolic fixed point of saddle type of a C*-diffeormorphism
f:M > M. Then a linearising metric at p is a C°-metric d on a neighbourhood U
on W*(p)u W*(p) such that d coincides with the Euclidian metric in a C'-
coordinate system in U linearising f.
Remark. These linearising metrics always exist in dimension two for saddle points
like p (this follows from a theorem of Hartman [1]). They are not unique. However,
with the above lemmas it is easy to see that if d is another linearising metric then
the restrictions of d and d to each connected component of (W*(p)u W*(p))—{p}
differ only by a multiplicative factor.

In the sequel we shall make extensive use of the next two lemmas.

LEMMA 2.3. Let p be a hyperbolic fixed point of saddle type of a C* diffeomorphism
f:M-> M. Let xe W*(p)—{p}, d a C°-metric on M and u. the contracting eigenvalue
of Df(p). Then for any sequence x; > x we have:
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(i) If there exists a sequence n; > oo such that f " (x;)> ze W*(p) and f’(x;) is for

0=j=n, in a linearising neighbourhood, then
d(x;, W*(p))=cd(z, p)|ul™,

Jor some constant ¢ which depends on x, z and d but not on the sequence. If d is
a linearising metric then c is independent of x and z.

(ii) If d(x;, W“(p))=c|u|™ for some constant ¢ and some sequence n; - 0 then the
sequence f ~"i(x;) has at least one and at most two limit points which are contained
in W(p).

3. Moduli in the homoclinic case
The first thing we want to deal with is the modulus introduced by Palis in [6] for
the heteroclinic case but now in the homoclinic case.

THEOREM 3.1. Let p (resp. p') be a hyperbolic fixed point of saddle type of a diffeomorph-
ism f (resp. ') of a compact two-dimensional C* manifold M. Let r (resp.r') be a
quadratic tangency between W*( p) and W*(p) (resp. between W*(p') and W*(p")),
i.e. a second order contact as defined in § 2. Let u (resp. u') denote the contracting
eigenvalue of Df(p) (resp. Df'(p')) and A(resp. A') denote the expanding eigenvalue
of Df(p) (resp. Df'(p")). Let h be a conjugacy between f and f', such that h(p)=p’
and h(r)=r'. Then we have:

log|A| log{A'|
logju| log|u'|

Proof. (See also [5].) Replacing f, f' by a power we may assume u, A, u’, A">0. We
have for example the situation shown in figure 1.

SN

p] A z r

FIGURE 1

We consider a sequence of points r; converging to r with r,.g¢ W*(p)u W*(p).
By choosing subsequences n; > 00, m; >0 we can arrange that f~"(r;), resp. f ™ (r;)
has a limit y in W*(p)—{p}, resp. z in W*(p)—{p}. We can C' linearise f on
W*(p)and W*(p). If f/(r;),0=—j=—n;and f/(r,), N<j= m; are in a linearizing
neighbourhood then we have:

d(ri, W'(p))=c,u™ and d(r, W*(p))=c,A ™.

Where ¢, and ¢, are constants. It is clear from the picture that we can choose the
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sequence r; so that
d(r, W*(p))=d(r, W*(p)).
In that case we have
log |A ;
loglA| _ _,..m
log || n;

Denote by r; the images under h of r;. From the topology of the intersection of
W*(p) and W*(p) and the positions of the ris we have:

d(ri, W(p"))=d(ri, W*(p')). (%)
Furthermore since (f') " (r;) and (f')™(r;) must have a limit in W*(p") —{p'} resp.
W*(p')—{p'} we have:
d(ri, Wi (p))=ci(n)™" and d(ri, W(p"))=cr(A")™.

Where c; and ¢} are constants. This together with (*) implies:

logtl_ . mi_loglal
log |p'| n log|u|
Using a sequence r; on the other side of W"(p) we find:
log|A'] _ loglA|
log || ~logul’
So we have
log[A| log|A|
= - |
log |u| logl|u|

The next theorem shows the rigidity of the conjugacy h in case log |A|/log |u|e R—Q.

THEOREM 3.2. Take the situation as described in Theorem 3.1. Let d, be a linearising
metric at p. If log|A|/log |u| is irrational then we have: d(h(z), p')/[d,(z, p)]° is
constant in each connected component of W*(p)—{p} and: d,(h(w), p")/[d,(w, n1°
'is constant in each connected component of W"(p) —{p}, where
5 1oz Iu'l( _log IA’I>_
log|ul\ log|A|
Proof. The proof follows from arguments similar to those in [3]. |

To be more precise: if h: M > M be a conjugacy between f and f', h(p)=p/,
h(r)=r' then there exists constants a_, a,, b_, b, such that:

h((x,0)) = (a.(x)°,0); (x,0)e U~ W*(p); x=0,

h((x,0)) = (a_|x|%, 0); (x,0)€ Un W*(p); x<0,

h((0,¥)) =(0, b.()); (0, y)e U~ W¥(p); y =0,

h((0, )) = (0, b_|y|*); (0, y) € U n W¥(p); y <0,
where U denotes a neighbourhood of p such that there is a C'-coordinate system
¢ : U ->R? linearising f i.e.. ¢ ofo ¢ '(x,y)=(Ax, uy) and re U.
Remark 1. From the formulas above for h it follows that the restriction of h to
W*(p)—{p} and to W*(p)—{p} is a C'-diffeomorphism.
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Remark 2. If there are no further restrictions on h due to global configurations,
then the restriction of h to each component of W*(p)—{p} and W*(p)—{p} is
determined by the image of one point. This is the rigidity of the conjugacy mentioned
before.
COROLLARY 3.3. Each extra orbit of tangency between stable and unstable manifolds
gives rise to at least two more moduli, because of the rigidity of h.
Next we prove that in the case of homoclinic tangency we have both u=pu’ and
A = A’ instead of the weaker result

log|A| log|A'|

log|u| log|u'’
So now both A and g are moduli.
THEOREM 3.4. Let f, f' be two C* diffeomorphisms of a two dimensional manifold
M; p (resp. p') a hyperbolic fixed point of saddle type of f (resp. f'). Let r (resp. r’)
be a point of quadratic tangency between W*(p) and W*(p) (resp. W*(p') and
W*(p')). Let u (resp. ') denote the contracting eigenvalue of Df(p) (resp. Df'(p')),
and A( resp. A') the expanding eigenvalue of Df( p) (resp. Df'(p")). If h is a conjugacy
between f and f' with h(p)=p'; h(r)=r" and log|A|/log|u| is irrational then we
have: p=p' and A = A"

Proof. Because log|A|/log|u/| is irrational we know that |y, _,,, is a C'-map.
Take a sequence r;€ W*(p) with r,»>r and f™"(r;) > g W*(p), when n; > then
we have:
d(ri, W¥(p))=c|u|"d(p, q), (1)
where c is a positive constant independent of the sequence. Now W*(p) and w*(p)
have a quadratic tangency at r. For a C™ metric d induced by a C™ coordinate
system in which W*( p) is a straight line, and W*( p) is the graph of a homogeneous
polynomial of degree two, we have:
d(r, W"(p))
[d(r, NF
where §(r) is a positive number. But since d is a C°-metric we have by Lemma 2.2:
d(r, W“(p))/ d (r;, W"(p)) converges to a positive constant.
Because re W*(p) we have that the sequence d(r;, r)/ d(r, r) also converges to
a positive constant. This together with (2) implies that

- §(r), (2)

d(r,, W*(p))/[d(r, N> s(r); s(r)>0. (3)
Because h|yw<(,)—(, is C' we have
d(ri, r)~d'(h(r),r) (4)

Equations (1), (3), (4) imply that |u|=|u’|. Because a conjugacy also preserves the
sign of u, u’ we have u = u'. From

logA] log|r'|

log |u| logiu|
we finally get A =A'. O
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Before we can define our last modulus, we have to make some estimates on the
iterates of points near the homoclinic point. Suppose we have the situation indicated
in figure 2:

pl ;L 74(r)

FIGURE 2

So we have a diffeomorphism f with a homoclinic point . We assume that the
eigenvalues of Df(p) are such that 0 <u <1< A. Furthermore we assume that the
tangencies are quadratic. Next we choose linearising coordinates (V, ¢) so that we
have: ¢(r) =(0, r,) where r is a point of tangency of W*(p) and W*(p), in our
coordinate neighbourhood. Then we can find an integer k such that f*(r)e V lies
on the local stable-manifold of p. We assume ¢(f*(r))=(r;,0). Now we follow
further iterates of r. Without loss of generality we may assume that our diffeo-
morphism is linear in V.

f(xl s x2) = Df(xl ’ xZ) = (”‘xl ’ Ax2) When (xl ’ x2) eV
Because all our tangencies are quadratic we have that f* is a quadratic mapping
at r in the following sense:

fk(xl , X)) =(n—a(x;—ry), Bxy+ y(x— 72)2) +h.o.t.,

where a, B, y are positive constants, h.o.t. stands for higher order terms.

_ Note. The curvature of W*(p) at f ¥(r) in this coordinate system is in fact: ya 2.

For all n>0, f"** is a quadratic mapping provided f'**(x,, x,) is in the coordinate
neighbourhood V, when i<n.
Furthermore we have the following formula for f (restricted to x,=0):

f"+k(0, X)) =(u"(rn—a(x;—r)), A"(y(x,— ’2)2))-

Next we want to know how the coordinates of the point f"**(0, x,) behave, when
n-co,

It is clear that the x,-coordinate goes to zero. For the x,-coordinate we have:
The x,-coordinate is approximately r, when

|x2—’2|5‘/(’2A_"‘Y_1)-

So by choosing an appropriate sequence {r;} of points converging to r we can
achieve that f***(r,) converges to r. This argument shows that we can expect another
modulus. This is related with the fact that our homeomorphism h is completely
determined on components of W*(p)—{p} and W*(p)—{p}. Because W"(p)
accumulates on itself, we can come in conflict if we want to have that h is continuous.

We will now start to derive the modulus mentioned above.

n+k
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We assume that for our diffeomorphism f we have log |A|/log |u| irrational. (See
figure 3.) Let (V, ¢) be a C'-coordinate system which linearizes f, Take re V and
pick an integer k such that 7=f*(r) lies on the local stable manifold of p. Also
assume 7€ V. We may assume ¢(p)=1(0,0); ¢(r}=(0,1) and ¢(#)=(1,0). This
fixes ¢ completely on W*(p) and W*(p). The corresponding points for a similar
diffeomorphism f' are denoted by p’, r, . Let d be a linearising metric at p. Assume
there is a conjugacy h between f and f’, with h(p)=p’; h(r)=r"; h(F) =¥ Then
we have a modulus of the following form:

Take linearising coordinates z on W*(p) with z(r) =1, such that the mapping f*
restricted to W¥(p) is given by f**"(2) = (xg4n(2), Yisn(2)) and yiia(z) is given by
a homogeneous quadratic polynomial +h.o.t. i.e.:

Yian(1+2)=ck,nz’+hot., ci,,=A"c.

Take a sequence of points {r;}, r;e W*(p), r.> r. Then define the sequence r; by
7;=f*(r;). This gives us ;> 7. By choosing the sequence r; in a right way we can
achieve that 7; defined by 7; = f'(#;) converges to r. More explicitly: We have 7, > r_
if and only if d(r;, r)/(VA)™' > ¢,. Going back to our sequences r;, 7;, 7; we have: if
d(r;,, r)/¥A > c, then ;> r. Note that 7, can go to r in the following way (see
figure 4). Because h|y+(,,_(, is @ C' map and d is a linearising metric we have
d(h(r;), r')=d(r,, r). With the same reasoning as above we conclude that there
exists a constant ¢}, such that r; = h(7;)~> r' if and only if d(h(r,), r')/VX " > cj. So
we get co(VA) ' =d(r, r)=d(h(r), r')=chy(~A")"". Because log|A|/log|u| is irra-
tional we have from Theorem 5.4: A = A’ and so we must have ¢, = cj.

So we have proven:

THEOREM 3.5. Let f, f’ be two C™-diffeomorphisms of a two dimensional manifold
M; p (resp. p’) a hyperbolic fixed point of saddle type of f (resp. f').

]
*®
e

FIGURE 3

FIGURE 4
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Choose coordinates (V, ¢) (resp.(V', ¢')) which linearize f (resp.f'). Let re V
(resp. r'€ V') be a point of tangency between W*(p) and W*(p) (resp. W*(p') and
W*“(p")). Let k be an integer such that F=f*(r) is an element of V. Let j1. (resp. u")
denote the contracting eigenvalue of Df(p) (resp. Df'(p')) and A (resp. A’) the expand-
ing eigenvalue of f(p) (resp. Df'(p’}). Let h be a conjugacy between f and [’ with
h(p)=p, h(r)=1r" and log|A|/log |u| irrational.

If we take linearising coordinates z, with z(r) =1, on W"(p) such that the mapping
f* restricted to W*(p) is given by f*(z)=(x(z), y(z)) where y(z) is a quadratic
mapping - y(1) =0, y'(1) =0, y"(1) # 0 - and similarly for f'.

Then there exist constants c, ¢’ such that:

(i) For a sequence {r;}, ric W*(p), ri>r, let the sequence {r;} be defined by
7. =f*"(r,) then we have: 7,~ r if and only if d(r,, r)/vA ~* > ¢ (and an analogous
condition for c').

(ii) If fand f' are conjugated then we have c = c'. O

4. Some remarks about the higher dimensional case

The moduli obtained in the previous section also turn up in the higher dimensional
case. One has to assume that there are C>-linearizing coordinates in a neighborhood
of the hyperbolic fixed point p and that there is an orbit of regular quasi-transversal
tangency between W*(p) and W*(p). See [5] for this notion. As a consequence we
have that the weakest expanding and weakest contracting eigenvalues of Df(p)
exist. Denote these eigenvalues by A, u respectively. Then we have the same moduli
as in the preceding section. But there are more moduli. We intend to come back to
this in another article.
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Added in proof

After submitting this paper the author found the following paper:

S. V. Gonchenko & L. P. Shilnikov. Arithmetic properties of topological invariants
of systems with non-structurally stable homoclinic trajectories. Ukr. Math. J. 39
(1987), 15-21. Topological invariants related with homoclinic tangencies are also
considered in this paper.
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