Small Prime Solutions of Quadratic Equations

Kwok-Kwong Stephen Choi and Jianya Liu

> Abstract. Let b_{1}, \ldots, b_{5} be non-zero integers and n any integer. Suppose that $b_{1}+\cdots+b_{5} \equiv n$ (mod 24) and $\left(b_{i}, b_{j}\right)=1$ for $1 \leq i<j \leq 5$. In this paper we prove that
> (i) if all b_{j} are positive and $n \gg \max \left\{\left|b_{j}\right|\right\}^{41+\varepsilon}$, then the quadratic equation $b_{1} p_{1}^{2}+\cdots+b_{5} p_{5}^{2}=n$ is soluble in primes p_{j}, and
> (ii) if b_{j} are not all of the same sign, then the above quadratic equation has prime solutions satisfying $\quad p_{j} \ll \sqrt{|n|}+\max \left\{\left|b_{j}\right|\right\}^{20+\varepsilon}$.

1 Introduction

For any integer n, we consider quadratic equations in the form

$$
\begin{equation*}
b_{1} p_{1}^{2}+\cdots+b_{5} p_{5}^{2}=n \tag{1.1}
\end{equation*}
$$

where p_{j} are prime variables and the coefficients b_{j} are non-zero integers. A necessary condition for the solubility of (1.1) is

$$
\begin{equation*}
b_{1}+\cdots+b_{5} \equiv n(\bmod 24) \tag{1.2}
\end{equation*}
$$

We also suppose

$$
\begin{equation*}
\left(b_{i}, b_{j}\right)=1, \quad 1 \leq i<j \leq 5 \tag{1.3}
\end{equation*}
$$

and write $B=\max \left\{2,\left|b_{1}\right|, \ldots,\left|b_{5}\right|\right\}$. The main results in this paper are the following two theorems.

Theorem 1 Suppose (1.2) and (1.3). If b_{1}, \ldots, b_{5} are not all of the same sign, then (1.1) has solutions in primes p_{j} satisfying

$$
p_{j} \ll \sqrt{|n|}+B^{20+\varepsilon}
$$

where the implied constant depends only on ε.

[^0]Theorem 2 Suppose (1.2) and (1.3). If b_{1}, \ldots, b_{5} are all positive, then (1.1) is soluble whenever

$$
n \gg B^{41+\varepsilon},
$$

where the implied constant depends only on ε.
Theorem 2 with $b_{1}=\cdots=b_{5}=1$ is a classical result of Hua [7] in 1938. The quadratic equation (1.1) in general was first studied by M. C. Liu and Tsang [13], who obtained a qualitative bound B^{A}, in the place of $B^{20+\varepsilon}$ and $B^{41+\varepsilon}$ in Theorems 1 and 2 above, without the explicit values of the constant A.

Our investigation on (1.1) is not only motivated by [7] and [13], but also by the following work on small prime solutions of the equation

$$
\begin{equation*}
b_{1} p_{1}+b_{2} p_{2}+b_{3} p_{3}=n, \tag{1.4}
\end{equation*}
$$

where b_{1}, b_{2}, b_{3}, n are non-zero integers satisfying some necessary conditions. This problem was first raised and investigated by Baker in his well-known work [1], and was later settled qualitatively by M. C. Liu and Tsang [12]. In this problem, the constant A corresponding to the 20 in our Theorem 1 is called Baker's constant. The first author [3] proved that Baker's constant is ≤ 4190, and M. C. Liu and Wang [14] improved this to 45.

We prove our theorems by the circle method, and the idea will be explained in Section 2. At this stage, we only point out that in contrast to the earlier works [3], [12], [13], [14] which treat the enlarged major arc by the Deuring-Heilbronn phenomenon, we show that in the context of this paper, the possible existence of Siegel zero does not have special influence and hence the Deuring-Heilbronn phenomenon can be avoided. This observation enables us to get better results without numerical computations.

Notation As usual, $\varphi(n), \mu(n)$, and $\Lambda(n)$ stand for the functions of Euler, Möbius, and von Mangoldt respectively, $d(n)$ is the divisor function. We use $\chi \bmod q$ and $\chi^{0} \bmod q$ to denote a Dirichlet character and the principal character modulo q, and $L(s, \chi)$ is the Dirichlet L-function. $r \sim R$ means $R<r \leq 2 R$. The letters c and c_{j} denote absolute positive constants, but the value of c without subscript may vary at different places. The letter ε denotes a positive constant which is arbitrarily small.

In mathematical formulae, we will write "s.t." for "similar terms". For example, " $A_{1} B_{2} C_{3} D_{4} E_{5}+$ s.t." means the sum of all possible terms $A_{\alpha} B_{\beta} C_{\gamma} D_{\delta} E_{\iota}$ with (α, \ldots, ι) being any permutation of $(1, \ldots, 5)$.

2 Outline of the Method

Denote by $r(n)$ the weighted number of solutions of (1.1), i.e.,

$$
r(n)=\sum_{\substack{n=b_{1} p_{1}^{2}+\cdots+b_{5} p_{5}^{2} \\ M<\left|b_{j}\right| p_{j}^{2} \leq N}}\left(\log p_{1}\right) \cdots\left(\log p_{5}\right),
$$

where $M=N / 200$. We will investigate $r(n)$ by the circle method. To this end, we set

$$
\begin{equation*}
P=(N / B)^{1 / 8-\varepsilon}, \quad Q=N /\left(P L^{9000}\right), \quad \text { and } \quad L=\log N \tag{2.1}
\end{equation*}
$$

By Dirichlet's lemma on rational approximation, each $\alpha \in[1 / Q, 1+1 / Q]$ may be written in the form

$$
\begin{equation*}
\alpha=a / q+\lambda, \quad|\lambda| \leq 1 /(q Q) \tag{2.2}
\end{equation*}
$$

for some integers a, q with $1 \leq a \leq q \leq Q$ and $(a, q)=1$. We denote by $\mathfrak{M}(a, q)$ the set of α satisfying (2.2), and define the major arcs \mathfrak{M} and the minor arcs \mathfrak{m} as follows:

$$
\begin{equation*}
\mathfrak{M}=\bigcup_{\substack{q \leq P}} \bigcup_{\substack{a=1 \\(a, q)=1}}^{q} \mathfrak{M}(a, q), \quad \mathfrak{m}=\left[\frac{1}{Q}, 1+\frac{1}{Q}\right] \backslash \mathfrak{M} . \tag{2.3}
\end{equation*}
$$

It follows from $2 P \leq Q$ that the major $\operatorname{arcs} \mathfrak{M}(a, q)$ are mutually disjoint. Let

$$
S_{j}(\alpha)=\sum_{M<\left|b_{j}\right| p^{2} \leq N}(\log p) e\left(b_{j} p^{2} \alpha\right)
$$

Then we have

$$
\begin{equation*}
r(n)=\int_{0}^{1} S_{1}(\alpha) \cdots S_{5}(\alpha) e(-n \alpha) d \alpha=\int_{\mathfrak{M}}+\int_{\mathfrak{M}} \tag{2.4}
\end{equation*}
$$

The integral on the major arcs \mathfrak{M} causes the main difficulty, which is solved by the following:

Theorem 3 Assume (1.3). Let \mathfrak{M} be as in (2.3) with P, Q determined by (2.1). Then we have

$$
\begin{equation*}
\int_{\mathfrak{M}} S_{1}(\alpha) \cdots S_{5}(\alpha) e(-n \alpha) d \alpha=\frac{1}{32} \mathfrak{S}(n, P) \mathfrak{J}(n)+O\left(\frac{N^{3 / 2}}{\left|b_{1} \cdots b_{5}\right|^{1 / 2} L}\right) \tag{2.5}
\end{equation*}
$$

where $\mathfrak{S}(n, P)$ and $\mathfrak{J}(n)$ are defined in (2.6) and (2.7) respectively.
The proof of this theorem forms the bulk of this paper, Sections 3-6. From (2.1) one sees that our major arcs are quite large. Historically, enlarged major arcs are treated by the Deuring-Heilbronn phenomenon. But here we observe that under the assumption (1.3), we can save the factor $B^{5 / 2}$ in Lemma 3.1 below (in Lemma 3.8 in [13], there is an extra factor of $B^{5 / 2}$ on the right-hand side). With this saving, (2.5) can be derived from the large sieve inequality, Gallagher's lemma and classical results on the distribution of zeros of L-functions. This approach has also been used by Bauer, M. C. Liu, and Zhan [2], and by M. C. Liu, Zhan, and the second author [10], [11].

To derive Theorems 1 and 2 from Theorem 3, we need to bound $\mathfrak{S}(n, P)$ and $\mathfrak{J}(n)$ from below. For $\chi \bmod q$, we define

$$
C(\chi, a)=\sum_{h=1}^{q} \bar{\chi}(h) e\left(\frac{a h^{2}}{q}\right), \quad C(q, a)=C\left(\chi^{0}, a\right)
$$

If $\chi_{1}, \ldots, \chi_{5}$ are characters $\bmod q$, then we write

$$
B\left(n, q, \chi_{1}, \ldots, \chi_{5}\right)=\sum_{\substack{h=1 \\(h, q)=1}}^{q} e\left(-\frac{h n}{q}\right) C\left(\chi_{1}, b_{1} h\right) \cdots C\left(\chi_{5}, b_{5} h\right)
$$

$$
\begin{equation*}
B(n, q)=B\left(n, q, \chi^{0}, \ldots, \chi^{0}\right), \quad A(n, q)=\frac{B(n, q)}{\varphi^{5}(q)}, \quad \Im(n, x)=\sum_{q \leq x} A(n, q) \tag{2.6}
\end{equation*}
$$

Lemma 2.1 Assuming (1.2), we have $\mathfrak{S}(n, P) \gg(\log \log B)^{-c_{1}}$ for some constant $c_{1}>0$.

Lemma 2.2 Suppose (1.3) and
(i) b_{j} 's are not all of the same sign and $N \geq 10|n|$; or
(ii) all b_{j} 's are positive and $n=N$.

Then we have

$$
\begin{equation*}
\mathfrak{J}(n):=\sum_{\substack{b_{1} m_{1}+\cdots+b_{5} m_{5}=n \\ M<\left|b_{j}\right| m_{j} \leq N}}\left(m_{1} \cdots m_{5}\right)^{-1 / 2} \asymp \frac{N^{3 / 2}}{\left|b_{1} \cdots b_{5}\right|^{1 / 2}} . \tag{2.7}
\end{equation*}
$$

The proofs of these two lemmas will be given in Section 7.
We now derive Theorems 1 and 2 from Theorem 3 and Lemmas 2.1 and 2.2.
Proofs of Theorems 1 and 2 We start from (2.4) and let $N_{j}=N /\left|b_{j}\right|$. To estimate the integral on \mathfrak{m}, one appeals to the estimate on $p .151$ in [13]:

$$
\begin{align*}
S_{5}(\alpha) & \ll N_{5}^{1 / 2+\varepsilon}\left(\left|b_{5}\right| P^{-1}+N_{5}^{-1 / 4}+Q N_{5}^{-1}\right)^{1 / 4} \tag{2.8}\\
& \ll N_{5}^{1 / 2+\varepsilon}\left(\left|b_{5}\right| / P\right)^{1 / 4} \ll N^{1 / 2+\varepsilon}\left(\left|b_{5}\right| P\right)^{-1 / 4}
\end{align*}
$$

Also, we have the following mean-value estimate for $S_{j}(\alpha)$:

$$
\int_{0}^{1}\left|S_{j}(\alpha)\right|^{4} d \alpha \ll L^{4} \sum_{\substack{m_{1}^{2}+m_{2}^{2}=m_{3}^{2}+m_{4}^{2} \\ m_{\nu}^{2} \leq N_{j}, \nu=1, \ldots, 4}} 1 \ll N_{j}^{1+\varepsilon}
$$

which in combination with Hölder's inequality gives

$$
\begin{equation*}
\int_{0}^{1}\left|S_{1}(\alpha) \cdots S_{4}(\alpha)\right| d \alpha \ll \frac{N^{1+\varepsilon}}{\left|b_{1} \cdots b_{4}\right|^{1 / 4}} \tag{2.9}
\end{equation*}
$$

It therefore follows from (2.8) and (2.9) that

$$
\begin{equation*}
\left|\int_{\mathfrak{m}}\right| \ll \frac{N^{3 / 2+\varepsilon}}{\left|b_{1} \cdots b_{5}\right|^{1 / 4} P^{1 / 4}} . \tag{2.10}
\end{equation*}
$$

The contribution from the major arcs can be handled by Theorem 3, which together with (2.10) gives

$$
r(n)=\frac{1}{32} \Im(n, P) \Im(n)+O\left(\frac{N^{3 / 2}}{\left|b_{1} \cdots b_{5}\right|^{1 / 2} L}+\frac{N^{3 / 2+\varepsilon}}{\left|b_{1} \cdots b_{5}\right|^{1 / 4} P^{1 / 4}}\right)
$$

Now assume the conditions (i) or (ii) in Lemma 2.2. Applying Lemmas 2.1 and 2.2 to the above formula, we conclude

$$
r(n) \gg\left|b_{1} \cdots b_{5}\right|^{-1 / 2} N^{3 / 2}(\log \log B)^{-c_{1}}
$$

provided that $P \gg N^{\varepsilon}\left|b_{1} \cdots b_{5}\right|$, or equivalently $N \gg B^{1+\varepsilon}\left|b_{1} \cdots b_{5}\right|^{8}$. This proves Theorems 1 and 2.

3 An Explicit Expression

In this section, we establish an explicit expression for the integral in Theorem 3 (see Lemma 3.2 below), from which and the estimates in Sections 4-6 we can derive Theorem 3 at the end of Section 6.

Lemma 3.1 Let $\chi_{j} \bmod r_{j}$ with $j=1, \ldots, 5$ be primitive characters, $r_{0}=$ $\left[r_{1}, \ldots, r_{5}\right]$, and χ^{0} the principal character $\bmod q$. Then

$$
\sum_{\substack{q \leq x \\ r_{0} \mid q}} \frac{1}{\varphi^{5}(q)}\left|B\left(n, q, \chi_{1} \chi^{0}, \ldots, \chi_{5} \chi^{0}\right)\right| \ll r_{0}^{-1+\varepsilon} \log ^{2^{15}} x
$$

Proof Lemma 3.1(c) of [13] asserts that for any character $\chi \bmod p^{\alpha}$ with $\alpha \geq 0$,

$$
|C(\chi, a)| \leq 2(2, p)\left(a, p^{\alpha}\right)^{1 / 2} p^{\alpha / 2}
$$

Therefore for characters $\chi_{1}, \ldots, \chi_{5} \bmod p^{\alpha}$,

$$
\left|B\left(n, p^{\alpha}, \chi_{1}, \ldots, \chi_{5}\right)\right| \leq p^{\alpha}\left(2(2, p) p^{\alpha / 2}\right)^{5} \prod_{j=1}^{5}\left(b_{j}, p^{\alpha}\right)^{1 / 2} \leq 2^{10} p^{4 \alpha}
$$

where in the last inequality we have used the condition (1.3); in fact $\prod_{j=1}^{5}\left(b_{j}, p^{\alpha}\right)^{1 / 2} \leq p^{\alpha / 2}$. Since for $\chi_{1}, \ldots, \chi_{5} \bmod q$, the function $\left|B\left(n, q, \chi_{1}, \ldots, \chi_{5}\right)\right|$ is multiplicative with respect to q (in the sense as Lemma 3.2 in [13]), we have

$$
\left|B\left(n, q, \chi_{1}, \ldots, \chi_{5}\right)\right| \leq q^{4} 2^{10 \omega(q)} \leq q^{4} d^{10}(q)
$$

where $\omega(q)$ denotes the number of distinct prime divisors of q. Thus, for the characters in the lemma, we have

$$
\sum_{\substack{q \leq x \\ r_{0} \mid q}} \frac{1}{\varphi^{5}(q)}\left|B\left(n, q, \chi_{1} \chi^{0}, \ldots, \chi_{5} \chi^{0}\right)\right| \lll \sum_{\substack{q \leq x \\ r_{0} \mid q}} \frac{q^{4} d^{10}(q)}{\varphi^{5}(q)} \ll r_{0}^{-1+\varepsilon} \sum_{q \leq x} \frac{d^{15}(q)}{q}
$$

The desired result now follows from Lemma 2.4 in [8].
For $j=1, \ldots, 5$, recall $N_{j}=N /\left|b_{j}\right|$, and set

$$
M_{j}=M /\left|b_{j}\right|, \quad V_{j}(\lambda)=\sum_{M<\left|b_{j}\right| m^{2} \leq N} e\left(b_{j} m^{2} \lambda\right)
$$

and

$$
\begin{equation*}
W_{j}(\chi, \lambda)=\sum_{M<\left|b_{j}\right| p^{2} \leq N}(\log p) \chi(p) e\left(b_{j} p^{2} \lambda\right)-\delta_{\chi} \sum_{M<\left|b_{j}\right| m^{2} \leq N} e\left(b_{j} m^{2} \lambda\right) \tag{3.1}
\end{equation*}
$$

where $\delta_{\chi}=1$ or 0 according as χ is principal or not. Also, define

$$
J_{j}=\sum_{r \leq P} r^{-1 / 5+\varepsilon} \sum_{\chi \bmod r}^{*} \max _{|\lambda| \leq 1 /(r Q)}\left|W_{j}(\chi, \lambda)\right|
$$

and

$$
K_{j}=\sum_{r \leq P} r^{-1 / 5+\varepsilon} \sum_{\chi \bmod r} *\left(\int_{-1 /(r Q)}^{1 /(r Q)}\left|W_{j}(\chi, \lambda)\right|^{2} d \lambda\right)^{1 / 2}
$$

where $\sum_{\chi \bmod r}{ }^{*}$ is over all the primitive characters modulo r.
Now we state the main result of this section.
Lemma 3.2 Let \mathfrak{M} be as in (2.3). Then

$$
\begin{aligned}
\int_{\mathfrak{M}} S_{1}(\alpha) & \cdots S_{5}(\alpha) e(-n \alpha) d \alpha-\frac{1}{32} \Im(n, P) \mathfrak{J}(n) \\
\ll & \left(J_{1} J_{2} J_{3} K_{4} K_{5}\right) L^{c_{2}}+\left(J_{1} J_{2} J_{3} K_{4}\left|b_{5}\right|^{-1 / 2}+\text { s.t. }\right) L^{c_{2}} \\
& +\left(J_{1} J_{2} J_{3}\left|b_{4}\right|^{-1 / 2}\left|b_{5}\right|^{-1 / 2}+\text { s.t. }\right) L^{c_{2}} \\
& +\left(J_{1} J_{2} N_{3}^{1 / 2}\left|b_{4}\right|^{-1 / 2}\left|b_{5}\right|^{-1 / 2}+\text { s.t. }\right) L^{c_{2}} \\
& +\left(J_{1} N_{2}^{1 / 2} N_{3}^{1 / 2}\left|b_{4}\right|^{-1 / 2}\left|b_{5}\right|^{-1 / 2}+\text { s.t. }\right) L^{c_{2}} \\
& +\left|b_{1} \cdots b_{5}\right|^{-1 / 2} N^{3 / 2} L^{-1}
\end{aligned}
$$

where $c_{2}=2^{15}+1$ and "s.t." means similar terms as explained at the end of Section 1 .

Proof Introducing Dirichlet characters, we can rewrite the exponential sum $S_{j}(\alpha)$ as (see for example [4, Section 26, (2)])

$$
S_{j}\left(\frac{h}{q}+\lambda\right)=\frac{C\left(q, b_{j} h\right)}{\varphi(q)} V_{j}(\lambda)+\frac{1}{\varphi(q)} \sum_{\chi \bmod q} C\left(\chi, b_{j} h\right) W_{j}(\chi, \lambda)=: T_{j}+U_{j}
$$

say. Thus,

$$
\begin{equation*}
\int_{\mathfrak{M}} S_{1}(\alpha) \cdots S_{5}(\alpha) e(-n \alpha) d \alpha=I_{0}+\cdots+I_{5} \tag{3.2}
\end{equation*}
$$

where I_{ν} denotes the contribution from those products with ν pieces of U_{j} and $5-\nu$ pieces of T_{j},i.e.,

$$
I_{\nu}=\sum_{q \leq P} \sum_{\substack{h=1 \\(h, q)=1}}^{q} e\left(-\frac{h n}{q}\right) \int_{-1 /(q Q)}^{1 /(q Q)}\left(U_{1} \cdots U_{\nu} T_{\nu+1} \cdots T_{5}+\text { s.t. }\right) e(-n \lambda) d \lambda
$$

We will prove that I_{0} gives the main term and I_{1}, \ldots, I_{5} the error term.
We begin with I_{5}. Reducing the characters in I_{5} into primitive characters, we have

$$
\begin{aligned}
& \left|I_{5}\right|=\mid \\
& \sum_{q \leq P} \sum_{\chi_{1} \bmod q} \cdots \sum_{\chi_{5} \bmod q} \\
& \left.\quad \frac{B\left(n, q, \chi_{1}, \ldots, \chi_{5}\right)}{\varphi^{5}(q)} \int_{-1 /(q Q)}^{1 /(q Q)} W_{1}\left(\chi_{1}, \lambda\right) \cdots W_{5}\left(\chi_{5}, \lambda\right) e(-n \lambda) d \lambda \right\rvert\, \\
& \leq \sum_{r_{1} \leq P} \cdots \sum_{r_{5} \leq P} \sum_{\chi_{1} \bmod r_{1}}^{*} \cdots \sum_{\chi_{5} \bmod r_{5}} \sum_{\substack{q \leq P \\
r_{0} \mid q}} \frac{\left|B\left(n, q, \chi_{1} \chi^{0}, \ldots, \chi_{5} \chi^{0}\right)\right|}{\varphi^{5}(q)} \\
& \quad \times \int_{-1 /(q Q)}^{1 /(q Q)}\left|W_{1}\left(\chi_{1} \chi^{0}, \lambda\right)\right| \cdots\left|W_{5}\left(\chi_{5} \chi^{0}, \lambda\right)\right| d \lambda,
\end{aligned}
$$

where χ^{0} is the principal character modulo q and $r_{0}=\left[r_{1}, \ldots, r_{5}\right]$. For $q \leq P$ and $M<\left|b_{j}\right| p^{2} \leq N$, we have $(q, p)=1$. Using this and (3.1), we have $W_{j}\left(\chi_{j} \chi^{0}, \lambda\right)=$ $W_{j}\left(\chi_{j}, \lambda\right)$ for the primitive characters χ_{j} above. Consequently by Lemma 3.1, we
obtain

$$
\begin{aligned}
&\left|I_{5}\right| \leq \sum_{r_{1} \leq P} \cdots \sum_{r_{5} \leq P} \sum_{\chi_{1} \bmod r_{1}}^{*} \cdots \sum_{\chi_{5} \bmod r_{5}} \int_{-1 /\left(r_{0} Q\right)}^{1 /\left(r_{0} Q\right)}\left|W_{1}\left(\chi_{1}, \lambda\right)\right| \cdots\left|W_{5}\left(\chi_{5}, \lambda\right)\right| d \lambda \\
& \times \sum_{\substack{q \leq P \\
r_{0} \mid q}} \frac{\left|B\left(n, q, \chi_{1} \chi^{0}, \ldots, \chi_{5} \chi^{0}\right)\right|}{\varphi^{5}(q)} \\
& \ll L^{c_{2}} \sum_{r_{1} \leq P} \cdots \sum_{r_{5} \leq P} r_{0}^{-1+\varepsilon} \sum_{\chi_{1} \bmod r_{1}}^{*} \cdots \sum_{\chi_{5} \bmod r_{5}} * \\
& \times \int_{-1 /\left(r_{0} Q\right)}^{1 /\left(r_{0} Q\right)}\left|W_{1}\left(\chi_{1}, \lambda\right)\right| \cdots\left|W_{5}\left(\chi_{5}, \lambda\right)\right| d \lambda .
\end{aligned}
$$

Applying the inequality $r_{0}^{-1+\varepsilon} \leq r_{1}^{-1 / 5+\varepsilon} \cdots r_{5}^{-1 / 5+\varepsilon}$ to the above quantity and then using Cauchy's inequality, we get

$$
\begin{align*}
&\left|I_{5}\right| \ll L^{c_{2}}\left\{\sum_{r_{1} \leq P} r_{1}^{-1 / 5+\varepsilon} \sum_{\chi_{1} \bmod r_{1}}^{*} \max _{|\lambda| \leq 1 /\left(r_{1} Q\right)}\left|W_{1}\left(\chi_{1}, \lambda\right)\right|\right\} \\
& \times \cdots \times\left\{\sum_{r_{3} \leq P} r_{3}^{-1 / 5+\varepsilon} \sum_{\chi_{3} \bmod r_{3}}^{*} \max _{|\lambda| \leq 1 /\left(r_{3} Q\right)}\left|W_{3}\left(\chi_{3}, \lambda\right)\right|\right\} \\
& \times\left\{\sum_{r_{4} \leq P} r_{4}^{-1 / 5+\varepsilon} \sum_{\chi_{4} \bmod r_{4}}^{*}\left(\int_{-1 /\left(r_{4} Q\right)}^{1 /\left(r_{4} Q\right)}\left|W_{4}\left(\chi_{4}, \lambda\right)\right|^{2} d \lambda\right)^{1 / 2}\right\} \tag{3.3}\\
& \times\left\{\sum_{r_{5} \leq P} r_{5}^{-1 / 5+\varepsilon} \sum_{\chi_{5} \bmod r_{5}} *\left(\int_{-1 /\left(r_{5} Q\right)}^{1 /\left(r_{5} Q\right)}\left|W_{5}\left(\chi_{5}, \lambda\right)\right|^{2} d \lambda\right)^{1 / 2}\right\} \\
&=J_{1} J_{2} J_{3} K_{4} K_{5} L^{c_{2}} .
\end{align*}
$$

To bound I_{4}, \ldots, I_{1}, we need the estimates $V_{j}(\lambda) \ll N_{j}^{1 / 2}$ and

$$
\begin{aligned}
H_{j}^{2} & :=\int_{-1 / Q}^{1 / Q}\left|V_{j}(\lambda)\right|^{2} d \lambda=\sum_{M_{j}^{1 / 2}<m_{1}, m_{2} \leq N_{j}^{1 / 2}} \int_{-1 / Q}^{1 / Q} e\left(b_{j}\left(m_{1}^{2}-m_{2}^{2}\right) \lambda\right) d \lambda \\
& \ll \sum_{M_{j}^{1 / 2}<m \leq N_{j}^{1 / 2}} Q^{-1}+\left|b_{j}\right|^{-1} \sum_{M_{j}^{1 / 2}<m_{1} \neq m_{2} \leq N_{j}^{1 / 2}}\left|m_{1}^{2}-m_{2}^{2}\right|^{-1} \\
& \ll N_{j}^{1 / 2} Q^{-1}+\left|b_{j}\right|^{-1} L^{2} \ll\left|b_{j}\right|^{-1} L^{2} .
\end{aligned}
$$

Thus similarly to (3.3), we have

$$
\left.\begin{array}{c}
\left|I_{4}\right| \ll\left(J_{1} J_{2} J_{3} K_{4} H_{5}+\text { s.t. }\right) L^{c_{2}} \ll\left(J_{1} J_{2} J_{3} K_{4}\left|b_{5}\right|^{-1 / 2}+\text { s.t. }\right) L^{c_{2}}, \\
\left|I_{3}\right| \ll\left(J_{1} J_{2} J_{3} H_{4} H_{5}+\text { s.t. }\right) L^{c_{2}} \ll\left(J_{1} J_{2} J_{3}\left|b_{4} b_{5}\right|^{-1 / 2}+\text { s.t. }\right) L^{c_{2}}, \\
\left|I_{2}\right| \ll\left(J_{1} J_{2} N_{3}^{1 / 2} H_{4} H_{5}+\text { s.t. }\right) L^{c_{2}} \ll\left(J_{1} J_{2} N_{3}^{1 / 2}\left|b_{4} b_{5}\right|^{-1 / 2}+\text { s.t. }\right) L^{c_{2}}, \tag{3.4}\\
\left|I_{1}\right|<\left(J_{1} N_{2}^{1 / 2} N_{3}^{1 / 2} H_{4} H_{5}+\text { s.t. }\right) L^{c_{2}} \ll\left(J_{1} N_{2}^{1 / 2} N_{3}^{1 / 2}\left|b_{4} b_{5}\right|^{-1 / 2}+\text { s.t. }\right) L^{c_{2}} .
\end{array}\right\}
$$

It remains to compute I_{0}. By the partial summation formula,

$$
\begin{align*}
V_{j}(\lambda) & =\int_{M_{j}^{1 / 2}}^{N_{j}^{1 / 2}} e\left(b_{j} \lambda u^{2}\right) d u+O(1+|\lambda| N) \tag{3.5}\\
& =\frac{1}{2} \sum_{M<\left|b_{j}\right| m \leq N} m^{-1 / 2} e\left(b_{j} m \lambda\right)+O(1+|\lambda| N) .
\end{align*}
$$

Also we have the following elementary bound:

$$
\begin{align*}
\sum_{M<\left|b_{j}\right| m \leq N} m^{-1 / 2} e\left(b_{j} m \lambda\right) & \ll \min \left(N_{j}^{1 / 2}, M_{j}^{-1 / 2}\left|b_{j} \lambda\right|^{-1}\right) \tag{3.6}\\
& \ll\left|b_{j}\right|^{-1 / 2} \min \left(N^{1 / 2}, M^{-1 / 2}|\lambda|^{-1}\right)
\end{align*}
$$

Substituting (3.5) into I_{0}, we have

$$
\begin{align*}
I_{0}= & \frac{1}{32} \sum_{q \leq P} \frac{B(n, q)}{\varphi^{5}(q)} \int_{-1 /(q Q)}^{1 /(q Q)} \prod_{j=1}^{5}\left\{\sum_{M<\left|b_{j}\right| m \leq N} \frac{e\left(b_{j} m \lambda\right)}{m^{1 / 2}}\right\} e(-n \lambda) d \lambda \tag{3.7}\\
& +O\left\{\sum_{q \leq P} \frac{|B(n, q)|}{\varphi^{5}(q)} \int_{-1 /(q Q)}^{1 /(q Q)}\left(\left.\left.\prod_{j=1}^{4}\right|_{M<\left|b_{j}\right| m \leq N} \sum_{m} \frac{e\left(b_{j} m \lambda\right)}{m^{1 / 2}} \right\rvert\,(1+|\lambda| N)+\text { s.t. }\right) d \lambda\right\} .
\end{align*}
$$

By (3.6) and Lemma 3.1 with $r_{0}=1$,

$$
\begin{aligned}
& \sum_{q \leq P} \frac{|B(n, q)|}{\varphi^{5}(q)} \int_{-1 /(q Q)}^{1 /(q Q)}\left|\sum_{M<\left|b_{j}\right| m \leq N} \frac{e\left(b_{j} m \lambda\right)}{m^{1 / 2}}\right|^{4}(1+|\lambda| N) d \lambda \\
& \quad \ll \frac{1}{b_{j}^{2}} \sum_{q \leq P} \frac{|B(n, q)|}{\varphi^{5}(q)}\left\{\int_{0}^{1 / \sqrt{M N}} N^{2} d \lambda+\int_{1 / \sqrt{M N}}^{1 / Q} M^{-2} N|\lambda|^{-3} d \lambda\right\} \ll \frac{N L^{c_{2}}}{b_{j}^{2}} .
\end{aligned}
$$

So by Hölder's inequality,

$$
\begin{aligned}
\left.\left.\sum_{q \leq P} \frac{|B(n, q)|}{\varphi^{5}(q)} \int_{-1 /(q Q)}^{1 /(q Q)} \prod_{j=1}^{4}\right|_{M<\left|b_{j}\right| m \leq N} \frac{e\left(b_{j} m \lambda\right)}{m^{1 / 2}} \right\rvert\,(1+|\lambda| N) d \lambda & \ll \frac{N L^{c_{2}}}{\left|b_{1} \cdots b_{4}\right|^{1 / 2}} \\
& \ll \frac{N^{3 / 2}}{\left|b_{1} \cdots b_{5}\right|^{1 / 2} L}
\end{aligned}
$$

The other error terms in (3.7) can be treated similarly and they are $\ll\left|b_{1} \cdots b_{5}\right|^{-1 / 2} N^{3 / 2} L^{-1}$. Now we extend the integral in the main term of (3.7) to $[-1 / 2,1 / 2]$; by Lemma 3.1 and (3.6), the resulting error is

$$
\ll \frac{L^{c_{2}}}{\left|b_{1} \cdots b_{5}\right|^{1 / 2}} \int_{1 /(P Q)}^{1 / 2} M^{-5 / 2}|\lambda|^{-5} d \lambda \ll \frac{(P Q)^{4} L^{c_{2}}}{\left|b_{1} \cdots b_{5}\right|^{1 / 2} M^{5 / 2}} \ll \frac{N^{3 / 2}}{\left|b_{1} \cdots b_{5}\right|^{1 / 2} L},
$$

where we have used (2.1). Thus (3.7) becomes

$$
\begin{equation*}
I_{0}=\frac{1}{32} \Im(n, P) \Im(n)+O\left(\frac{N^{3 / 2}}{\left|b_{1} \cdots b_{5}\right|^{1 / 2} L}\right) \tag{3.8}
\end{equation*}
$$

Therefore, Lemma 3.2 now follows from (3.2), (3.3), (3.4), and (3.8).

4 Estimation of J

We have

$$
J_{j} \ll L \max _{R \leq P} J_{j}(R)
$$

where $J_{j}(R)$ is defined similarly to J_{j} except that the sum is over $r \sim R$. The estimation of $J_{j}(R)$ falls naturally into two cases according as R is small or large. For $R>L^{C}$, where C is some positive constant, one appeals to contour integration, mean-value estimates for the Dirichlet L-functions or their derivatives, the large sieve inequality, and Heath-Brown's identity. While for $R \leq L^{C}$, one uses the classical zero-density estimates and zero-free region for the Dirichlet L-functions.

We first establish the following result for large R. In Lemma 4.3 we shall consider small R.

Lemma 4.1 Let $A>0$ be arbitrary. Then there exists a constant $C=C(A)>0$ such that when $L^{C}<R \leq P$,

$$
J_{j}(R) \ll N_{j}^{1 / 2} L^{-A}
$$

where the implied constant depends at most on A.
To prove this result, it suffices to show that

$$
\begin{equation*}
\sum_{r \sim R} \sum_{\chi \bmod r}^{*} \max _{|\lambda| \leq 1 /(r Q)}\left|W_{j}(\chi, \lambda)\right| \ll R^{1 / 5-\varepsilon} N_{j}^{1 / 2} L^{-A} \tag{4.1}
\end{equation*}
$$

holds for $L^{C}<R \leq P$ and arbitrary $A>0$. Let

$$
\begin{equation*}
\hat{W}_{j}(\chi, \lambda)=\sum_{M<\left|b_{j}\right| m^{2} \leq N}\left(\Lambda(m) \chi(m)-\delta_{\chi}\right) e\left(b_{j} m^{2} \lambda\right) \tag{4.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
W_{j}(\chi, \lambda)-\hat{W}_{j}(\chi, \lambda)=-\sum_{m \geq 2} \sum_{M<\left|b_{j}\right| p^{2 m} \leq N}(\log p) \chi(p) e\left(b_{j} p^{2 m} \lambda\right) \ll N_{j}^{1 / 4} \tag{4.3}
\end{equation*}
$$

Thus (4.1) is a consequence of the estimate

$$
\begin{equation*}
\sum_{r \sim R} \sum_{\chi \bmod r}^{*} \max _{|\lambda| \leq 1 /(r Q)}\left|\hat{W}_{j}(\chi, \lambda)\right| \ll R^{1 / 5-\varepsilon} N_{j}^{1 / 2} L^{-A} \tag{4.4}
\end{equation*}
$$

where $L^{C}<R \leq P$ and $A>0$ is arbitrary.
Let $M_{j}^{1 / 2}<u \leq N_{j}^{1 / 2}$, and let D_{1}, \ldots, D_{10} be positive numbers such that

$$
2^{-10} M_{j}^{1 / 2} \leq D_{1} \cdots D_{10}<u, \quad \text { and } \quad 2 D_{6}, \ldots, 2 D_{10} \leq u^{1 / 5}
$$

For $\nu=1, \ldots, 10$ let

$$
a_{\nu}(m)= \begin{cases}\log m & \text { if } \nu=1 \\ 1 & \text { if } \nu=2,3,4,5 \\ \mu(m) & \text { if } \nu=6,7,8,9,10\end{cases}
$$

We define the following functions of a complex variable s :

$$
f_{\nu}(s)=f_{\nu}(s, \chi)=\sum_{m \sim D_{\nu}} \frac{a_{\nu}(m) \chi(m)}{m^{s}}, \quad F(s)=F(s, \chi)=f_{1}(s) \cdots f_{10}(s)
$$

Now we recall Heath-Brown's identity (see Lemma 1 in [6]) for $k=5$, which states that

$$
\frac{\zeta^{\prime}}{\zeta}(s)=\sum_{\nu=1}^{5}\binom{5}{\nu}(-1)^{\nu-1} \zeta^{\prime}(s) \zeta^{\nu-1}(s) G^{\nu}(s)+\frac{\zeta^{\prime}}{\zeta}(s)(1-\zeta(s) G(s))^{5}
$$

where $\zeta(s)$ is the Riemann zeta-function, and $G(s)=\sum_{m<u^{1 / 5}} \mu(m) m^{-s}$. The reason why we choose $k=5$ is that the identity with $k \leq 4$ will give weaker results, and when $k \geq 6$ it produces the same estimate as the case $k=5$. Equating coefficients of the Dirichlet series on both sides provides an identity for $-\Lambda(m)$. Also, for $m \leq u$ the coefficient of m^{-s} in $-\left(\zeta^{\prime} / \zeta\right)(s)(1-\zeta(s) G(s))^{5}$ is zero. Thus,

$$
\Lambda(m)=\sum_{\nu=1}^{5}\binom{5}{\nu}(-1)^{\nu-1} \sum_{\substack{m_{1} \cdots m_{2 \nu}=m \\ m_{\nu+1}, \ldots, m_{2 \nu} \leq u^{1 / 5}}}\left(\log m_{1}\right) \mu\left(m_{\nu+1}\right) \cdots \mu\left(m_{2 \nu}\right)
$$

Applying this identity to the sum

$$
\begin{equation*}
\sum_{M_{j}^{1 / 2}<m \leq u} \Lambda(m) \chi(m) \tag{4.5}
\end{equation*}
$$

one finds that (4.5) is a linear combination of $O\left(L^{10}\right)$ terms, each of which is of the form

$$
\sigma(u ; \mathbf{D})=\sum_{\substack{m_{1} \sim D_{1} \\ M_{j}^{1 / 2}<m_{1} \cdots m_{10} \leq u}} \cdots \sum_{\substack{m_{10} \sim D_{10}}} a_{1}\left(m_{1}\right) \chi\left(m_{1}\right) \cdots a_{10}\left(m_{10}\right) \chi\left(m_{10}\right)
$$

where \mathbf{D} denotes the vector $\left(D_{1}, \ldots, D_{10}\right)$. By using Perron's summation formula (see for example, Lemma 3.12 in [16]) and then shifting the contour to the left, the above $\sigma(u ; \mathbf{D})$ is

$$
\begin{aligned}
& =\frac{1}{2 \pi i} \int_{1+1 / L-i T}^{1+1 / L+i T} F(s, \chi) \frac{u^{s}-M_{j}^{s / 2}}{s} d s+O\left(\frac{N_{j}^{1 / 2} L^{2}}{T}\right) \\
& =\frac{1}{2 \pi i}\left\{\int_{1+1 / L-i T}^{1 / 2-i T}+\int_{1 / 2-i T}^{1 / 2+i T}+\int_{1 / 2+i T}^{1+1 / L+i T}\right\}+O\left(\frac{N_{j}^{1 / 2} L^{2}}{T}\right),
\end{aligned}
$$

where T is a parameter satisfying $2 \leq T \leq N_{j}^{1 / 2}$. The integral on the two horizontal segments above can be easily estimated as

$$
\ll \max _{1 / 2 \leq \sigma \leq 1+1 / L}|F(\sigma \pm i T, \chi)| \frac{u^{\sigma}}{T} \ll \max _{1 / 2 \leq \sigma \leq 1+1 / L} N_{j}^{(1-\sigma) / 2} L \frac{u^{\sigma}}{T} \ll \frac{N_{j}^{1 / 2} L}{T}
$$

on using the trivial estimate

$$
\begin{aligned}
F(\sigma \pm i T, \chi) & \ll\left|f_{1}(\sigma \pm i T, \chi)\right| \cdots\left|f_{10}(\sigma \pm i T, \chi)\right| \\
& \ll\left(D_{1}^{1-\sigma} L\right) D_{2}^{1-\sigma} \cdots D_{10}^{1-\sigma} \ll N_{j}^{(1-\sigma) / 2} L .
\end{aligned}
$$

Thus,

$$
\sigma(u ; \mathbf{D})=\frac{1}{2 \pi} \int_{-T}^{T} F\left(\frac{1}{2}+i t, \chi\right) \frac{u^{\frac{1}{2}+i t}-M_{j}^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}}{\frac{1}{2}+i t} d t+O\left(\frac{N_{j}^{1 / 2} L^{2}}{T}\right)
$$

Since $R>L^{C}$ (so $\chi \neq \chi^{0}$), we have in (4.2) that

$$
\begin{aligned}
\hat{W}_{j}(\chi, \lambda) & =\sum_{M<\left|b_{j}\right| m^{2} \leq N} \Lambda(m) \chi(m) e\left(b_{j} m^{2} \lambda\right) \\
& =\int_{M_{j}^{1 / 2}}^{N_{j}^{1 / 2}} e\left(b_{j} u^{2} \lambda\right) d\left\{\sum_{M_{j}^{1 / 2}<m \leq u} \Lambda(m) \chi(m)\right\},
\end{aligned}
$$

and consequently $\hat{W}(\chi, \lambda)$ is a linear combination $O\left(L^{10}\right)$ terms, each of which is of the form

$$
\begin{aligned}
& \int_{M_{j}^{1 / 2}}^{N_{j}^{1 / 2}} e\left(b_{j} u^{2} \lambda\right) d \sigma(u ; \mathbf{D})= \frac{1}{2 \pi} \\
& \int_{-T}^{T} F\left(\frac{1}{2}+i t, \chi\right) \int_{M_{j}^{1 / 2}}^{N_{j}^{1 / 2}} u^{-1 / 2+i t} e\left(b_{j} u^{2} \lambda\right) d u d t \\
&+O\left(\frac{N_{j}^{1 / 2} L^{2}}{T}(1+|\lambda| N)\right)
\end{aligned}
$$

By taking $T=N_{j}^{1 / 2}$ and changing variables in the inner integral, we deduce from the above formulae that

$$
\begin{align*}
& \left|\hat{W}_{j}(\chi, \lambda)\right| \ll L^{10} \max _{\mathbf{D}}\left|\int_{-T}^{T} F\left(\frac{1}{2}+i t, \chi\right) \int_{M_{j}}^{N_{j}} v^{-3 / 4} e\left(\frac{t}{4 \pi} \log v+b_{j} \lambda v\right) d v d t\right| \tag{4.6}\\
& +P L^{9012}
\end{align*}
$$

where the maximum is taken over all $\mathbf{D}=\left(D_{1}, \ldots, D_{10}\right)$. Since

$$
\frac{d}{d v}\left(\frac{t}{4 \pi} \log v+b_{j} \lambda v\right)=\frac{t}{4 \pi v}+b_{j} \lambda, \quad \frac{d^{2}}{d v^{2}}\left(\frac{t}{4 \pi} \log v+b_{j} \lambda v\right)=-\frac{t}{4 \pi v^{2}}
$$

by Lemmas 4.4 and 4.3 in [16], the inner integral in (4.6) can be estimated as

$$
\begin{align*}
& \ll M_{j}^{-3 / 4} \min \left\{\frac{N_{j}}{(|t|+1)^{1 / 2}}, \frac{N_{j}}{\min _{M_{j}<v \leq N_{j}}\left|t+4 \pi b_{j} \lambda v\right|}\right\} \\
& \ll \begin{cases}N_{j}^{1 / 4}(|t|+1)^{-1 / 2} & \text { if }|t| \leq T_{0} ; \\
N_{j}^{1 / 4}|t|^{-1} & \text { if } T_{0}<|t| \leq T\end{cases} \tag{4.7}
\end{align*}
$$

where $T_{0}=8 \pi N /(R Q)$. Here the choice of T_{0} is to ensure that $\left|t+4 \pi b_{j} \lambda v\right|>|t| / 2$ whenever $|t|>T_{0}$; in fact,

$$
\left|t+4 \pi b_{j} \lambda v\right| \geq|t|-4 \pi\left|b_{j} v\right| /(r Q)>|t| / 2+T_{0} / 2-4 \pi N /(R Q)=|t| / 2
$$

It therefore follows from (4.6) and (4.7) that the lemma (more precisely, (4.4)) is a consequence of the following two estimates: For $0<T_{1} \leq T_{0}$, we have

$$
\begin{equation*}
\sum_{r \sim R} \sum_{\chi \bmod r}^{*} \int_{T_{1}}^{2 T_{1}}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| d t \ll R^{1 / 5-\varepsilon} N_{j}^{1 / 4}\left(T_{1}+1\right)^{1 / 2} L^{-A} \tag{4.8}
\end{equation*}
$$

while for $T_{0}<T_{2} \leq T$, we have

$$
\begin{equation*}
\sum_{r \sim R} \sum_{\chi \bmod r}^{*} \int_{T_{2}}^{2 T_{2}}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| d t \ll R^{1 / 5-\varepsilon} N_{j}^{1 / 4} T_{2} L^{-A} \tag{4.9}
\end{equation*}
$$

Both (4.8) and (4.9) are deduced from the following bound, which is Lemma 5.2 in [10].

Lemma 4.2 Let $F(s, \chi)$ be defined as above. Then for any $R \geq 1$ and $T_{3}>0$,

$$
\sum_{r \sim R} \sum_{\chi \bmod r}^{*} \int_{T_{3}}^{2 T_{3}}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| d t \ll\left(R^{2} T_{3}+R T_{3}^{1 / 2} N_{j}^{3 / 20}+N_{j}^{1 / 4}\right) L^{c}
$$

Now we can complete the proof of Lemma 4.1 immediately.
Proof of Lemma 4.1 By taking $T_{3}=T_{1}$ in Lemma 4.2, the left-hand side of (4.8) is now

$$
\ll\left(R^{2} T_{1}+R T_{1}^{1 / 2} N_{j}^{3 / 20}+N_{j}^{1 / 4}\right) L^{c} \ll R^{1 / 5-\varepsilon} N_{j}^{1 / 4}\left(T_{1}+1\right)^{1 / 2} L^{-A},
$$

provided that $L^{C}<R \leq P=(N / B)^{1 / 8-\varepsilon}$ with a sufficiently large C. Here $L^{C}<R$ guarantees that $N_{j}^{1 / 4} L^{c}$ is dominated by the quantity on the right-hand side. This establishes (4.8). Similarly we can prove (4.9) by taking $T_{3}=T_{2}$ in Lemma 4.2. Lemma 4.1 now follows.

Now we treat the case $R \leq L^{C}$.
Lemma 4.3 Let $A>0$ and $C>0$ be arbitrary. Then for $R \leq L^{C}$, we have

$$
J_{j}(R) \ll N_{j}^{1 / 2} L^{-A}
$$

where the implied constant depends at most on C.
Proof We use the explicit formula (see [4, pp. 109 and 120])

$$
\begin{equation*}
\sum_{m \leq u} \Lambda(m) \chi(m)=\delta_{\chi} u-\sum_{|\gamma| \leq T} \frac{u^{\rho}}{\rho}+O\left\{\left(\frac{u}{T}+1\right) \log ^{2}(q u T)\right\} \tag{4.10}
\end{equation*}
$$

where $\rho=\beta+i \gamma$ is a non-trivial zero of the function $L(s, \chi)$, and $2 \leq T \leq u$ is a parameter. Taking $T=N_{j}^{1 / 6}$ in (4.10), and then inserting it into $\hat{W}_{j}(\chi, \lambda)$, we get by $M_{j}^{1 / 2}<u \leq N_{j}^{1 / 2}, M_{j}=N_{j} / 200$, and (4.2) that

$$
\begin{aligned}
\hat{W}_{j}(\chi, \lambda) & =\int_{M_{j}^{1 / 2}}^{N_{j}^{1 / 2}} e\left(b_{j} u^{2} \lambda\right) d\left\{\sum_{n \leq u}\left(\Lambda(m) \chi(m)-\delta_{\chi}\right)\right\} \\
& =-\int_{M_{j}^{1 / 2}}^{N_{j}^{1 / 2}} e\left(b_{j} u^{2} \lambda\right) \sum_{|\gamma| \leq N_{j}^{1 / 6}} u^{\rho-1} d u+O\left(N_{j}^{1 / 3}(1+|\lambda| N) L^{2}\right) \\
& \ll N_{j}^{1 / 2} \sum_{|\gamma| \leq N_{j}^{1 / 6}} N_{j}^{(\beta-1) / 2}+O\left(N_{j}^{1 / 3} P L^{9002}\right)
\end{aligned}
$$

Now we need Satz VIII.6.2 in Prachar [15], which states that $\prod_{\chi \bmod q} L(s, \chi)$ is zero-free in the region $\sigma \geq 1-\eta(T),|t| \leq T$ except for the possible Siegel zero, where $\eta(T)=c_{3} \log ^{-4 / 5} T$. But by Siegel's theorem (see for example [4, Section 21]) the Siegel zero does not exist in the present situation, since $r \leq L^{C}$. We also need the zero-density estimate (see e.g. Huxley [9]):

$$
N^{*}(\alpha, q, T) \ll(q T)^{12(1-\alpha) / 5} \log ^{c}(q T)
$$

where $N^{*}(\alpha, q, T)$ denotes the number of zeros of $\prod_{\chi \bmod q}^{*} L(s, \chi)$ in the region $\operatorname{Re} s \geq \alpha,|\operatorname{Im} s| \leq T$. Thus,

$$
\begin{aligned}
\sum_{|\gamma| \leq N_{j}^{1 / 6}} N_{j}^{(\beta-1) / 2} & \ll L^{c} \int_{0}^{1-\eta\left(N_{j}^{1 / 6}\right)}\left(N_{j}^{1 / 6}\right)^{12(1-\alpha) / 5} N_{j}^{(\alpha-1) / 2} d \alpha \\
& \ll L^{c} N_{j}^{-\eta\left(N_{j}^{1 / 6}\right) / 10} \ll \exp \left(-c_{4} L^{1 / 5}\right)
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\sum_{r \sim R} \sum_{\chi \bmod r}^{*} \max _{|\lambda| \leq 1 /(r Q)}\left|\hat{W}_{j}(\chi, \lambda)\right| \ll N_{j}^{1 / 2} L^{-A} \tag{4.11}
\end{equation*}
$$

where $R \leq L^{C}$, and $A>0$ is arbitrary. Lemma 4.3 now follows from (4.11) and (4.3).

5 Estimation of K

In this section, we estimate K by establishing the following Lemma 5.1. We remark that in proving Lemma 5.1 we need not distinguish the two cases $R>L^{C}$ and $R \leq L^{C}$ as in Lemmas 4.1 and 4.3, since we need not save a factor L^{-A} on the right-hand side of (5.1).

Lemma 5.1 We have

$$
\begin{equation*}
K_{j} \ll\left|b_{j}\right|^{-1 / 2} L^{c} \tag{5.1}
\end{equation*}
$$

where $c>0$ is some absolute constant.
Proof By the definition of K_{j} and (4.3), we have

$$
\begin{aligned}
K_{j} & \ll L \max _{R \leq P} \sum_{r \sim R} r^{-1 / 5+\varepsilon} \sum_{\chi \bmod r} *\left(\int_{-1 /(r Q)}^{1 /(r Q)}\left|W_{j}(\chi, \lambda)\right|^{2} d \lambda\right)^{1 / 2} \\
& \ll L \max _{R \leq P} \sum_{r \sim R} r^{-1 / 5+\varepsilon} \sum_{\chi \bmod r} *\left(\int_{-1 /(r Q)}^{1 /(r Q)}\left|\hat{W}_{j}(\chi, \lambda)\right|^{2} d \lambda\right)^{1 / 2}+\left|b_{j}\right|^{-1 / 2}
\end{aligned}
$$

Thus to establish (5.1), it suffices to show that

$$
\begin{equation*}
\sum_{r \sim R} \sum_{\chi \bmod r} *\left(\int_{-1 /(r Q)}^{1 /(r Q)}\left|\hat{W}_{j}(\chi, \lambda)\right|^{2} d \lambda\right)^{1 / 2} \ll\left|b_{j}\right|^{-1 / 2} R^{1 / 5-\varepsilon} L^{c} \tag{5.2}
\end{equation*}
$$

holds for $R \leq P$ and some $c>0$.

By Gallagher's lemma (see [5, Lemma 1]), we have

$$
\begin{align*}
\int_{-1 /(r Q)}^{1 /(r Q)}\left|\hat{W}_{j}(\chi, \lambda)\right|^{2} d \lambda & \ll\left(\frac{1}{R Q}\right)^{2} \int_{-\infty}^{\infty}\left|\sum_{\substack{v<\left|b_{j}\right| m^{2} \leq v+r Q \\
M<\left|b_{j}\right| m^{2} \leq N}}\left(\Lambda(m) \chi(m)-\delta_{\chi}\right)\right|^{2} d v \tag{5.3}\\
& \ll\left(\frac{1}{R Q}\right)^{2} \int_{M-r Q}^{N}\left|\sum_{\substack{v<\left|b_{j}\right| m^{2} \leq v+r Q \\
M<\left|b_{j}\right| m^{2} \leq N}}\left(\Lambda(m) \chi(m)-\delta_{\chi}\right)\right|^{2} d v .
\end{align*}
$$

Let $X=\max (v, M) /\left|b_{j}\right|$ and $Y=\min (v+r Q, N) /\left|b_{j}\right|$. Then the sum in (5.3) can be written as

$$
\begin{equation*}
\sum_{X<m^{2} \leq Y}\left(\Lambda(m) \chi(m)-\delta_{\chi}\right) . \tag{5.4}
\end{equation*}
$$

Before estimating (5.4), we observe first that, for any $0<\beta<1$,

$$
\begin{equation*}
Y^{\beta}-X^{\beta} \ll \frac{(v+r Q)^{\beta}-v^{\beta}}{\left|b_{j}\right|^{\beta}}=\frac{v^{\beta}\left\{(1+r Q / v)^{\beta}-1\right\}}{\left|b_{j}\right|^{\beta}} \ll \frac{r Q}{\left|b_{j}\right|^{\beta} M^{1-\beta}}, \tag{5.5}
\end{equation*}
$$

where in the last step we have used $M-r Q \leq v \leq N$ and $r Q \leq 2 R Q \leq 2 P Q \ll$ $M L^{-9000}$.

In the case $\chi=\chi^{0} \bmod 1$, the quantity in (5.4) is

$$
\ll Y^{1 / 2}-X^{1 / 2} \ll\left|b_{j}\right|^{-1 / 2} M^{-1 / 2} Q
$$

by (5.5) with $r=1$. This contributes to (5.3) acceptably.
For other χ, we have $\delta_{\chi}=0$ in (5.4). Using Heath-Brown's identity to this sum, and applying Perron's formula as before, we see that (5.4) is a linear combination of $O\left(L^{10}\right)$ terms, each of which has the form

$$
\frac{1}{2 \pi} \int_{-T}^{T} F\left(\frac{1}{2}+i t, \chi\right) \frac{Y^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}-X^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}}{\frac{1}{2}+i t} d t+O\left(\frac{N_{j}^{1 / 2} L^{2}}{T}\right)
$$

where $\mathbf{D}, F(s, \chi)$ are as in Section 4, and T is a parameter satisfying $2 \leq T \leq N_{j}^{1 / 2}$. One easily sees that

$$
\frac{Y^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}-X^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}}{\frac{1}{2}+i t}=\frac{1}{2} \int_{X}^{Y} u^{-3 / 4+i t / 2} d u=\frac{1}{2} \int_{X}^{Y} u^{-3 / 4} e\left(\frac{t}{4 \pi} \log u\right) d u .
$$

The integral can be easily estimated by (5.5) as $\ll Y^{1 / 4}-X^{1 / 4} \ll\left|b_{j}\right|^{-1 / 4} M^{-3 / 4} R Q$. On the other hand, one has trivially

$$
\frac{Y^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}-X^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}}{\frac{1}{2}+i t} \ll \frac{Y^{1 / 4}}{|t|} \ll \frac{N_{j}^{1 / 4}}{|t|}
$$

Collecting the two upper bounds, we get

$$
\frac{Y^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}-X^{\frac{1}{2}\left(\frac{1}{2}+i t\right)}}{\frac{1}{2}+i t} \ll \min \left(\frac{R Q}{M^{3 / 4}\left|b_{j}\right|^{1 / 4}}, \frac{N_{j}^{1 / 4}}{|t|}\right) \ll \frac{1}{\left|b_{j}\right|^{1 / 4}} \min \left(\frac{R Q}{N^{3 / 4}}, \frac{N^{1 / 4}}{|t|}\right)
$$

Taking $T=N_{j}^{1 / 2}$ and $T_{0}=N /(Q R)$, we see that

$$
\begin{aligned}
\sigma(u ; \mathbf{D}) \ll & \frac{R Q}{\left|b_{j}\right|^{1 / 4} N^{3 / 4}} \int_{|t| \leq T_{0}}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| d t \\
& +\frac{N^{1 / 4}}{\left|b_{j}\right|^{1 / 4}} \int_{T_{0}<|t| \leq T}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| \frac{d t}{|t|}+O\left(L^{2}\right)
\end{aligned}
$$

And consequently (5.3) becomes

$$
\begin{aligned}
& \int_{-1 /(r Q)}^{1 /(r Q)}|\hat{W}(\chi, \lambda)|^{2} d \lambda \\
&< \frac{L^{20}}{\left|b_{j}\right|^{1 / 2} N^{1 / 2}} \max _{\mathrm{D}}\left(\int_{|t| \leq T_{0}}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| d t\right)^{2} \\
& \quad+\frac{N^{3 / 2} L^{20}}{\left|b_{j}\right|^{1 / 2}(Q R)^{2}} \max _{\mathrm{D}}\left(\int_{T_{0}<|t| \leq T}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| \frac{d t}{|t|}\right)^{2}+\frac{N L^{24}}{(Q R)^{2}}
\end{aligned}
$$

Now the left-hand side of (5.2) is

$$
\begin{aligned}
& \ll \frac{L^{10}}{\left|b_{j}\right|^{1 / 4} N^{1 / 4}} \max _{\mathrm{D}} \sum_{r \sim R} \sum_{\chi \bmod r}^{*} \int_{|t| \leq T_{0}}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| d t \\
& \quad+\frac{N^{3 / 4} L^{10}}{\left|b_{j}\right|^{1 / 4} R Q} \max _{\mathrm{D}} \sum_{r \sim R} \sum_{\chi \bmod r}^{*} \int_{T_{0}<|t| \leq T}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| \frac{d t}{|t|}+\frac{N^{1 / 2} R L^{12}}{Q} .
\end{aligned}
$$

Thus, to prove (5.2) it suffices to show that the estimate

$$
\begin{equation*}
\sum_{r \sim R} \sum_{\chi \bmod r}^{*} \int_{T_{1}}^{2 T_{1}}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| d t \ll R^{1 / 5-\varepsilon} N_{j}^{1 / 4} L^{c} \tag{5.6}
\end{equation*}
$$

holds for $R \leq P$ and $0<T_{1} \leq T_{0}$, and

$$
\begin{equation*}
\sum_{r \sim R} \sum_{\chi \bmod r}^{*} \int_{T_{2}}^{2 T_{2}}\left|F\left(\frac{1}{2}+i t, \chi\right)\right| d t \ll R^{1 / 5-\varepsilon}\left(\frac{R Q}{\left|b_{j}\right|^{1 / 4} N^{3 / 4}}\right) T_{2} L^{c} \tag{5.7}
\end{equation*}
$$

holds for $R \leq P$ and $T_{0}<T_{2} \leq T$.
The estimates (5.6) and (5.7) follows from Lemma 4.2. The proof of Lemma 5.1 is complete.

Proof of Theorem 3 Collecting Lemmas 3.2, 4.1, 4.3 and 5.1, we get Theorem 3.

6 Necessary and Sufficient Condition for Congruent Solubility

In this section, we suppose only that $\left(b_{1}, \ldots, b_{5}\right)=1$ but b_{j} may not be pairwisely relative prime. For any $q \geq 1$, we define

$$
\begin{aligned}
N(q)=\operatorname{Card}\left\{\left(m_{1}, \ldots, m_{5}\right): 1 \leq\right. & m_{i} \leq q,\left(m_{i}, q\right)=1 \\
& \left.b_{1} m_{1}^{2}+\cdots+b_{5} m_{5}^{2} \equiv n(\bmod q)\right\}
\end{aligned}
$$

A necessary condition for the solubility of the equation (1.1) is the congruence solubility that $N(q)>0$ for all integer $q \geq 1$. In this section, we prove the necessary and sufficient condition for the congruence solubility below. It will follow that the condition (1.2) is actually sufficient for the congruence solubility under our assumption (1.3). Moreover, we will also obtain an asymptotic estimation for $N(p)$ in Proposition 4 which is useful and essential to the proofs in Section 7.

It is known (see [13, Section 3]) that $N(q)$ is a multiplicative function of q and $N\left(p^{\alpha}\right) \geq 1$ if and only if $N(p) \geq 1$ for odd prime p and $\alpha \geq 1$ and $N\left(2^{\alpha}\right) \geq 1$ if and only if $N(8) \geq 1$ for $\alpha \geq 3$. Thus, it only needs to consider $N(2), N(4), N(8)$ and $N(p)$ for odd prime p.

It is straightforward to verify that

$$
N\left(2^{l}\right)= \begin{cases}\varphi\left(2^{l}\right)^{5} & \text { if } b_{1}+\cdots+b_{5} \equiv b\left(\bmod 2^{l}\right) \\ 0 & \text { otherwise }\end{cases}
$$

for $l=1,2,3$ and

$$
N(3)= \begin{cases}2^{5} & \text { if } b_{1}+\cdots+b_{5} \equiv b(\bmod 3) \\ 0 & \text { otherwise }\end{cases}
$$

Thus it remains to consider $p \geq 5$. We are going to show:
Proposition 4 Let b_{1}, \ldots, b_{5} and n be any integers. For convenience, we let $b_{6}=-n$. For $p \geq 7, N(p)=0$ if and only if
(i) p divides exactly 5 of b_{1}, \ldots, b_{6}; or
(ii) p divides exactly 4 of b_{1}, \ldots, b_{6} (say $p \nmid b_{i}, b_{j}$) and $\left(\frac{b_{i}}{p}\right)=-\left(\frac{-1}{p}\right)\left(\frac{b_{j}}{p}\right)$.

For the case $p=5, N(5)=0$ if and only if (i) or (ii) or
(iii) 5 divides exactly 3 of $b_{1}, \ldots, b_{6}\left(\right.$ say $\left.5 \nmid b_{i}, b_{j}, b_{k}\right)$ and

$$
\left(\frac{b_{i}}{5}\right)=\left(\frac{b_{j}}{5}\right)=\left(\frac{b_{k}}{5}\right)
$$

Moreover, if $N(p)>0$ then $N(p)=p^{4}+O\left(p^{3}\right)$ except when p divides exactly 4 of $b_{1}, \ldots, b_{6}\left(\right.$ say $\left.p \nmid b_{i}, b_{j}\right)$ and $\left(\frac{b_{i}}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{b_{j}}{p}\right), N(p)=2(p-1)^{4}$. Here $(\dot{\bar{p}})$ is the Legendre symbol.

Proof Among the numbers b_{1}, \ldots, b_{6}, let m of them be divisible by p and k (respectively l) of them be quadratic residues (respectively non-residues) modulo p. Then from the proof of Lemma 3.6 and (3.8) in [13], we have

$$
\begin{equation*}
\varphi(p)^{-5} p N(p)=1+A(n, p) \tag{6.1}
\end{equation*}
$$

$m+k+l=6$ and

$$
\begin{equation*}
A(n, p)=\frac{1}{2} \varphi(p)^{m-5}\left\{(\lambda-1)^{k}(-\lambda-1)^{l}+(\lambda-1)^{l}(-\lambda-1)^{k}\right\} \tag{6.2}
\end{equation*}
$$

where $\lambda=\sqrt{p}$ if $p \equiv 1(\bmod 4)$ and $\lambda=i \sqrt{p}$ if $p \equiv-1(\bmod 4)$. In view of (6.1), $N(p)=0$ if and only if $A(n, p)=-1$. It has been proved in Lemma 3.6 of [13] that if $p \geq 7$ (respectively $p=5$) and p does not divide more than 3 (respectively 2) of the six numbers b_{1}, \ldots, b_{6} then $N(p) \geq 1$ and when $N(p) \geq 1$, by direct computation of the term $A(n, p)$ using (6.2), we can prove that $|A(n, p)| \ll p^{-1}$ and hence $N(p)=p^{4}+O\left(p^{3}\right)$ by (6.1). It remains to consider cases (ii) and (iii) in the proposition (case (i) is trivial). For case (ii), $m=4$ and $k+l=2$ and from (6.2)

$$
\begin{aligned}
A(n, p) & =\frac{1}{2}(p-1)^{-1}\left\{(\lambda-1)^{k}(-\lambda-1)^{l}+(\lambda-1)^{l}(-\lambda-1)^{k}\right\} \\
& = \begin{cases}\frac{p+1}{p-1} & \text { if } p \equiv 1(\bmod 4) \text { and }(k, l)=(0,2) \text { or }(2,0) \\
-1 & \text { if } p \equiv 1(\bmod 4) \text { and }(k, l)=(1,1) ; \\
\frac{p+1}{p-1} & \text { if } p \equiv-1(\bmod 4) \text { and }(k, l)=(1,1) \\
-1 & \text { if } p \equiv-1(\bmod 4) \text { and }(k, l)=(0,2) \text { or }(2,0)\end{cases}
\end{aligned}
$$

Thus $A(n, p)=-1$ if and only if $\left(\frac{b_{i}}{p}\right)=-\left(\frac{-1}{p}\right)\left(\frac{b_{j}}{p}\right)$ and when $N(p) \geq 1$, then $N(p)=2(p-1)^{4}$. For case (iii), $p=5, m=k+l=3$ and from (6.2) we have

$$
\begin{aligned}
A(n, 5) & =\frac{1}{32}\left\{(\sqrt{5}-1)^{k}(-\sqrt{5}-1)^{l}+(\sqrt{5}-1)^{l}(-\sqrt{5}-1)^{k}\right\} \\
& = \begin{cases}-1 & \text { if }(k, l)=(0,3) \text { or }(3,0) \\
\frac{1}{4} & \text { if }(k, l)=(1,2) \text { or }(2,1)\end{cases}
\end{aligned}
$$

Thus $N(5)=0$ if $\left(\frac{b_{i}}{5}\right)=\left(\frac{b_{j}}{5}\right)=\left(\frac{b_{k}}{5}\right)$.

7 Proofs of Lemmas 2.1 and 2.2

Lemma 2.1 is a consequence of the following:

Lemma 7.1

(i) For $x>0$,

$$
\sum_{q>x}|A(n, q)| \ll x^{-1} B^{\varepsilon} \log ^{60}(x+2)
$$

So the singular series $\mathfrak{S}(n):=\mathfrak{S}(n, \infty)$ is absolutely convergent.
(ii) We have $\subseteq(n) \gg(\log \log B)^{-c_{5}}$ for some constant $c_{5}>0$.

Proof Let $\sigma=(\log (x+2))^{-1}$. From Lemma 3.2 and Corollary 3.5 (a) in [13], we have

$$
\begin{align*}
\sum_{q>x}|A(n, q)| & \leq \sum_{q=1}^{\infty}\left(\frac{q}{x}\right)^{1-\sigma}|A(n, q)|=x^{-1+\sigma} \sum_{q=1}^{\infty} q^{1-\sigma}|A(n, q)| \tag{7.1}\\
& \ll x^{-1} \prod_{p}\left(1+p^{1-\sigma}|A(n, p)|\right)
\end{align*}
$$

because $x^{\sigma} \ll 1$. Using Lemma 3.7 (a) in [13], we have

$$
\begin{align*}
\prod_{p \nmid b_{1} \cdots b_{5}}\left(1+p^{1-\sigma}|A(n, p)|\right) & \leq \prod_{p \nmid b_{1} \cdots b_{5}}\left(1+\frac{60}{p^{1+\sigma}}\right) \leq \prod_{p}\left(1-p^{-1-\sigma}\right)^{-60} \tag{7.2}\\
& =\zeta(1+\sigma)^{60} \ll \sigma^{-60}=\log ^{60}(x+2)
\end{align*}
$$

Using (1.3), (6.1) and Proposition 4, we get

$$
\begin{equation*}
\prod_{p \mid b_{1} \cdots b_{5}}\left(1+p^{1-\sigma}|A(n, p)|\right) \leq \prod_{p \mid b_{1} \cdots b_{5}}\left(1+c p^{-\sigma}\right) \leq d\left(b_{1} \cdots b_{5}\right)^{\log _{2}(1+c)} \ll B^{\varepsilon} \tag{7.3}
\end{equation*}
$$

Now (i) follows from (7.1), (7.2) and (7.3).
Using (1.3) and Proposition 4, we have $N(p)=p^{4}+O\left(p^{3}\right)$. It follows from this and Lemma 3.7 (a) of [13] that, for some large constant $c>60$,

$$
\begin{aligned}
\mathfrak{S}(n) & =\prod_{p}(1+A(n, p)) \gg \prod_{\substack{p \mid b_{1} \cdots b_{5} \\
p>c}}\left(1-c p^{-1}\right) \prod_{\substack{p \nmid b_{1} \cdots b_{5} \\
p>c}}\left(1-60 p^{-2}\right) \\
& \gg \prod_{\substack{p \mid b_{1} \cdots b_{5} \\
p>c}}\left(1-c p^{-1}\right) \gg \prod_{p \mid b_{1} \cdots b_{5}}\left(1+p^{-1}\right)^{-(1+c)} .
\end{aligned}
$$

The desired estimate in (ii) now follows from the well-known estimate $\prod_{p \mid x}\left(1+p^{-1}\right) \ll \log \log x$.

Proof of Lemma 2.2 We easily derive the following inequalities:

$$
\begin{aligned}
\sum_{\substack{b_{1} m_{1}+\cdots+b_{5} m_{5}=n \\
M<\left|b_{j}\right| m_{j} \leq N}} 1 & \sum_{\substack{n-\left(b_{1} m_{1}+\cdots+b_{4} m_{4}\right) \equiv 0\left(\bmod \left|b_{5}\right|\right) \\
M<\left|b_{j}\right| m_{j} \leq N, j=1, \ldots, 4}} 1 \\
& =\sum_{\substack{M_{j}<m_{j} \leq N_{j} \\
j=1,2,3}} \sum_{\substack{m_{4} \equiv \overline{b_{4}}\left(n-\left(b_{1} m_{1}+\cdots+b_{3} m_{3}\right)\right) \\
M_{4}<m_{4} \leq N_{4}}}\left(\bmod \left|b_{5}\right|\right) \\
& \ll N_{1} N_{2} N_{3} \frac{N_{4}}{\left|b_{5}\right|} \ll \frac{N^{4}}{\left|b_{1} \cdots b_{5}\right|},
\end{aligned}
$$

where $b_{4} \overline{b_{4}} \equiv 1\left(\bmod \left|b_{5}\right|\right)$.
To establish inequalities in the other direction, we first consider case (ii) in which all b_{j} are positive and $n=N$. If $M<b_{j} m_{j} \leq N / 5$ for $j=1, \ldots, 4$, then

$$
M<N / 5=N-4(N / 5) \leq N-\left(b_{1} m_{1}+\cdots+b_{4} m_{4}\right)=b_{5} m_{5}<N
$$

It follows that

$$
\sum_{\substack{b_{1} m_{1}+\cdots+b_{5} m_{5}=n \\ M<b_{j} m_{j} \leq N}} 1 \geq \sum_{\substack{n-\left(b_{1} m_{1}+\cdots+b_{4} m_{4}\right) \equiv 0\left(\bmod b_{5}\right) \\ M<b_{j} m_{j} \leq N / 5, j=1, \ldots, 4}} 1 \gg \frac{N^{4}}{b_{1} \cdots b_{5}} .
$$

The case (i) can be treated similarly. We therefore conclude that

$$
\sum_{\substack{b_{1} m_{1}+\cdots+b_{5} m_{5}=n \\ M<\left|b_{j}\right| m_{j} \leq N}} 1 \asymp \frac{N^{4}}{\left|b_{1} \cdots b_{5}\right|}
$$

from which and the definition of $\mathfrak{J}(n)$ (in (2.7)) the desired result follows.

References

[1] A. Baker, On some diophantine inequalities involving primes. J. Reine Angew. Math. 228(1967), 166-181.
[2] C. Bauer, M. C. Liu and T. Zhan, On sums of three prime squares. J. Number Theory 85(2000), 336-359.
[3] K. K. Choi, A numerical bound for Baker's constant—some explicit estimates for small prime solutions of linear equations. Bull. Hong Kong Math. Soc. 1(1997), 1-19.
[4] H. Davenport, Multiplicative Number Theory. 2nd edition, Springer, Berlin, 1980.
[5] P. X. Gallagher, A large sieve density estimate near $\sigma=1$. Invent. Math. 11(1970), 329-339.
[6] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan's identity. Canad. J. Math. 34(1982), 1365-1377.
[7] L. K. Hua, Some results in the additive prime number theory. Quart. J. Math. (Oxford) 9(1938), 68-80.
[8] , Additive theory of prime numbers (in Chinese). Science Press, Beijing 1957; English transl., Amer. Math. Soc., Rhode Island, 1965.
[9] M. N. Huxley, Large values of Dirichlet polynomials (III). Acta Arith. 26(1974/75), 435-444.
[10] J. Y. Liu and M. C. Liu, The exceptional set in the four prime squares problem. Illinois J. Math. 44(2000), 272-293.
[11] J. Y. Liu, M. C. Liu and T. Zhan, Squares of primes and powers of 2. Monatsh. Math. 128(1999), 283-313.
[12] M. C. Liu, and K. M. Tsang, Small prime solutions of linear equations. In: Théorie des nombres (eds. J.-M. De Koninck and C. Levesque), Walter de Gruyter, Berlin-New York, 1989, 595-624.
[13] , Small prime solutions of some additive equations. Monatsh. Math. 111(1991), 147-169.
[14] M. C. Liu, and T. Z. Wang, A numerical bound for small prime solutions of some ternary linear equations. Acta Arith. 86(1998), 343-383.
[15] K. Prachar, Primzahlverteilung. Springer, Berlin, 1957.
[16] E. C. Titchmarsh, The theory of the Riemann zeta-function. 2nd edition, Oxford University Press, Oxford, 1986.

Department of Mathematics
Simon Fraser University
Burnaby, BC
V5A 1S6
email: choi@cecm.sfu.ca

Department of Mathematics
Shandong University
Jinan, Shandong 250100
P. R. China
email: jyliu@sdu.edu.cn

[^0]: Received by the editors May 23, 2000; revised August 20, 2001.
 The second author was supported by the National Science Foundation for Distinguished Young Scholars, and the Trans-Century Training Programme Foundation for the Talents by the Ministry of Education.

 AMS subject classification: 11P32, 11P05, 11P55.
 (C)Canadian Mathematical Society 2002.

