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Abstract

Following R. A. Rankin’s method, D. Zagier computed the nth Rankin–Cohen bracket of a modular
form g of weight k1 with the Eisenstein series of weight k2, computed the inner product of this Rankin–
Cohen bracket with a cusp form f of weight k = k1 + k2 + 2n and showed that this inner product gives,
up to a constant, the special value of the Rankin–Selberg convolution of f and g. This result was
generalized to Jacobi forms of degree 1 by Y. Choie and W. Kohnen. In this paper, we generalize this
result to Jacobi forms defined over H× C(g,1).
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1. Introduction

There are many interesting connections between differential operators and modular
forms and many interesting results have been found. In [10, 11], Rankin gave a general
description of the differential operators which send modular forms to modular forms.
In [6], Cohen constructed bilinear operators and obtained elliptic modular forms with
interesting Fourier coefficients. In [14], Zagier studied the algebraic properties of
these bilinear operators and called them Rankin–Cohen brackets. In [13], following
Rankin’s method, Zagier computed the nth Rankin–Cohen bracket of a modular form g
of weight k1 with the Eisenstein series of weight k2 and then computed the inner
product of this Rankin–Cohen bracket with a cusp form f of weight k = k1 + k2 + 2n
and showed that this inner product gives, up to a constant, the special value of the
Rankin–Selberg convolution of f and g.

Rankin–Cohen brackets for Jacobi forms were studied by Choie [2, 3] by using the
heat operator. Following the aforementioned work of Zagier, Choie and Kohnen [5]
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generalized the result of Zagier to Jacobi forms. They computed the Petersson scalar
product 〈 f, [g, Ek2,m2]ν〉 of a Jacobi cusp form f of weight k and index m against
the Rankin–Cohen bracket [g, Ek2,m2]ν of a Jacobi form g of weight k1 and index
m1 and the Jacobi–Eisenstein series Ek2,m2 of weight k2 and index m2, where k =
k1 + k2 + 2ν and m = m1 + m2. As in the case of modular forms, they expressed the
inner product in terms of special values of a kind of Rankin–Selberg type convolution
of the Jacobi forms f and g, though such a convolution has not yet been studied in the
case of Jacobi forms.

In this paper, we generalize the work of Choie and Kohnen to Jacobi forms defined
over H× C(g,1). Since the method is similar, we shall give only a brief sketch of the
proof with the corresponding steps.

2. Preliminaries on Jacobi forms over H× C(g,1)

Fix a positive integer g. The Jacobi group 0 J
1,g = 01 n (Z(g,1) × Z(g,1)) acts on

H× C(g,1) in the usual way by((
a b
c d

)
, (λ, µ)

)
◦ (τ, z)=

(
aτ + b

cτ + d
,

z + λτ + µ

cτ + d

)
,

where 01 = SL2(Z) is the full modular group. Let k ∈ Z and M be a positive definite,
symmetric, half-integer g × g matrix. When

γ =

((
a b
c d

)
, (λ, µ)

)
∈ 0 J

1,g

and φ is a complex-valued function on H× C(g,1), we define φ|k,Mγ to be

(cτ + d)−ke

(
−c

cτ + d
M[z + λτ + µ] + M[λ]τ + 2λt Mz

)
φ(γ ◦ (τ, z)),

where for matrices A and B of appropriate size, Bt denotes the transpose of B and
A[B] = Bt AB and e(a)= exp(2π ia).

Let Jk,M be the space of Jacobi forms of weight k and index M on 0 J
1,g , that is,

the space of holomorphic functions φ :H× C(g,1)→ C such that φ|k,Mγ = φ for all
γ ∈ 0 J

1,g , which have a Fourier expansion of the form

φ(τ, z)=
∑

n∈Z, r∈Zg

4n≥M−1
[r t
]

c(n, r)e(nτ + r z).

Further, F is called a cusp form if and only if c(n, r)= 0 when 4n = M−1
[r t
]. We

denote the space of all Jacobi cusp forms by J cusp
k,M . When F, G ∈ Jk,M and one of

them is a cusp form, the Petersson inner product is defined by

〈F, G〉 =
∫
0 J

1,g\H×C(g,1)
F(τ, z)G(τ, z)vke(−4πM[y] · v−1) dV J

g ,
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where τ = u + iv, z = x + iy, and dV J
g = v

−g−2 du dv dx dy is the element of invar-
iant measure. The space J cusp

k,M with the Petersson inner product is a finite-dimensional
Hilbert space. For more details on Jacobi forms on H× C(g,1) we refer to [1, 15].

2.1. Poincaré series. Suppose that n ∈ Z, r ∈ Zg , and 4n > M−1
[r t
]. When k >

g + 2, let Pk,M;(n,r) be the (n, r)th Poincaré series in J cusp
k,M , characterized by

〈φ, Pk,M;(n,r)〉 = λk,M,Dcφ(n, r) ∀φ ∈ J cusp
k,M , (2.1)

where cφ(n, r) denotes the (n, r)th Fourier coefficient of φ and

λk,M,D := 2κ(g−1)−g0(κ)π−κ(det M)κ−1/2 D−κ ,

where

κ = k −
g

2
− 1, D = det(2T ), T =

(
n r/2

r t/2 M

)
.

The Poincaré series Pk,M;(n,r) has the following Fourier expansion:

Pk,M;(n,r)(τ, z)=
∑

n′∈Z, r ′∈Zg

4n′>M−1
[r ′t ]

c(n′, r ′)e(n′τ + r ′z),

where

c(n′, r ′)= gk,M;(n,r)(n
′, r ′)+ (−1)k gk,M;(n,r)(n

′,−r ′),

gk,M;(n,r)(n
′, r ′)= δM (n, r, n′, r ′)+ i−k 2π

2g/2(det M)1/2

(
D′

D

)κ/2
S,

δM (n, r, n′, r ′)=

{
1 if D = D′ and r ′ ≡ r mod Zg

· 2M

0 otherwise,

D′ = det(2T ′), T ′ =

(
n′ r ′/2

r ′t/2 M

)
,

S =
1

cg/2+1

∑
c≥1

HM,c(n, r, n′, r ′)Jκ

(
π
√

D′D

2g−1 det M · c

)
,

and HM,c(n, r, n′, r ′) is equal to∑
x,y

ec((M[x] + r x + n)y−1
+ n′y + r ′x)e2c(r

′M−1r t ).

In the last sum, x runs over a complete set of representatives of Z(g,1) modulo cZ(g,1)
while y runs over a relatively prime set of representatives of Z modulo cZ, and y−1

denotes an inverse of y modulo c. Further, ec(a) := exp(2π ia/c), a ∈ Z, and Jκ
denotes the Bessel function of order κ . For details we refer to [1, Lemma 1].
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3. The generalized heat operator

For a positive definite, symmetric, half-integer g × g matrix M = (mi j ), we define
the heat operator by

L M := 8π i |M |
∂

∂τ
−

∑
1≤i, j≤g

Mi j
∂

∂zi

∂

∂z j
,

where τ ∈H and zt
= (z1, z2, . . . , zg) ∈ Cg , while |M | = det M and Mi j is the

cofactor of mi j . Note that when g = 1 the heat operator above reduces to the classical
heat operator, namely, 8π im ∂/∂τ − ∂2/∂z2. Let r t

= (r1, r2, . . . , rg). Then using
the fact that

∂

∂τ
(e(nτ + r z))= 2π ine(nτ + r z),

∂

∂zα
(e(nτ + r z))= 2π irαe(nτ + r z),

∂

∂zα

∂

∂zβ
(e(nτ + r z))= (2π i)2rαrβe(nτ + r z),

where 1≤ α, β ≤ g, we find that L M (e(nτ + r z)) is equal to

8π i |M | · 2π in · e(nτ + r z)−
∑

1≤α,β≤g

Mαβ(2π i)2rαrβe(nτ + r z)

= (2π i)2(4n|M | − M̃[r t
])e(nτ + r z),

where M̃ denotes the matrix of cofactors Mi j of the symmetric matrix M . The next
lemma describes the action of the heat operator on Jacobi forms.

LEMMA 3.1. Let F ∈ Jk,M . Then

(L M F)|k+2,M A = L M (F |k,M A)+ 8π i |M |(κ + 1)
(

γ

γ τ + δ

)
(F |k,M A),

for all A ∈ 01 of the form
(
∗ ∗
γ δ

)
. In general, for any positive integer ν,

(LνM F)|k+2ν,M A

=

ν∑
l=0

(
ν

l

)
(8π i |M |)ν−l (κ + ν)!

(κ + l)!

(
γ

γ τ + δ

)ν−l

Ll
M (F |k,M A). (3.1)

Moreover, for all λ, λ′ ∈ Zg ,

L M (F |M [λ, λ
′
])= (L M F)|M [λ, λ

′
]. (3.2)

PROOF. Though our L M operator differs slightly from the operator defined in [4], the
proof goes along the same lines as [4, proof of Lemma 3.3]. 2
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We now define the Rankin–Cohen bracket for Jacobi forms on H× C(g,1).

DEFINITION 3.2. Suppose that F ∈ Jk1,M1 and G ∈ Jk2,M2 , where k1 and k2 are
positive integers and M1 and M2 are positive definite, symmetric, half-integer g × g
matrices, and that ν is a nonnegative integer. Define the νth Rankin–Cohen bracket
of F and G by

[F, G]ν =
ν∑

l=0

(−1)l
(
κ1 + ν

ν − l

)(
κ2 + ν

l

)
|M1|

ν−l
|M2|

l Ll
M1
(F)Lν−l

M2
(G),

where κ j = k j − g/2− 1 when j = 1, 2.

Using Lemma 3.1, we show that the Rankin–Cohen bracket [ , ]ν gives a bilinear
map from Jk1,M1 × Jk2,M2 to Jk1+k2+2ν,M1+M2 (in fact, into the space of cusp forms if
ν > 0).

PROPOSITION 3.3. Suppose that F ∈ Jk1,M1 , G ∈ Jk2,M2 , and that ν is a nonnegative
integer. Then [F, G]ν ∈ Jk1+k2+2ν,M1+M2 . Furthermore, if ν is positive, then
[F, G]ν ∈ J cusp

k1+k2+2ν,M1+M2
.

PROOF. By (3.2), we see that the action of the heat operator on Jacobi forms is
invariant under the lattice action and so the invariance of the Rankin–Cohen bracket
with respect to the lattice action follows from the definition. It remains to show that
the Rankin–Cohen bracket is invariant under the stroke operation, with respect to the
group action. Making use of (3.1), we see that if A =

(
∗ ∗
c d
)
∈ 01,

[F, G]ν |k1+k2+2ν,M1+M2 A

=

ν∑
l=0

d(κ1, κ2, l, ν)Ll
M1
(F)|k1+2l,M1 ALν−l

M2
(G)|k2+2(ν−l),M2 A

=

ν∑
l=0

d(κ1, κ2, l, ν)S(κ1, κ2, l, ν),

where

d(κ1, κ2, l, ν)= (−1)l
(
κ1 + ν

ν − l

)(
κ2 + ν

l

)
|M1|

ν−l
|M2|

l ,

and S(κ1, κ2, l, ν) is equal to

l∑
u=0

ν−l∑
v=0

(
l

u

)(
ν − l

v

)
(8π i)ν−u−v

|M1|
ν−u
|M2|

ν−v

×
(κ1 + l)!

(κ1 + u)!

(κ2 + ν − l)!

(κ2 + v)!

(
c

cτ + d

)ν−u−v

Lu
M1
(F)LvM2

(G).

The terms on the right-hand side for which u + v = ν give [F, G]ν , and so it remains
to show that the terms vanish when u + v < ν. When u + v < ν and u ≤ v, the
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coefficient of Lu
M1
(F)LvM2

(G) is given by(
8π ic

cτ + d

)ν−u−v

|M1|
ν−u
|M2|

ν−v (κ1 + ν)!

u! (κ1 + u)!

(κ2 + ν)!

v! (κ2 + v)!

×

ν−v∑
l=u

(−1)l

(l − u)! (ν − v − l)!

and the sum in the last expression is equal to zero. This completes the proof. 2

We shall now state the main theorem of this paper.

THEOREM 3.4. Suppose that F ∈ J cusp
k,M , with Fourier coefficients a(n, r), and G ∈

Jk1,M1 , with Fourier coefficients b(n, r). Suppose that M = M1 + M2 and that
k = k1 + k2 + 2ν, where ν ≥ 0, k1 > g + 2 and k2 > k1 + g + 2, and let Ek2,M2 be
the Jacobi–Eisenstein series in Jk2,M2 . Then

〈F, [G, Ek2,M2]ν〉

= ck,k2,M,M2,g;ν

∑
n∈Z, r∈Zg

4n≥M−1
1 [r

t
]

(4n|M1| − M̃1[r t
])νa(n, r)b(n, r)

(4n|M | − M̃[r t ])κ
, (3.3)

where

ck,k2,M,M2,g;ν = 2κ(g−1)−g−2νπ−κ−2ν
|M |κ−1/2

|M2|
−ν0(κ)

ν! κ2!

(κ2 + ν)!
, (3.4)

κ = k − g/2− 1 and κ2 = k2 − g/2− 1.

The rest of this section is devoted to a proof of Theorem 3.4.

3.1. The action of the heat operator on Eisenstein series. Let Ek,M be the Jacobi–
Eisenstein series of weight k and index M , defined by

Ek,M =
∑

γ∈0 J
1,g,∞\0

J
1,g

1|k,Mγ,

where

0 J
1,g,∞ =

{((
1 a
0 1

)
, (0, µ)

) ∣∣∣∣ a ∈ Z, µ ∈ Zg
}
.

LEMMA 3.5. Suppose that ν is a positive integer. Then (LνM Ek,M )(τ, z) is equal to

(−4|M |)ν
0(κ + 1+ ν)
0(κ + 1)

×

∑
λ∈Zg(

a b
c d

)
∈0∞\01

(2π ic)ν

(cτ + d)k+ν
e

(
M[λ]

aτ + b

cτ + d
+

2λt Mz

cτ + d
−

cM[z]

cτ + d

)
.
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PROOF. Using the definition of the Eisenstein series,

LνM Ek,M =
∑

γ∈0 J
1,g,∞/0

J
1,g

LνM (1|k,Mγ ).

By taking a set of coset representatives
((

a b
c d

)
, (aλ, bλ)

)
in the sum above, where(

a b
c d

)
∈ 0∞\01 and λ ∈ Zg ,

LνM Ek,M =
∑
λ∈Zg(

a b
c d

)
∈0∞\01

LνM

(
1

∣∣∣∣
k,M

(
a b
c d

))∣∣∣∣
k,M

(aλ, bλ).

It is easy to see that

L M

(
1

∣∣∣∣
k,M

(
a b
c d

) )
= L M

(
(cτ + d)−ke

(
−cM[z]

cτ + d

))
= −8π ic|M |(κ + 1)(cτ + d)−k−1e

(
−cM[z]

cτ + d

)
,

where we have used the fact that∑
1≤α,β≤g

Mαβ

( ∑
1≤i≤g

miβ zi

)( ∑
1≤i≤g

miαzi

)
= |M |

∑
1≤α,β≤g

mαβ zα zβ ,

and ∑
1≤α,β≤g

Mαβ mαβ = g|M |.

Therefore

LνM

(
(cτ + d)−ke

(
−cM[z]

cτ + d

))
= (−4)ν

0(κ + ν + 1)
0(κ + 1)

|M |ν(2π ic)ν(cτ + d)−k−νe

(
−cM[z]

cτ + d

)
.

Since

(cτ + d)−k−νe

(
−cM[z]

cτ + d

)∣∣∣∣
k,M

(aλ, bλ)

= (cτ + d)−k−νe

(
M[λ]

aτ + b

cτ + d
+

2λt Mz

cτ + d
−

cM[z]

cτ + d

)
,

the required result follows. 2

https://doi.org/10.1017/S1446788709000330 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000330


138 B. Ramakrishnan and B. Sahu [8]

3.2. A representation of [G, E]ν in terms of the Poincaré series. We first obtain a
growth estimate for the Fourier coefficients of a Jacobi form. We use Landau notation:
for a positive valued function h, we write f � h to mean that there exists a constant
(called the ‘implied constant’) C such that | f | ≤ Ch.

LEMMA 3.6. Suppose that k > g + 2 and that F ∈ Jk,M has Fourier coefficients
c(n, r). Put D1 =

∑
i, j Mi jrir j − 4n|M |. Then

c(n, r)� |D1|
k−g/2−1

= |D1|
κ , (3.5)

if D1 < 0. Moreover, if F is a cusp form, then

c(n, r)� |D1|
k/2−g/2.

The implied constants in these inequalities depend only on k, g and |M |.

PROOF. If F is a cusp form, then the required estimate was proved by Böcherer and
Kohnen [1]. If F is not a cusp form, then it can be written as a linear combination of
the Eisenstein series Ek,M and a cusp form. We now show that ek,M (n, r), the (n, r)th
Fourier coefficient of Ek,M , satisfies the estimate (3.5), from which the lemma follows.
Taking the same set of coset representatives as in the proof of the lemma above, we
see that Ek,M is equal to∑

γ∈0 J
1,g,∞\0

J
1,g

1|k,Mγ

=
1
2

∑
λ∈Zg

c,d∈Z
(c,d)=1

1|k,M

((
a b
c d

)
, (aλ, bλ)

)

=
1
2

∑
λ∈Zg

c,d∈Z
(c,d)=1

(cτ + d)−ke

(
−c

cτ + d
M[z + aλτ + bλ] + M[aλ]τ + 2aλt Mz

)

=
1
2

∑
λ∈Zg

c,d∈Z
(c,d)=1

(cτ + d)−ke

(
M[λ]

aτ + b

cτ + d
+

2λt Mz

cτ + d
− c

M[z]

cτ + d

)
.

Proceeding in the usual way, splitting the sum into the part where c = 0 and the part
where c 6= 0, we see that Ek,M (τ, z) is equal to

∑
λ∈Zg

e(M[λ]τ + 2λt Mz)+
∞∑

c=1

c−k
∑

d
(d,c)=1
λ mod c

e

(
a

c
M[λ]

)
Fk,M

(
τ +

d

c
, z −

λ

c

)
,
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[9] Rankin’s method and Jacobi forms 139

where
Fk,M (τ, z)=

∑
p∈Z,q∈Zg

(τ + p)−ke(−M[z + q]/(τ + p)).

Using the Poisson summation formula, the (n, r)th Fourier coefficient of Fk,M (τ, z)
is given by

γ (n, r)=

0 if M̃[r t
] ≥ 4n|M |,

αk,g|M |−1/2
(

2π i

4|M |
(4n|M | − M̃[r t

])

)κ
if M̃[r t

]< 4n|M |,

where

αk,g =

(
1
2i

)g/2
π cosec(π(κ + 1))

0(κ + 1)
.

Plugging in this Fourier coefficient and estimating the Gauss sum, we get

ek,M (n, r)� |D1|
κ ,

where the implied constant depends only on k, g and |M |. 2

We need the following lemma, which gives the absolute convergence of a series that
is required to get an expression of the Rankin–Cohen bracket of F with the Eisenstein
series in terms of the Poincaré series. For given positive ε and C , define the set Vε,C
to be

{(τ, z) ∈H× Cg
: v ≥ ε, |y jv

−1
| ≤ C, |x j | ≤ 1/ε, u ≤ 1/ε, ∀ j = 1, 2, . . . , g}.

LEMMA 3.7. The series

vk exp(−2πM[y]/v)
∑

n∈Z, r∈Zg

4n≥M−1
1 [r

t
]

γ∈0 J
1,∞\0

J
1

(4n|M1| − M̃1[r
t
])e(nτ + r z)|k,Mγ

(where τ = u + iv, z j = x j + iy j , and y = (y1, y2, . . . , yg)
t ) is absolutely uniformly

convergent on the subsets Vε,C .

PROOF. Using Lemma 3.6, it is sufficient to prove the uniform convergence of the
series

vk exp(−2πM[y]/v)
∑

n∈Z,r∈Zg

4n≥M−1
1 [r

t
]

γ∈0 J
1,∞/0

J
1

(4n|M1| − M̃1[r
t
])ν+κ2 |e(nτ + r z)|k,Mγ (τ, z)|

in the given ranges. Take τ ′ ∈Hg such that Z =
(
τ z
z τ
)′
∈Hg+1. Also let T =

( n r t/2
r/2 M

)
.

By the assumption that 4n ≥ M−1
1 [r

t
], we see that T is positive semidefinite. Now we
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embed 0 J
1,g = SL2(Z)n (Zg

× Zg) into 0g+1 (denoting the embedding by γ 7→ γ ∗)
defined by combining the following two embeddings:

((
a b
c d

)
, (λ, µ)

)
7→




a 0 b 0
0 Ig−1 0 0g−1
c 0 d 0
0 0g−1 0 Ig−1

 , (λ, µ)


and ((
A B
C D

)
, (λ, µ)

)
7→


A 0 B µ′

λ 1 µ 0
C 0 D −λ′

0 0 0 1

 ,
where (λ′t , µ′t )= (λ, µ)

(
A B
C D

)−1. We have

(e(nτ + r z)|k,Mγ )(τ, z)= exp(−2π imτ ′)(e(tr(T Z))|kγ
∗)(Z),

where |k (on the right-hand side) is the usual stroke operation on functions F :
Hg+1→ C, and we can view the sum of absolute terms of the (n, r)th Poincaré series
as a subseries of the sum of absolute terms of the T th Poincaré series on0g+1. Suppose
that (τ, z) ∈ Vε,C . Then by taking τ ′ = i min1≤ j≤g{(y2

j /v + δ)} with δ > 0, we see

that Z =
(τ z

z τ ′
)
∈Hg+1 where Y = Im Z > ε′/2 for some ε′ depending on ε, C and δ.

Since the sum of the absolute terms of the T th Poincaré series on the subsets where
Y ≥ ε′ Ig and tr(X ′X)≤ 1/ε′ (up to some constants) is majorized by that sum evaluated
at an arbitrary single point Z0 (see [9]), it is sufficient to take Z0 = i Ig and prove the
convergence of the series above at (τ, z)= (i, 0, . . . , 0), that is, using the the coset
representation, the convergence of the series

∑
n∈Z,r∈Zg,

4n>M−1
1 [r

t
]

(c,d)=1,λ∈Zg

(4n|M1| − M̃1[r t
])ν+κ2

|(ci + d)k |

∣∣∣∣exp
(

2π i

(
n

ai + b

ci + d
+ r

aλi + bλ

ci + d

))∣∣∣∣

×

∣∣∣∣exp
(

2π i

(
−c

ci + d
M[aλi + bλ] + M[aλ]

))∣∣∣∣.
Now proceeding as in [5], we get the required convergence with the assumption that
k2 > k1 + g + 2. 2

PROPOSITION 3.8. Let k, k1, k2, M, M1, and M2 be as in Theorem 3.4. Take
G ∈ Jk1,M1 with Fourier expansion

G(τ, z)=
∑

n∈Z,r∈Zg

4n≥M−1
1 [r

t
]

b(n, r)e(nτ + r z).

https://doi.org/10.1017/S1446788709000330 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000330


[11] Rankin’s method and Jacobi forms 141

Then

[G, Ek2,M2]ν = ck1,k2,M1,M2,g;ν

∑
n∈Z,r∈Zg

4n≥M−1
1 [r

t
]

(4n|M1| − M̃1[r
t
])νb(n, r)Pk,M;(n,r),

(3.6)
where

ck1,k2,M1,M2,g;ν = (2π)
−2ν
|M2|

−ν v! κ2!

(κ2 + ν)!
.

PROOF. Using the definition of the Poincaré series, the action of the heat operator on
Fourier coefficients, and by the absolute convergence (obtained in Lemma 3.7) we see
that the series on the right-hand side of (3.6) can be written as∑

γ∈0 J
1,g,∞\0

J
1,g

(1|k,Mγ )(τ, z)

×

∑
n∈Z,r∈Zg

4n≥M−1
1 [r

t
]

(4n|M1| − M̃1[r
t
])νb(n, r)e(nτ + r z)(γ ◦ (τ, z))

=

∑
γ∈0 J

1,g,∞\0
J
1,g

(1|k,Mγ )(τ, z) · (2π i)−2ν(LνM1
G)(γ ◦ (τ, z))

=
1

(2π i)2ν
∑

γ∈0 J
1,g,∞\0

J
1,g

(1|k2,M2γ )(τ, z)(LνM1
G)|k1+2ν,M1γ (τ, z).

By taking the same set of representatives for the sum over γ as in the proof of
Lemma 3.5, and using the fact that G ∈ Jk,M1 , we get

1

(2π i)2ν
∑

γ∈0 J
1,g,∞\0

J
1,g

(1|k2,M2γ )(τ, z)(LνM1
G)|k1+2ν,M1γ (τ, z)

=
1

(2π i)2ν

ν∑
l=0

4ν−l (κ1 + ν)!

(κ1 + l)!

(
ν

l

)
|M1|

ν−l Ll
M1
(G)(τ, z)S,

where S is equal to

∑
λ∈Zg(

a b
c d

)
∈0∞\01

(π ic)ν−l

(cτ + d)ν−l+k2
e

(
−cM2[z + aλτ + bλ]

cτ + d
+ M2[aλ] + 2(aλ)t M2z

)
.

Using Lemma 3.5, the inner sum S in the expression above is equal to

(−4)−(ν−l) κ2!

(κ2 + ν − l)!
|M2|

l Lν−l
M2

Ek2,M2(τ, z),
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so we conclude that the sum on the right-hand side of (3.6) is equal to

(2π)−2ν
ν∑

l=0

(−1)l
(κ1 + ν)! κ2!

(κ1 + l)! (κ2 + ν − l)!

(
ν

l

)
|M1|

ν−l
|M2|

l−ν

× Ll
M1
(G)(τ, z)Lν−l

M2
Ek2,M2(τ, z).

The proof is now complete. 2

3.3. Proof of Theorem 3.4. We first observe that by Lemma 3.6 the series on the
right-hand side of (3.3) is absolutely convergent and hence is majorized by

∑
n≥1,r∈Zg

4n≥M−1
1 [r

t
]

(4n|M1| − M̃1[r t
])κ1+ν

(4n|M | − M̃[r t ])k/2−1
�

∑
n≥1

ng/2
· nκ1+ν

nk/2−1 =

∑
n≥1

1

n(k2−k1)/2
<∞,

since k = k1 + k2 + 2ν and k2 > k1 + g + 2 by assumption. The standard funda-
mental domain for the action of 0 J

1,g on H× C(g,1) is contained in one of the sets Vε,C
occurring in the statement of Lemma 3.7. Therefore, using Lemma 3.7, we deduce
from Proposition 3.8 that 〈F, [G, Ek2,M2]ν〉 is equal to

ck1,k2,M1,M2,g;ν

∑
n∈Z,r∈Zg

4n≥M−1
1 [r

t
]

(4n|M1| − M̃1[r
t
])νb(n, r)〈F, Pk,M;(n,r)〉,

where ck1,k2,M1,M2,g;ν is as in (3.6). Note that if 4n > M−1
1 [r

t
], then 4n > M−1

[r t
],

and hence the Poincaré series Pk,M;(n,r) are all cusp forms. On the other hand, if
4n = M−1

1 [r
t
], then 4n ≥ M−1

[r t
] implies that r = 0 and n = 0, in which case one

has the Eisenstein series Ek,M . Since F is a cusp form, 〈F, Ek,M 〉 is zero. From (2.1),
it follows that 〈F, [G, Ek2,M2]ν〉 is equal to

ck,k2,M,M2,g;ν

∑
n∈Z,r∈Zg

4n≥M−1
1 [r

t
]

(4n|M1| − M̃1[r t
])νa(n, r)b(n, r)

(4n|M | − M̃[r t ])κ
,

where ck,k2,M,M2,g;ν is defined as in (3.4). 2
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